Understanding the Translation Regulatory Mechanisms to Improve the Efficiency and the Specificity of Protein Production by the Cell Factory

  • P. Pierandrei-Amaldi
  • B. Cardinali
  • Anne-Catherine Prats
  • Hervé Prats
  • Bev. Osborne
  • Luc Paillard
  • Georges Huez
  • Véronique Kruys
  • Jean-Jacques Toulme
Part of the Cell Engineering book series (CEEN, volume 1)


Although transcription already constitutes a very diverse and flexible means for the eucaryotic cell to control gene expression, it is but the very first step in the long chain of events which ultimately leads to the product of gene expression: the protein.


Xenopus Laevis Vascular Endothelial Growth Factor mRNA Translational Control Xenopus Embryo Antisense Oligodeoxynucleotides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, A. G. and Bowman, L. H. (1987). Transcriptional and translational regulation of ribosomal protein formation during mouse myoblast differentiation. J. Biol. Chem. 262, 4868–4875.PubMedGoogle Scholar
  2. Akiri, G., Nahari, D., Finkelstein, Y., Le, S. Y., Elroy-Stein, O., and Levi, B. Z. (1998). Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene 17, 227–36.PubMedCrossRefGoogle Scholar
  3. Aloni, R., Peleg, D. and Meyuhas, O. (1992). Selective translational control and nonspecific posttranscriptional regulation of ribosomal protein gene expression during development and regeneration of rat liver. Mol. Cell. Biol. 12, 2203–2212.PubMedGoogle Scholar
  4. Amaldi, F. and Pierandrei-Amaldi, P. (1997). TOP genes: a translationally controlled class of genes including those coding for ribosomal proteins. In Cytoplasmic fate of eukaryotic mRNA (Jeanteur, P., ed.), Vol. 18, pp. 1–17. Springer-Verlag, Heidelberg.Google Scholar
  5. Audic, Y., F. Omilli and H.B. Osborne. (1997) Postfertilization deadenylation of mRNAs in Xenopus laevis embryos is sufficient to cause their degradation at the blastula stage. Mol. Cell. Biol. 17, 209–218.PubMedGoogle Scholar
  6. Audic, Y., F. Omilli and H.B. Osborne. (1998) Embryo Deadenylation Element-Dependent Deadenylation is enhanced by a cis element containing AUU repeats. Mol. Cell. Biol. 18: in press.Google Scholar
  7. Avni, D., Shama, S., Loreni, F. and Meyuhas, O. (1994). Vertebrate mRNAs with a 5′-terminal pyrimidine tract are candidates for translational repression in quiescent cells: Characterization of the translational cis-regulatory element. Mol. Cell. Biol. 14, 3822–3833.PubMedGoogle Scholar
  8. Belikova, A. M., Zarytova, V. F. and Grineva, N. I. (1967) Synthesis of ribonucleosides and diribonucleoside phosphates containing 2-chloroethylamine and nitrogen mustard residues. Tetrahedron Lett. 37, 3557–3562.PubMedCrossRefGoogle Scholar
  9. Berlioz, C., and Darlix, J. L. (1995). An internal ribosomal entry mechanism promotes translation of murine leukemia virus gag polyprotein precursors. J Virol 69, 2214–22.PubMedGoogle Scholar
  10. Berlioz, C., Torrent, C., and Darlix, J. L. (1995). An internal ribosomal entry signal in the rat VL30 region of the Harvey murine sarcoma virus leader and its use in dicistronic retroviral vectors. J Virol. 69, 6400–7.PubMedGoogle Scholar
  11. Bernstein, J., Sella, O., Le, S. Y., and Elroy-Stein, O. (1997). PDGF2/c-sis mRNA leader contains a differentiation-linked internal ribosomal entry site (D-IRES). J Biol Chem. 272, 9356–62.Google Scholar
  12. Bernstein, P., S.W. Peltz, and J. Ross. (1989) The Poly(A)-Poly(A) Binding Protein Complex Is a Major Determinant on mRNA Stability In Vitro. Mol. Cell. Biol. 9, 659–670.PubMedGoogle Scholar
  13. Bilger, A., C.A. Fox, E. Wahle, and M. Wickens. (1994) Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements. Genes Dev. 8, 1106–1116.PubMedCrossRefGoogle Scholar
  14. Binder, R., S.P.L. Hwang, R. Ratnasabapathy, and D.L. Williams. (1989) Degradation of Apolipoprotein II mRNA Occurs via Endonucleolytic Cleavage at 5′-AAU-3′/5′-UAA-3′ Elements in Single-stranded Loop Domains of the 3′-Non-coding Region. J. Biol. Chem. 264, 16910–16918.PubMedGoogle Scholar
  15. Binder, R., J.A. Horowitz, J.P. Basillion, D.M. Koeller, R.D. Klausner and J.B. Harford. (1994) Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage within the 3′UTR and does not involve poly(A) tail shortening. EMBO J. 13, 1969–1980.PubMedGoogle Scholar
