Advertisement

Immortalization of Hepatocytes through Targeted Deregulation of the Cell Cycle

  • G. S. Jennings
  • M. Strauss
Part of the Cell Engineering book series (CEEN, volume 1)

Abstract

The generation of continuously proliferating hepatocytes expressing differentiated functions has been a goal long sought after by workers in the fields of liver toxicology and pathology, in recombinant protein technology and in gene therapy and medicine. The requirements of these disciplines will define the parameters for selecting an immortalization strategy and will ultimately pass judgement on the success of newly created cell lines.

Keywords

Programme Cell Death Hepatocyte Growth Factor Primary Hepatocyte Retinoblastoma Protein Cell Cycle Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aden, DP., Fogel, A., Plotkin, S., Damjanov, I., and Knowles, B.B. (1979) Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature (London) 282, 615–616.CrossRefGoogle Scholar
  2. Alexander, J.J. (1984) In vitro studies of human hepatocellular carcinoma cell lines. Adv. Hepatitis Res., 190–195.Google Scholar
  3. Al-Rubeai, M., and Singh, R.P. (1998) Apoptosis in cell culture. Curr. Opin. Biotechnol. 9, 152–156.PubMedCrossRefGoogle Scholar
  4. Arias, I.M., Boyer, J.L., Fausto, N., Jakoby, W.B., Schachter, D.A., and Shafritz, D.A., eds. The Liver-Biology and Pathobiology,Rzven Press Ltd., New York, 1994.Google Scholar
  5. Beaune, P.H., and Lecoeur, S. (1997) Immunotoxicology of the liver: adverse reactions to drugs. J. Hepatol. 26Suppl. 2, 37–42PubMedCrossRefGoogle Scholar
  6. Bodnar, A.G.M., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.P., Morin, G.B., Harley, C.B., Shay, J.W., Lichtsteiner, S., and Wright, W.E. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science, 279, 349–352.PubMedCrossRefGoogle Scholar
  7. Brehm, A., Miska, E.A., McCance, D.J., Reid, J.L., Bannister, A.J., and Kouzarides, T. (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601.PubMedCrossRefGoogle Scholar
  8. Bulera, S.J., Haas, M.J., Sattler, CA., Li, Y., Pitot, H.C (1997) Cell lines with heterogeneous phenotypes result from a single isolation of albumin-sv40 T-antigen transgenic rat hepatocytes. Hepatology 25, 1192–1203.PubMedCrossRefGoogle Scholar
  9. Bull. P.C., Thomas, G.R., Rommens, J.M., Forbes, J.R. and Cox, D.W. (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genet., 5, 327–337.PubMedCrossRefGoogle Scholar
  10. Chellappan, S.P., Hiebert, S., Mudryj, M., Horowitz, J.M., and Nevins, J.R. (1991) The E2F transcription factor is a cellular target for the RB protein. Cell 65, 1053–1061.PubMedCrossRefGoogle Scholar
  11. Chen, S.C., Mullon, C, Kahaku, E., Watanabe, F., Hewitt, W., Eguchi, S., Middleton, Y., Arkadopoulos, N., Rozga, J., Solomon, B., and Demetriou, A.A. (1997) Treatment of severe liver failure with a bioartificial liver. Ann. N. Y. Acad. Sei. 831, 350–360.CrossRefGoogle Scholar
  12. Cheng, E.H., Kirsch, D.G., Clem, R.J., Ravi, R., Kasten, M.B., Bedi, A., Ueno, K. and Hardwick, J.M. (1997) Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278, 1966–1968.PubMedCrossRefGoogle Scholar
  13. Clarke, A.R., Maandag, E.R., van Roon, M., van-der-Lugt, N.M., van-der-Valk, M, Hooper, M.L., Berns, A. te Riele, H. (1992) Requirement for a functional Rb-1 gene in murine development. Nature 359, 328–330.PubMedCrossRefGoogle Scholar
  14. Darnbrough, C, Slater, S., Vass, M., and MacDonald, C. (1992) Immortalization of murine primary spleen cells by v-myc, v-ras, and v-raf. Exp. Cell. Res. 201, 273–283.PubMedCrossRefGoogle Scholar