  16. Boiziau, C, Dausse, E., Mishra, R., Ducongé, F. and Toulmé, J. J. (1997) Identification of aptamers against the DNA template for the HIV-1 TAR element. Antisense Nucleic Acid Drug Dev 7, 369–380.PubMedGoogle Scholar
  17. Boiziau, C, Kurfurst, R., Cazenave, C., Roig, V., Thuong, N. T. and Toulmé, J. J. (1991) Inhibition of translation initiation by antisense oligonucleotides via an RNase-H independent mechanism. Nucleic Acids Res. 19, 1113–1119.PubMedCrossRefGoogle Scholar
  18. Borman, A. M., Le Mercier, P., Girard, M., and Kean, K. M. (1997). Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins. Nucleic Acids Res 25, 925–32.PubMedCrossRefGoogle Scholar
  19. Bouvet, P., F. Omilli, Y. Arlot-Bonnemains, V. Legagneux, C. Roghi, T. Bassez, and H.B. Osborne. (1994) The deadenylation conferred by the 3′ untranslated region of a developmentally controlled mRNA in Xenopus embryos is switched to polyadenylation by deletion of a short sequence element. Mol. Cell. Biol. 14, 1893–1900.PubMedGoogle Scholar
  20. Bouvet, P., J. Paris, M. Philippe, and H.B. Osborne. (1991) Degradation of a Developmentally Regulated mRNA in Xenopus Embryos Is Controlled by the 3′ Region and Requires the Translation of Another Maternal mRNA. Mol. Cell. Biol. 11, 3115–3124.PubMedGoogle Scholar
  21. Branda, M. J., Luistro, L., Warrier, R. R., Wright, R. B., Hubbard, B. R., Murphy, M., Wolf, S. F., and Gately, M. K. (1993). Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 178, 1223–30.CrossRefGoogle Scholar
  22. Cardinali, B., Di Cristina, M. and Pierandrei-Amaldi, P. (1993). Interaction of proteins with the mRNA for ribosomal protein L1 in Xenopus: structural characterization of in vivo complexes and identification of proteins that bind in vitro to its 5′UTR. Nucl. Acids Res. 21, 2301–2308.PubMedCrossRefGoogle Scholar
  23. Caponigro, G. and R. Parker. (1995) Multiple functions for the poly(A)-binding protein in mRNA decapping and deadenylation in yeast. Genes Dev. 9, 2421–2432.PubMedCrossRefGoogle Scholar
  24. Chen, L., Perlick, H., and Morgan, R. A. (1997). Comparison of retroviral and adeno-associated viral vectors designed to express human clotting factor IX. Hum Gene Ther 8, 125–35.PubMedGoogle Scholar
  25. Chen, C.Y.A., and A.B. Shyu. (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20, 465–470.PubMedCrossRefGoogle Scholar
  26. Clusel, C, Ugarte, E., Enjolras, N., Vasseur, M. and Blumenfeld, M. (1993) Ex vivo regulation of specific gene expression by nanomolar concentration of double-stranded dumbbell oligonucleotides. Nucleic Acids Res. 21, 3405–3411.PubMedCrossRefGoogle Scholar
  27. Christensen, A.K., L.E. Kahn, and C.M. Bourne. (1987) Circular polysomes predominate on the rough endoplasmic reticulum of somatotropes and mammotropes in the rat anterior pituitary. Amer. J. Anat. 178, 1–10.PubMedCrossRefGoogle Scholar
  28. Couttet, P., M. Fromont-Racine, D. Steel, R. Pictet, and T. Grange. (1997) Messenger RNA deadenylation preceeds decapping in mammalian cells. Proc. Natl Acad. Sci. U. S. A. 94, 5628–5633.PubMedCrossRefGoogle Scholar
  29. Craig, A.W.B., A. Haghighat, A.T.K. Yu, and N. Sonenberg. (1998) Interaction of polyadenylate-binding protein with the eIF4g homologue PAIP enhances translation. Nature 392, 520–523PubMedCrossRefGoogle Scholar
  30. Crooke, S. T. (1998) Vitravene™-Another piece in the mosaic. Antisense Nucleic Acid Drug Dev. 8, 4, vii–viii.PubMedGoogle Scholar
  31. Crouch, R. J. and Toulmé, J. J. (1998) “Ribonucleases H.” Les Editions INSERM. Paris.Google Scholar
  32. Decker, C.J., and R. Parker. (1993) A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7, 1632–1643.PubMedCrossRefGoogle Scholar
  33. Duval, C., P. Bouvet, F. Omilli, C. Roghi, C. Dorel, R. LeGuellec, J. Paris, and H.B. Osborne. (1990) Stability of maternal mRNA in Xenopus embryos: Role of transcription and translation. Mol. Cell. Biol. 10, 4123–4129.PubMedGoogle Scholar
  34. Ellington, A. D. and Conrad, R. (1995) Aptamers as potential nucleic acid Pharmaceuticals. Biochim. Biophys. Acta 1049, 99–125.Google Scholar
  35. Elroy-Stein, O. (1998). The D-IRES of c-sis binds to hnRNPC which undergoes differentiation-induced hyper-phosphorylation (Cold Spring Harbor, New York) Google Scholar
  36. Fan, X.C., and J.A. Steitz. (1998) Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 17, 3448–3460.PubMedCrossRefGoogle Scholar
  37. Fox, C.A., and M. Wickens. (1990) Poly(A) removal during oocyte maturation: a default reaction selectively prevented by specific sequences in the 3′ UTR of certain maternal mRNAs. Genes Dev. 4, 2287–2298.PubMedCrossRefGoogle Scholar
  38. Fox, C.A., M.D. Sheets, and M. Wickens. (1989) Poly(A) addition during maturation of frog oocytes: Distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev. 3, 2151–2162PubMedCrossRefGoogle Scholar
  39. Ford, L.P., P.S. Bagga, and J. Wilusz. (1997) The poly(A) tail inhibits the assembly of a 3′-to-5′ exonuclease in an in vitro RNA stability system. Mol. Cell. Biol. 17, 398–406.PubMedGoogle Scholar
  40. Fussenegger, M., Schlatter, S., Datwyler, D., Mazur, X., and Bailey, J. E. (1998). Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells [see comments]. Nat Biotechnol 16, 468–72PubMedCrossRefGoogle Scholar
  41. Gallie, D.R. (1991) The cap and poly (A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5, 2108–2116.PubMedCrossRefGoogle Scholar
  42. Gillian-Daniel, D.L., N.K. Gray, J. Astrom, A. Barkoff and M. Wickens. (1998) Modifications of the 5′ Cap of mRNAs during Xenopus oocyte maturation; Independence from changes in Poly (A) length and impact on translation. Mol. Cell. Biol. 18, 6152–6163.PubMedGoogle Scholar
  43. Galy, B., Maret, A., Prats, A. C., and Prats, H. (1999). Cell transformation results in the loss of the density dependent translational regulation of FGF-2 isoforms expression. Cancer Res. (in press).Google Scholar
  44. Gan, W., and Rhoads, R. E. (1996). Internal initiation of translation directed by the 5′ untranslated region of the mRNA for eIF4G, a factor involved in the picornavirus-induced switch from cap-dependent to internal initiation. J. Biol. Chem. 271, 623–626.PubMedCrossRefGoogle Scholar
  45. Gee, J. E., Robbins, I., van der Laan, A. C., van Boom, J. H., Colombier, C., Leng, M., Raible, A. M., Nelson, J. S. and Lebleu, B. (1998) Assessment of high-affinity hybridization, RNase H cleavage, and covalent linkage in translation arrest by antisense oligonucleotides. Antisense Nucleic Acid Drug Dev. 8, 103–11.PubMedGoogle Scholar
  46. Ghattas, I. R., Sanes, J. R., and Majors, J. E. (1991). The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol Cell Biol 11, 5848–59.PubMedGoogle Scholar
  47. Giles, R. V. and Tidd, D. M. (1992) Enhanced RNase-H activity with methylphosphonodiester/ phosphodiester chimeric antisense oligodeoxynucleotides. Anti-Cancer Drug Des. 7, 37–48.Google Scholar
  48. Gold, L., Polisky, B., Uhlenbeck, O. and Yarus, M. (1995) Diversity of oligonucleotide functions. Ann. Rev. Biochem. 64, 763–797.PubMedCrossRefGoogle Scholar
  49. Greenberg M.E. and Belasco, J.G. (1993) Control of the Decay of Lbaile Protooncogenes and Cytokine mRNAs. In Control of Messenger RNA Stability, J. Belasco and G. Brawerman (Eds.) Academic Press, San Diego, USA. pp199–218Google Scholar
  50. Gueydan C., L. Houzet, A. Marchant, A. Sels, G. Huez and V. Kruys (1996) Engagement of TNF mRNA by an endotoxin-inducible cytoplasmic protein. Molecular Medicine 2, 479–488.PubMedGoogle Scholar
  51. Gueydan C., L. Droogmans, P. Chalon, G. Huez, D. Caput, and V. Kruys. (in press) Identification of TIAR as a protein binding to TNF-a Mrna au-rich regulatory sequence. J. Biol. Chem. Google Scholar
  52. Hake, L.E., and J.D. Richter. (1994) CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79, 617–627.PubMedCrossRefGoogle Scholar
  53. Han, J., Brown, T. and Beutler, B. (1990) Endotoxin-responsive sequences control cachectin/tumor necrosis factor biosynthesis at the translational leve. J. Exp. Med. 171, 465–475.PubMedCrossRefGoogle Scholar
  54. Hélène, C. and Toulmé, J. J. (1990) Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim. Biophys. Acta 1049, 99–125.PubMedGoogle Scholar
  55. Huez. G., G. Marbaix, E. Hubert, M. Leclercq, U. Nudel, H. Soreq, R. Salomon, B. Lebleu, M. Revel, and U.Z. Littauer, (1974). Role of the polyadenylate segment in the translation of globin messenger mRNA in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 71, 3143–3146.PubMedCrossRefGoogle Scholar
  56. Huez, I., Creancier, L., Audigier, S., Gensac, M. C., Prats, A. C., and Prats, H. (1998). Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA [In Process Citation]. Mol Cell Biol 18, 6178–90.PubMedGoogle Scholar