  15. DeCaprio, J.A., Ludlow, J.W., Lynch, D., Furukawa, Y., Griffin, J., Piwnica-Worms, H., Huang, CM., and Livingstone, D.M. (1988) SV40 large T antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54, 275–283.PubMedCrossRefGoogle Scholar
  16. De Stanchina, E., McCurrach, M.E., Zindy, F., Shieh, S-Y., Gerardo, F., Samuelson, A.V., Prives, C, Roussel, M.F., Sherr, C.J., and Lowe, S.W. (1998) El A signaling to p53 involves the p19 ARF tumor suppressor. Genes Dev. 12, 2434–2442.PubMedGoogle Scholar
  17. Draetta, (1994) G. Mammalian G1 cyclins. Curr. Opin. Cell Biol. 6, 842–846.PubMedCrossRefGoogle Scholar
  18. Dyson, N., Howley, P.M., Munger, K., and Harlow, E. (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–937.PubMedCrossRefGoogle Scholar
  19. Enosawa, S., Suzuki, S., Kakefuda, T., and Amemiya, H. (1996) Examination of 7-ethoxycoumarin deethylation and ammonia removal activities in 31 hepatocyte cell lines. Cell. Transplant. 5(Suppl. 1), S39–40PubMedCrossRefGoogle Scholar
  20. Fausto, N., and Webber, E.M. (1994) Liver regeneration. In: The Liver: Biology and Pathobiology. 3rd ed., Arias, I.M., Boyer, J.L., Fausto, N., Jakoby, W.B., Schachter, D.A., and Shafritz, D.A., eds., Raven Press Ltd., New York, 1059–1084.Google Scholar
  21. Fausto, N., Laird, A.D., and Webber, E.M. (1995) Role of growth factors and cytokines in hepatic regeneration. FASEB J. 9, 1527–1536.PubMedGoogle Scholar
  22. Farrell, G.C. (1997) Drug-induced hepatic injury. J. Gastroenterol. Hepatol. 12, S242–250.PubMedGoogle Scholar
  23. Friedman, J.M., Chung, E.Y., and Darnell Jr., J.E. (1984) Gene expression during liver regeneration. J. Mol. Biol. 179, 37–53PubMedCrossRefGoogle Scholar
  24. Friend, S.H., Horowitz, J.M., Gerber, M.R., Wang, X.F., Bogenmann, E., Li, F.P., and Weinberg, R.A. (1987) Deletions of a DNA sequence in retinoblastomas and mesenchymal tumors: Organization of the sequence and its encoded protein. Proc. Natl. Acad. Sei. USA 84, 9059–9063.CrossRefGoogle Scholar
  25. Gannon, J.V., Greaves, R., Iggo, R., Lane, D,.P. (1990) Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBOJ. 9, 1595–1602.Google Scholar
  26. Gerlach, J.C. (1996) Development of a hybrid liver support system: a review. Int. J. Artif. Organs. 19, 645–654.PubMedGoogle Scholar
  27. Goldstein, J.L., and Brown, M.S. (1973) Familial hypercholesterolemia: pathogenesis of a receptor disease. Johns Hopkins Med. J. 143, 8–16.Google Scholar
  28. Gomez-Lechon, M.J., Castelli, J., Guillen, I., O’Connor, E., Nakamura, T., Fabra, R., and Trullenque, R. (1995) Effects of hepatocyte growth factor on the growth and metabolism of human hepatocytes in primary culture. Hepatology 21, 1248–1254.PubMedCrossRefGoogle Scholar
  29. Greenbaum, L.E., Cressman, D.E., Haber, B.A., and Taub, R. (1995) Coexistence of C/EBPα, \, growth-induced proteins and DNA synthesis in hepatocytes during liver regeneration. J. Clin. Invest. 96, 1351–1365.PubMedGoogle Scholar
  30. Grossman, M., Raper, S.E., Kozarsky, K., Stein, E.A., Engelhardt, J.F., Muller, D., Lupien, P.J., and Wilson, J.M. (1994) Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nat. Genet. 6, 335–341.PubMedCrossRefGoogle Scholar
  31. Guillouzo, A. (1998) Liver cell models in in vitro toxicology. Environ. Health Perspect. 106Suppl 2 9, 511–532.PubMedCrossRefGoogle Scholar
  32. Guguen-Guillouzo, C, Clement, B., Baffet, G., Beaumont, C, Morl-Chaney, E., Glaise, D., and Guillouzo, A. (1983) Maintenance and reversibility of active albumin secretion by adult rat hepatocytes co-cultured with another liver epithelial cell type. Exp. Cell. Res. 143, 47–55.PubMedCrossRefGoogle Scholar