  57. Hunt, S. L., Hsuan, J. J., Totty, N., and Jackson, R. J. (1999). Unr, a cellular cytoplasmic RNA-binding protein with five cold shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes & Development (in press).Google Scholar
  58. Hunt, S. L., and Jackson, R. J. (1999). Polypyrimidine-tract binding protein (PTB) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 RNA. RNA (in press).Google Scholar
  59. Jackson, R. J. (1991). mRNA translation. Initiation without an end. Nature 353, 14–5.PubMedCrossRefGoogle Scholar
  60. Jackson, R. J., and Kaminski, A. (1995). Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA 1, 985–1000.PubMedGoogle Scholar
  61. Jang, S. K., Krausslich, H. G., Nicklin, M. J., Duke, G. M., Palmenberg, A. C., and Wimmer, E. (1988). A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62, 2636–43.PubMedGoogle Scholar
  62. Jarzembowski, J.A. and J.S. Malter. (1997) Cytoplasmic Fate of Eukaryotic mRNA: Identification and Characterization of AU-Binding Proteins. In Cytoplasmic Fate of Messenger RNA, P. Jeanteur (Ed), Progress in Molecular and Subcellular Biology Vol. 18. pp141–172.Google Scholar
  63. Jefferies, H. B., Fumagalli, S., Dennis, P. B., Reinhard, C., Pearson, R. B. and Thomas, G. (1997). Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. Embo J 16(12), 3693–704.PubMedCrossRefGoogle Scholar
  64. Jefferies, H. B., Reinhard, C., Kozma, S. C. and Thomas, G. (1994). Rapamycin selectively represses translation of the ‘polypyrimidine tract’ mRNA family. Proc. Natl. Acad. Sci. USA 91, 4441–4445.PubMedCrossRefGoogle Scholar
  65. Kaminski, A., and Jackson, R. J. (1998). The polypyrimidine tract binding protein (PTB) requirement for internal initiation of translation of cardiovirus RNAs is conditional rather than absolute. RNA 4, 626–638.PubMedCrossRefGoogle Scholar
  66. Kashani-Sabet, M. and Scanlon, K. J. (1995) Application of ribozymes to cancer gene therapy. Cancer Gene Therapy 2, 213–223.PubMedGoogle Scholar
  67. Kaspar, R. L., Kakegava, T., Cranston, H., Morris, D. R. and White, M. W. (1992). A regulatory cis element and a specific binding factor involved in the mitogenic control of murine ribosomal protein L32 translation. J. Biol. Chem. 267, 508–514.PubMedGoogle Scholar
  68. Kaufman, R. J., Davies, M. V., Wasley, L. C., and Michnick, D. (1991). Improved vectors for stable expression of foreign genes in mammalian cells by use of the untranslated leader sequence from EMC virus. Nucleic Acids Res 19, 4485–90.PubMedCrossRefGoogle Scholar
  69. Körner, C.G., M. Wormington, M. Muckenthaler, S. Schneider, E. Dehlin and E. Wahle. (1998) The deadenylating nuclease (DAN) in involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. EMBO J. 17, 5427–5437.PubMedCrossRefGoogle Scholar
  70. Kozak, M. (1978). How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell 15, 1109–23.PubMedCrossRefGoogle Scholar
  71. Kruys V. and G. Huez. (1994) Translational control of cytokine expression by 3′ UA-rich sequences. Biochimie 76, 862–866.PubMedCrossRefGoogle Scholar
  72. Kruys, V., Marinx, O., Shaw, G., Deschamps, J. and Huez, G. (1989) Translational blockade imposed by cytokine-derived “UA-rich” sequences. Science 245, 852–855.PubMedCrossRefGoogle Scholar
  73. Kutyavin, I. V., Rhinehart, R. L., Lukhtanov, E. A., Gorn, V. V., Meyer, R. B. and Gamper, H. B. (1996) Oligonucleotides containing 2-aminoadenine and 2-thiothymine act as selectively binding complementary agents. Biochemistry 35, 11170–11176.PubMedCrossRefGoogle Scholar
  74. LaGrandeur, T.E., and R. Parker. (1996) mRNA decapping activities and their biological roles. Biochimie 78, 1049–1055.PubMedCrossRefGoogle Scholar
  75. Laird-Offringa, I.A., C.L. De Wit, P. Elfferich, and A.J. Van der Eb. (1990) Poly(A) tail shortening is the translation-dependent step in c-myc mRNA degradation. Mol. Cell. Biol. 10, 6132–6140.PubMedGoogle Scholar
  76. Larrouy, B., Boiziau, C., Sproat, B. and Toulmé, J. J. (1995) High affinity or selectivity: a dilemma to design antisense oligodeoxynucleotides acting in RNaseH-containing media. Nucleic Acids Res. 23, 3434–3440.PubMedCrossRefGoogle Scholar
  77. Larrouy, B., Blonski, C., Boiziau, C., Stuer, M., Moreau, S., Shire, D. and Toulmé, J. J. (1992) RNase-H mediated inhibition of translation by antisense oligodeoxynucleotides: a way to improve specificity. Gene 121, 189–194.PubMedCrossRefGoogle Scholar
  78. Le, H., R.L. Tanguay, M.L. Balasta, C.C. Wei, Browning, K.S., A.M. Metz, D.J. Goss, and D.R. Gallic (1997) Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity.. J. Biol. Chem. 272, 16247–16255.PubMedCrossRefGoogle Scholar
  79. Le Doan, T., Perrouault, L., Praseuth, D., Habhoub, N., Decout, J.-L., Thuong, N. T., Lhomme, J. and Hélène, C. (1987) Sequence-specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo-alpha-thymidylate covalently linked to an azidoproflavine derivative. Nucleic Acids Res. 19, 7749–7760.CrossRefGoogle Scholar
  80. Legagneux, V., F. Omilli, and H.B. Osborne. (1995) Substrate-specific regulation of RNA deadenylation in Xenopus embryo and activated egg extracts. RNA 1, 1001–1008.PubMedGoogle Scholar
  81. Levy, S., Avni, D., Hariharan, N., Perry, R. P. and Meyuhas, O. (1991). Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc. Natl. Acad. Sci. USA 88, 3319–3323.PubMedCrossRefGoogle Scholar
  82. Lewis T., C. Gueydan, G. Huez, J.J. Toulmé, and V. Kruys.(1998). Mapping of minimal AU-rich sequence required for LPS-induced binding of a 55 kD protein on TNF-a mRNA. T. J. Biol. Chem. 273, 13781–13786.PubMedCrossRefGoogle Scholar
  83. Lima, W. F., BrownDriver, V., Fox, M., Hanecak, R. and Bruice, T. W. (1997) Combinatorial screening and rational optimization for hybridization to folded hepatitis C virus RNA of oligonucleotides with biological antisense activity. J Biol Chem 272, 626–638.PubMedCrossRefGoogle Scholar
  84. Lopez-Lastra, M., Gabus, C., and Darlix, J. L. (1997). Characterization of an internal ribosomal entry segment within the 5′ leader of avian reticuloendotheliosis virus type A RNA and development of novel MLV-REV-based retroviral vectors. Hum Gene Ther 8, 1855–65.PubMedGoogle Scholar
  85. Loreni, F. and Amaldi, F. (1992). Translational regulation of ribosomal protein synthesis in Xenopus cultured cells: mRNA relocation between polysomes and RNP during nutritional shifts. Eur. J. Biochem. 205, 1027–1032.PubMedCrossRefGoogle Scholar
  86. Macejak, D. G., and Sarnow, P. (1991). Internal initiation of translation mediated by the 5′ leader of a cellular mRNA [see comments]. Nature 353, 90–4.PubMedCrossRefGoogle Scholar
  87. Maret, A., Galy, B., Arnaud, E., Bayard, F., and Prats, H. (1995). Inhibition of fibroblast growth factor 2 expression by antisense RNA induced a loss of the transformed phenotype in a human hepatoma cell line. Cancer Res 55, 5075–9.PubMedGoogle Scholar
  88. Mariottini, P. and Amaldi, F. (1990). The 5′ untranslated region of mRNA for ribosomal protein S19 is involved in its translational regulation during Xenopus development. Mol. Cell. Biol. 10, 816–822.PubMedGoogle Scholar
  89. McGrew, L.L., E. Dworkin-Rastl, M.B. Dworkin, and J.D. Richter. (1989) Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dv 3(6), 803–815.CrossRefGoogle Scholar
  90. Meerovitch, K., Pelletier, J., and Sonenberg, N. (1989). A cellular protein that binds to the 5′-noncoding region of poliovirus RNA: implications for internal translation initiation. Genes Dev 3, 1026–34.PubMedCrossRefGoogle Scholar
  91. Meyuhas, O., Avni, D. and Shama, S. (1996). Translational control of ribosomal protein mRNAs in eukaryotes. In Translational control (Hershey, J. W. B., Mathews, M. B. & Sonenberg, N., eds.), pp. 363–388. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y. Google Scholar
  92. Miller, D. L., Dibbens, J. A., Damert, A., Risau, W., Vadas, M. A., and Goodall, G. J. (1998). The vascular endothelial growth factor mRNA contains an internal ribosome entry site [In Process Citation]. FEBS Lett 434, 417–20.PubMedCrossRefGoogle Scholar
  93. Milligan, J. F., Matteucci, M. D. and Martin, J. C. (1993) Current concepts in antisense drug design. J. Med. Chem. 36, 1923–1937.PubMedCrossRefGoogle Scholar
  94. Mishra, R. K. and Toulmé, J. J. (1994) In vitro selection of antisense oligonucleotides targeted to a hairpin structure. C. R. Acad. Sci. Paris 317, 977–982.PubMedGoogle Scholar
  95. Mishra, R. K., Le Tinévez, R. and Toulmé, J. J. (1996) Targeting nucleic acid secondary structures by antisense oligonucleotides designed through in vitro selection. Proc. Natl. Acad. Sci. USA 93, 10679–10684.PubMedCrossRefGoogle Scholar