  33. Gunsalus, J.R., Brady, D.A., Coulter, S.M., Gray, B.M., and Edge, A.S.B. (1997) Reduction of serum cholesterol in Watanabe rabbits by xenogenic hepatocellular transplantation. Nature Med. 3, 48–53.PubMedCrossRefGoogle Scholar
  34. Hainaut, P.; Soussi, T. Shomer, B., Hollstein, M., Greenblatt, M., Hovig, E., Harris, C.C., and Montesano, R. (1997) Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucleic Acids Res. 25, 151–7PubMedCrossRefGoogle Scholar
  35. Hannon, G.J., and Beach, D. (1994) PISINK4B is a potential effector of TGF-\-induced cell cycle arrest. Nature 371, 257–261.PubMedCrossRefGoogle Scholar
  36. Harland, R.C., and Platt, J.L. (1996) Prospects for xenotransplantation of the liver. J. Hepatol. 25, 248–258.PubMedCrossRefGoogle Scholar
  37. He, L., Isselbacher, K.J., Wands, JR., Goodman, H.M., Shih, C, and Quaroni, A. (1984) Establishment and characterization of a new human hepatocellular carcinoma cell line. In Vitro 20, 493–504.PubMedCrossRefGoogle Scholar
  38. Helin, K., Lees, J.A., Vidal, M., Dyson, N., Harlow, E., and Fattaey, A. (1992) A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 70, 337–350.PubMedCrossRefGoogle Scholar
  39. Hering, S., Griffin, B.E., and Strauss, M. (1991) Immortalization of human fetal sinusoidal liver cells by polyoma virus large T antigen. Exp. Cell Res. 195, 1–7.PubMedCrossRefGoogle Scholar
  40. Herwig, S., and Strauss, M. (1997) The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis. Eur. J. Biochem. 246, 581–601PubMedCrossRefGoogle Scholar
  41. Higgins, G.M., and Anderson, R.M. (1931) Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. 12, 186–202.Google Scholar
  42. Hinds, P.W., Mittnacht, S., Dulic, V., Arnold, A., Reed, S.I., and Weinberg, R.A. (1992) Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70, 993–1006.PubMedCrossRefGoogle Scholar
  43. Höhne, M., Piasecki, A., Ummelmann, E., and Paul, D. (1987) Transformation of differentiated neonatal rat hepatocytes in primary culture by polyoma virus early region sequences. Oncogene 1, 337–345.PubMedGoogle Scholar
  44. Hoffmann, B., Piasecki, A., and Paul, D. (1989) Proliferation of fetal rat hepatocytes in response to growth factors and hormones in primary culture. J. Cell Physiol. 139, 654–662.PubMedCrossRefGoogle Scholar
  45. Horowitz, J.M., Park, S.H, Bogenmann, E., Cheng, J-C, Yandell, D.W., Kaye, F.J., Minna, J.D., Dryja, P., and Weinberg, R.A. (1990) Frequent inactivation of the retinoblastoma antioncogene is restricted to a subset of human tumor cells. Proc. Natl. Acad. Sei. USA 87, 2775–2779.CrossRefGoogle Scholar
  46. Horwich, A.L. Inherited hepatic enzyme defects as candidates for liver-directed gene therapy. Curr. Topics Microbiol. Immun. 168 (1991), 185–200.Google Scholar
  47. Huang, L.C., Clarkin, K.C., and Wahl, G.M. (1996) Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent Gl arrest. Proc. Natl. Acad. Sei. USA. 93, 4827–4832.CrossRefGoogle Scholar
  48. Hunter, T., and Pines, J. Cyclins and cancer II: cyclin D and cdk inhibitors come of age. Cell 79 (1994), 573–582.PubMedCrossRefGoogle Scholar
  49. Kaelin, W.G., Krek, W., Sellers, W.R., DeCaprio, J.A., Ajchenbaum, F., Fuchs, C.S., Chittenden, T., Li, Y., Farnham, P.J., Blanar, M.A., Livingston, D.M., and Flemington, E.K. (1992) Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70, 351–364.PubMedCrossRefGoogle Scholar
  50. Kamb, A., Gruis, N.A., Weaver-Feldhaus, J., Lui, Q., Harshman, K., Tavtigan, S.V., Stockert, E., Day, R.S., Johnson, B.E., and Skolnick, M.H. (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436–440.PubMedCrossRefGoogle Scholar
  51. Kato, J., Matsushime, H., Hiebert, S.W., Ewen, M.E., and Sherr, C.J. (1993) Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase cdk4. Genes Dev. 7, 331–342.PubMedCrossRefGoogle Scholar
  52. Kreuzburg-Duffy, U.C. and MacDonald, C. (1994) Establishment and characterization of murine macrophage-like cell lines following transformation with simian virus 40 DNA deleted at the origin of replication. J. Immunol. Methods 174, 33–51.PubMedCrossRefGoogle Scholar
  53. Kiyono, T., Foster, S.A., Koop, J.I., McDougall, J.K., Galloway, D.A., and Klingelhutz, A.J. (1998) Both Rb/pl6INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88.PubMedCrossRefGoogle Scholar
  54. Lane, D.P., and Benchimol, S. (1990) p53: oncogene or antioncogene? Genes Dev. 4, 1–8.PubMedCrossRefGoogle Scholar
  55. Leffert, H.L., Koch, K.S., Lad, P.J., Shapiro, I.P., Skelly, H., and de Hemptinne, B. (1988) Hepatocyte regeneration, replication and differentiation, in: The Liver: Biology and Pathobiology, 2nd edition, Arias, I.M., Jakoby, W.B., Popper, H., Schachter, D., and Shafritz, D.A., eds., Raven Press, Ltd., New York.Google Scholar
  56. Li, L.P., Schlag, P.M., and Blankenstein, T. (1997) Transient expression of SV 40 large T antigen by Cre/LoxP-mediated site-specific deletion in primary human tumor cells. Hum. Gene Ther. 8, 1695–1700.PubMedGoogle Scholar
  57. Li, Q., Kay, M.A., Finegold, M., Stratford-Perricaudet, L.D., and Woo, S.L. (1993) Assessment of recombinant adenoviral vectors for hepatic gene therapy. Hum. Gene Ther. 4, 403–409.PubMedCrossRefGoogle Scholar
  58. Liebermann, D.A., Hoffman, B., and Steinman, R.A. Molecular controls of growth arrest and apoptosis. (1995) p53-dependent and independent pathways. Oncogene 11, 199–210.PubMedGoogle Scholar
  59. Lindblad, B., Lindstedt, S, and Stehen, G. (1977) On the enzymatic defects in hereditary tyrosinemia. Proc. Natl. Acad. Sei. USA 74, 4641–4645.CrossRefGoogle Scholar
  60. Lukas, J., Pagano, M., Staskova, Z., Draetta, G., and Bartek, J. (1994) Cyclin Dl protein oscillates and is essential for cell cycle progression in human tumour cell lines. Oncogene, 9, 707–718.PubMedGoogle Scholar
  61. Lukas, J., Parry, D., Aagaard, L., Mann, D.J., Bartkova, J., Strauss, M., Peters, G., and Bartek, J. (1995) Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature, 375, 503–506.PubMedCrossRefGoogle Scholar
  62. Lukas, J., Bartkova, J., and Bartek, J. (1996) Convergence of mitogenic signalling cascades from diverse classes of receptors at the cyclin D-cyclin-dependent kinase-pRb-controlled Gl checkpoint. Mol. Cell Biol. 16, 6917–6925.PubMedGoogle Scholar
  63. Magnaghi-Jaulin, L., Groisman, R., Naguibneva, I., Robin, P., Lorain, S., LeVillain, J.P., Troalen, F., Trouche, D., and Harel-Bellan, A. (1998) Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391, 601–604.PubMedCrossRefGoogle Scholar
  64. McNab, G.M., Alexander, J.J., Lecatas, G., Bey, E.M., and Urbanowicz, J.M. (1976) Hepatitis B surface antigen produced by a human hepatoma cell line. Br. J. Cancer 34, 509–515.Google Scholar
  65. Meyer, U.A. (1996) Overview of enzymes of drug metabolism. J. Pharmacokinet. Biopharm. 24, 449–459.PubMedCrossRefGoogle Scholar
  66. Michalopoulos, G.K., and DeFrances, M.C. (1997) Liver regeneration. Science, 276, 60–66.PubMedCrossRefGoogle Scholar