  96. Moser, H. E. and Dervan, P. B. (1987) Sequence-specific cleavage of double helical DNA by triple helix formation. Science 238, 645–650.PubMedCrossRefGoogle Scholar
  97. Moss, B., Elroy-Stein, O., Mizukami, T., Alexander, W. A., and Fuerst, T. R. (1990). Product review. New mammalian expression vectors. Nature 348, 91–92.PubMedCrossRefGoogle Scholar
  98. Müller, P. P., Kirchhoff, S., and Hauser, H. (1998). Sustained expression in proliferation controlled BHK-21 cells, in New developments and new applications in animal cell technology, (O.-W. Merten, Perrin, P, and and B. Griffiths, eds., eds.: Kluwer Academic Publishers).Google Scholar
  99. Nanbru, C., Lafon, I., Audigier, S., Gensac, M. C., Vagner, S., Huez, G., and Prats, A. C. (1997). Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. J Biol Chem 272, 32061–6.PubMedCrossRefGoogle Scholar
  100. Newport, J., and M. Kirschner. (1982) A Major Developmental Transition in Early Xenopus Embryos: II. Control of the Onset of Transcription. Cell 30, 689–696.Google Scholar
  101. Oh, S. K., Scott, M. P., and Sarnow, P. (1992). Homeotic gene Antennapedia mRNA contains 5′-noncoding sequences that confer translational initiation by internal ribosome binding. Genes Dev 6, 1643–53.PubMedCrossRefGoogle Scholar
  102. Osborne, H.B. and J.D. Richter. (1997) Translational Control by Polyadenylation During Early Development. In Cytoplasmic Fate of Messenger RNA, P. Jeanteur (Ed), Progress in Molecular and Subcellular Biology Vol. 18. pp 173–198.Google Scholar
  103. Ostareck-Lederer A. Ostareck, D.H., Standard, N., and Thiele, B.J.. (1994) Translation of 15-lipoxygenase mRNA is inhibited by a protein that binds to a repeated sequence in the 3′ untranslated region. EMBO J. 13, 1476–1481.PubMedGoogle Scholar
  104. Ostareck D., Ostareck-Lederer, A., Wilm, M., Thiele, B.J., Mann, M., and Hentze, M. mRNA silencing in erythroid differentiation hnRNP K and hnRNP El regulate 15-lipoxygenase translation from the 3′ end.. (1997) Cell 89, 597–606.PubMedCrossRefGoogle Scholar
  105. Paillard, L., F. Omilli, V. Legagneux, T. Bassez, D. Maniey, and H.B. Osborne. (1998). EDEN and EDEN-BP, a cis element and an associated factor that mediates sequence-specific mRNA deadenylation in Xenopus embryos. EMBO J. 17, 278–287.PubMedCrossRefGoogle Scholar
  106. Paillard, L., V. Legagneux, and H.B. Osborne. (1996) Poly(A) metabolism in Xenopus laevis embryos: Substrate-specific and default poly(A) nuclease activities are mediated by two distinct complexes. Biochimie 78, 399–407.PubMedCrossRefGoogle Scholar
  107. Paris, J., H.B. Osborne, A. Couturier, R. LeGuellec, and M. Philippe. (1988) Changes in the polyadenylation of specific stable RNAs during the early development of Xenopus laevis. Gene 72, 169–176.PubMedCrossRefGoogle Scholar
  108. Pelletier, J., and Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–5.PubMedCrossRefGoogle Scholar
  109. Pellizzoni, L., Cardinali, B., Lin-Marq, N., Mercanti, D. and Pierandrei-Amaldi, P. (1996). A Xenopus laevis homologue of the La autoantigen binds the pyrimidine tract of the 5′UTR of ribosomal protein mRNAs in vitro: implication of a protein factor in complex formation. J. Mol. Biol. 259, 904–915.PubMedCrossRefGoogle Scholar
  110. Pellizzoni, L., Lotti, F., Maras, B. and Pierandrei-Amaldi, P. (1997). Cellular nucleic acid binding protein binds a conserved region of the 5′UTR of Xenopus laevis ribosomal protein mRNAs. J. Mol. Biol. 267, 264–275.PubMedCrossRefGoogle Scholar
  111. Pellizzoni, L., Lotti, F., Rutjes, S. A. and Pierandrei-Amaldi, P. (1998). Involvement of the Xenopus laevis Ro60 autoantigen in the alternative interaction of La and CNBP proteins with the 5′UTR of L4 ribosomal protein mRNA. J. Mol. Biol. 281, 593–608.PubMedCrossRefGoogle Scholar
  112. Peng, S.S., C.Y. Chen, N. Xu, and A.B. Shyu. (1998) RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J 17, 3461–70PubMedCrossRefGoogle Scholar
  113. Peppel, K., and C. Baglioni. (1991) Deadenylation and turnover of interferon-ß mRNA. J. Biol. Chem. 266, 6663–6666.PubMedGoogle Scholar
  114. Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J., and Hellen, C. U. (1998). A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12, 67–83.PubMedGoogle Scholar