  67. Morgenbesser, S.D., Williams, B.O., Jacks, T., and DePinho, R.A. (1994) p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371, 72–74.PubMedCrossRefGoogle Scholar
  68. Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T., and Sato, J. (1982) Growth of human hepatoma cell lines with differentiated functions in chemically defined medium. Cancer Res. 42, 3858–3863.PubMedGoogle Scholar
  69. Nigro, J.M., Baker, S.J., Preisinger, A.C., Jessup, J.M., Hostetter, R., Cleary, K., Binger, S.H., Davidson, N., Baylin, S., Devilee, P., Glover, T., Collins, F.S., Weston, A., Modali, R., Harris, C.C., and Vogelstein, B. (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342, 705–708.PubMedCrossRefGoogle Scholar
  70. Nobori, T., Miura, K., Wu, D., Lois, A., Takabayshi, K., and Carson, D. (1994) Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368, 753–756.PubMedCrossRefGoogle Scholar
  71. Overturf, K., Al-Dhalimy, M., Tanguay, R., Brantly, M., Ou, C.N., Finegold, M., and Grompe, M. (1996) Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nature Gen. 12, 266–273.CrossRefGoogle Scholar
  72. Overturf, K., Al-Dhalimy, M., Ou, C.N., Finegold, M., and Grompe, M. (1997) Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am. J. Pathoi, 151, 1273–1280.Google Scholar
  73. Paul, D., Hohne, M., Pinkert, C, Piasecki, A., Ummelmann, E., and Brinster, R.L. (1988) Immortalized differentiated hepatocyte lines derived from transgenic mice harboring SV40 T-antigen genes. Exp.Cell Res. 175, 354–62.PubMedCrossRefGoogle Scholar
  74. Pfeifer, A.M.A., Cole, K.E., Smoot, D.T., Weston, A., Groopman, J.D., Shields, P.G., Vignaud, J-M., Juillerat, M., Lipsky, M.M., Trump, B.F., Lechner, J.F., and Harris, C.C. (1993) Simian virus 40 large tumor antigen-immortalized normal human liver epithelial cells express hepatocyte characteristics and metabolize chemical carcinogens. Proc. Natl. Acad. Sei. USA 90, 5123–5127.CrossRefGoogle Scholar
  75. Prelich, G., and Stillman, B. (1988) Coordinated leading and lagging strand synthesis during SV40 DNA replication in vitro requires PCNA. Cell 53, 117–126.PubMedCrossRefGoogle Scholar
  76. Puisieux, A., Galvin, K., Troalen, F., Bressac, B., Marcais, C, Galun, E., Ponchel, F., Yakicier, C, Ji, J., and Ozturk, M. (1993) Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines. FASEBJ. 7, 1407–1413.Google Scholar
  77. Rhim, J.A., Sandgren, E.P., Palmiter, R.D., and Brinster, R.L. (1994) Replacement of disease mouse liver by hepatic cell transplantation. Science 263, 1149–1152.PubMedCrossRefGoogle Scholar
  78. Rohde, M., Warthoe, P., Gjetting, T., Lukas, J., Bartek, J., and Strauss, M. (1996) The retinoblastoma protein modulates expression of genes coding for diverse classes of proteins including components of the extracellular matrix. Oncogene 12, 2393–2401.PubMedGoogle Scholar
  79. Sauer, B., and Henderson, N. (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage Pl. Proc. Natl. Acad. Sei. USA. 85, 5166–5170.CrossRefGoogle Scholar
  80. Schneider, M., Marison, I.W., and von Stocker, U. (1996) The importance of ammonia in mammalian cell culture. J. Biotech. 46, 161–185.CrossRefGoogle Scholar
  81. Schwarz, J.K., Devoto, S.H., Smith, E.J., Chellappan, S.P., Jakoi, L., and Nevins, J.R. (1993) Interactions of the p107 and Rb proteins with E2F during the cell proliferation response. EMBOJ. 12, 1013–1020.Google Scholar
  82. Serrano, M., Hannon, G., and Beach, D. (1993) A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707.PubMedCrossRefGoogle Scholar