  115. Pierandrei-Amaldi, P., Beccari, E., Bozzoni, I. and Amaldi, F. (1985). Ribosomal protein production in normal and anucleolate Xenopus embryos: regulation at the posttranscriptional and translational levels. Cell 42, 317–323.PubMedCrossRefGoogle Scholar
  116. Pierandrei-Amaldi, P., Campioni, N., Beccari, E. and Bozzoni, I. (1982). Expression of ribosomal protein genes in Xenopus laevis development. Cell 30, 163–171.PubMedCrossRefGoogle Scholar
  117. Rapoport S.M., and Schewe T. (1986) The maturational breakdown of mitochondria in reticulocytes. Biochem. Biophys. Acta 864, 471–495.PubMedGoogle Scholar
  118. Roberts, R. W. and Crothers, D. M. (1992) Stability and properties of double and triple helices-dramatic effects of RNA or DNA backbone composition. Science 258, 1463–1466.PubMedCrossRefGoogle Scholar
  119. Ross, J. (1993) mRNA decay in cell-free systems. In: Brawermann G. and Belasco, J. (Eds), Control of Messenger RNA stability. Academic Press, New York, NY. pp 417–448.Google Scholar
  120. Sachs, A.B., and R.W. Davis. (1989) The Poly(A) Binding Protein Is Required for Poly(A) Shortening and 60S Ribosomal Subunit-Dependent Translation Initiation. Cell 58, 857–867.PubMedCrossRefGoogle Scholar
  121. Sachs, A.B., and S. Buratowski. (1997) Common themes in translational and transcriptional regulation. Trends Biochem. Sci. 22, 189–192.PubMedCrossRefGoogle Scholar
  122. Santoyo, J., Alcalde, J., Mendez, R., Pulido, D. and de Haro, C. (1997) Cloning and characterization of a cDNA encoding a protein synthesis initiation factor-2α (eIF2α) kinase from Drosophila melanogaster. Homology to yeast GCN2 protein kinase. J. Biol. Chem 272, 12544–12550.PubMedCrossRefGoogle Scholar
  123. Schiavi, S.C., J.G. Belasco, and M.E. Greenberg. (1992) Regulation of proto-oncogene mRNA stability. Biochim. Biophys. Acta 1114, 95–106.PubMedGoogle Scholar
  124. Scott, P. (1993). IL-12: initiation cytokine for cell-mediated immunity. Science 260, 496–497.PubMedCrossRefGoogle Scholar
  125. Simon, R., J.P. Tassan, and J.D. Richter. (1993) Translational control by poly(A) elongation during Xenopus development: differential repression and enhancement by a novel cytoplasmic polyadenylation element. Genes Dev. 6, 2580–2591.CrossRefGoogle Scholar
  126. Simon, R., L. Wu, and J.D. Richter. (1996) Cytoplasmic polyadenylation of activin receptor mRNA and the control of pattern formation in Xenopus development. Dev. Biol. 179, 239–250.PubMedCrossRefGoogle Scholar
  127. Stein, I., Itin, A., Einat, P., Skaliter, R., Grossman, Z., and Keshet, E. (1998). Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18, 3112–9.PubMedGoogle Scholar
  128. Stein, C. A. and Cheng, Y. C. (1993) Antisense oligonucleotides as therapeutic agents-is the bullet really magical. Science 261, 1004–1012.PubMedCrossRefGoogle Scholar
  129. Stoneley, M., Paulin, F. E., Le Quesne, J. P., Chappell, S. A., and Willis, A. E. (1998). C-Myc 5′ untranslated region contains an internal ribosome entry segment. Oncogene 16, 423–8.PubMedCrossRefGoogle Scholar
  130. Sugimoto, Y., Sato, S., Tsukahara, S., Suzuki, M., Okochi, E., Gottesman, M. M., Pastan, I., and Tsuruo, T. (1997). Coexpression of a multidrug resistance gene (MDR1) and herpes simplex virus thymidine kinase gene in a bicistronic retroviral vector Ha-MDR-IRES-TK allows selective killing of MDR1-transduced human tumors transplanted in nude mice. Cancer Gene Ther 4, 51–8.PubMedGoogle Scholar
  131. Tahara, H., Zitvogel, L., Storkus, W. J., Zeh, H. J., 3rd, McKinney, T. G., Schreiber, R. D., Gubler, U., Robbins, P. D., and Lotze, M. T. (1995). Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector. J Immunol 154, 6466–74.PubMedGoogle Scholar
  132. Tarun, S.Z. and A.B. Sachs. (1996) Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15, 7168–7177.PubMedGoogle Scholar
  133. Teerink, H., Voorma, H. O., and Thomas, A. A. (1995). The human insulin-like growth factor II leader 1 contains an internal ribosomal entry site. Biochim Biophys Acta 1264, 403–8.PubMedGoogle Scholar
  134. Terada, N., Patel, H. R., Takase, K., Kohno, K., Nairn, A. C. and Gelfand, E. W. (1994). Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc. Natl Acad. Sci. USA 91 11477–11481.PubMedCrossRefGoogle Scholar
  135. Thiele B.J., Andree, H., Höhne, M., and Rapoport, S.M.. (1981) Regulation of the synthesis of lipoxygenase in erythroid cells. Acta Biol Med. Germanica 40, 597–602.PubMedGoogle Scholar