  83. Sherr, C.J., and Roberts, J.M. (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9, 1149–1163.PubMedCrossRefGoogle Scholar
  84. Sirica, A.E., and Pitot, H.C. (1980) Drug metabolism and effects of carcinogens in cultured hepatic cells. Pharmacol. Rev. 31, 205–228.Google Scholar
  85. Slansky, J.E., and Farnham, P.J. (1996) Introduction to the E2F family: protein structure and gene regulation. Curr. Top. Microbiol. Immunol. 208, 1–30.PubMedGoogle Scholar
  86. Strauss, M., Hering, S., Lubbe, L., and Griffin, B.E. (1990) Immortalization and transformation of human fibroblasts by regulated expression of polyoma virus T antigens. Oncogene 5, 1223–1229.PubMedGoogle Scholar
  87. Strauss, M., Hering, S., Lieber, A., Herrmann, G., Griffin, B.E., and W., Arnold. (1992). Stimulation of cell division and fibroblast focus formation by antisense repression of retinoblastoma protein synthesis. Oncogene 7, 769–773.PubMedGoogle Scholar
  88. Strauss, M., Lukas, J., and Bartek, J. (1995) Unrestricted cell cycling and cancer. Nature Med. 1, 1254–1246.CrossRefGoogle Scholar
  89. Sussman, N.L., and Kelly, J.H. Extracorporeal liver support: cell-based therapy for the failing liver. Am. J. Kidney Dis. 30Suppl. 4 (1997), S66–71.PubMedGoogle Scholar
  90. Tuck, S.P., and Crawford, L. (1989) Overexpression of normal human p53 in established fibroblasts leads to their tumorigenic conversion. Oncogene Res. 4, 81–96.PubMedGoogle Scholar
  91. Vojtesek, B., Bartek, J., Midgley, C.A., and Lane, D.P. (1992) An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J. Immunol. Methods 151, 237–244.PubMedCrossRefGoogle Scholar
  92. Walder, R.Y. and Walder, J.A. (1988). Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc. Natl. Acad. Sei. USA, 85, 5011–5015.CrossRefGoogle Scholar
  93. Waxman, D.J., Morrissey, J.J., Naik, S., and Jauregui, H.O. (1990) Phenobarbital induction of cytochromes P-450. High-level long-term responsiveness of primary rat hepatocyte cultures to drug induction, and glucocorticoid dependence of the phenobarbital response. Biochem. J. 271, 113–119PubMedGoogle Scholar
  94. Wernass, B.A., Levine, A.J., and Howley, P.M. (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76–79.CrossRefGoogle Scholar
  95. Weinberg, R.A. (1995) The retinoblastoma protein and cell cycle control. Cell 81, 323–330.PubMedCrossRefGoogle Scholar
  96. Whyte, P., Buchkovich, J.K., Horowitz, J.M., Friend, S.H., Raybuck, M., Weinberg, R.A., and Harlow, E. (1988) Association between an oncogene and an anti-oncogene: The adenovirus El A protein proteins bind to the retinoblastoma gene product. Nature 334, 124–129.PubMedCrossRefGoogle Scholar
  97. Wollenberg, G.K., Semple,. E., Quinn, B.A., and Hayes, M.A. (1987) Inhibition of proliferation of normal, preneoplastic, and neoplastic rat hepatocytes by transforming growth factor-beta. Cancer Res. 47, 6595–6599.PubMedGoogle Scholar
  98. Woodworth, C.D., and Isom, H.C. (1987) Transformation of differentiated rat hepatocytes with adenovirus and adenovirus DNA. J. Virol. 61, 3570–3579.PubMedGoogle Scholar
  99. Xiong, Y., Hannon, G.J., Zhang, H., Casso, D., Kobayashi, R., and Beach, D. (1993) p21 is a universal inhibitor of cyclin dependent kinases. Nature 366, 701–704.PubMedCrossRefGoogle Scholar
  100. Zindy, F., Eischen, C.M., Randle, D.H., Kamijo, T., Cleveland,, J.L., Sherr, C.J., and Roussel, M.F. (1998) Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  1. 1.1HepaVec AGUSA
  2. 2.Department of Cell BiologyHumboldt University, Max-Delbrück-Center for Molecular MedicineBerlinGermany

Personalised recommendations