  136. Timchenko, L.T., J.W. Miller, N.A. Timchenko, D.R. DeVore, K.V. Datar, L. Lin, R. Roberts, C.T. Caskey and M.S. Swanson. (1996) Indentification of a (CUG)n triplet RNA-binding protein and its expression in myotonic dystrophy. Nucl. Acids Res. 24, 4407–4414.PubMedCrossRefGoogle Scholar
  137. Tinévez, R. L., Mishra, R. K., and Toulmé, J. J. (1998). Selective inhibition of cell-free translation by oligonucleotides targeted to a mRNA structure. Nucleic Acids Res. 26, 2273–2278.PubMedCrossRefGoogle Scholar
  138. Torrent, C., Berlioz, C., and Darlix, J. L. (1996). Stable MLV-VL30 dicistronic retroviral vectors with a VL30 or MoMLV sequence promoting both packaging of genomic RNA and expression of the 3′ cistron. Hum Gene Ther 7, 603–12.PubMedCrossRefGoogle Scholar
  139. Toulmé, J. J., and Giegé, R. (1998). Les aptamères: des ligands et des catalyseurs oligonucléotidiques obtenus par sélection in vitro. Médecine Sciences 14, 155–166.Google Scholar
  140. Toulmé, J. J. (1996) In Weiss, B. (ed.), Antisense oligodeoxynucleotides and antisense RNA as novel pharmacological and therapeutic agents. CRC Press, pp. 1–16.Google Scholar
  141. Toulmé, J. J. (1996) “Historical aspects of antisense oligonucleotides.” in Antisense oligodeoxynucleotides and antisense RNA as novel pharmacological and therapeutic agents. Weiss, B. (ed.), pp sous presse, CRC PressGoogle Scholar
  142. Toulmé, J. J. (1996) “Historical aspects of antisense oligonucleotides.”in Antisense Biotechnology Annual Review 1, 185–215.Google Scholar
  143. Toulmé, J. J., Le Tinévez, R. and Brossalina, E. (1996) Targeting RNA structures by antisense oligonucleotides. Biochimie 78, 663–673.PubMedCrossRefGoogle Scholar
  144. Toulmé, J. J., Le Tinévez, R., Boiziau, C. and Dausse, E. (1997) Rational and combinatorial strategies for designing oligonucleotides targeted to RNA structures. Nucleic Acids Symp. Ser. 39–41.Google Scholar
  145. Toulmé, J. J. and Tidd, D. (1998) In Crouch, R. J., and Toulmé, J. J. (eds.), Ribonucleases H. John Libbey, Paris, pp. 225–250.Google Scholar
  146. Uhlenbeck, O. C. (1987) A small catalytic oligoribonucleotide. Nature 328, 596–600.PubMedCrossRefGoogle Scholar
  147. Vagner, S., Gensac, M. C., Maret, A., Bayard, F., Amalric, F., Prats, H., and Prats, A. C. (1995). Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol. Cell. Biol. 15, 35–44.PubMedGoogle Scholar
  148. Vagner, S., Touriol, C., Galy, B., Audigier, S., Gensac, M. C., Amalric, F., Bayard, F., Prats, H., and Prats, A. C. (1996). Translation of CUG-but not AUG-initiated forms of human fibroblast growth factor 2 is activated in transformed and stressed cells. J Cell Biol 135, 1391–402.PubMedCrossRefGoogle Scholar
  149. Vagner, S., Waysbort, A., Marenda, M., Gensac, M. C., Amalric, F., and Prats, A. C. (1995). Alternative translation initiation of the Moloney murine leukemia virus mRNA controlled by internal ribosome entry involving the p57/PTB splicing factor. J Biol Chem 270, 20376–83.PubMedCrossRefGoogle Scholar
  150. van Venrooij, W. J., Slobbe, R. L. and Pruijn, G. J. M. (1993). Structure and function of La and Ro RNPs. Mol. Biol. Rep. 18, 113–119.PubMedCrossRefGoogle Scholar
  151. Varnum, S.M., and W.M. Wormington. (1990) Deadenylation of maternal mRNAs during Xenopus oocyte maturation does not require specific cis-sequences: a default mechanism for translational control. Genes Dev. 4, 2278–2286.PubMedCrossRefGoogle Scholar
  152. Verspieren, P., Loreau, N., Thuong, N. T., Shire, D. and Toulmé, J. J. (1990) Effect of RNA secondary structure and modified bases on the in vitro inhibition of trypanosomatid protein synthesis by antisense oligodeoxynucleotides. Nucleic Acids Res. 18, 4711–4717.PubMedCrossRefGoogle Scholar
  153. Vidalin, O., Major, M. E., Rayner, B., Imbach, J. L., Trepo, C. and Inchauspé, G. (1996) In vitro inhibition of hepatitis c virus gene expression by chemically modified antisense oligodeoxynucleotides. Antimicrob Agents Chemother 40, 2337–2344.PubMedGoogle Scholar
  154. Wang, X., M. Kiledjian, I.M. Weiss, and S.A. Liebhaber. (1995) Detection and characterization of a 3′untranslated region ribonucleoprotein complex associated with human (-globin mRNA stability. Mol. Cell. Biol. 15, 1769–1777.PubMedGoogle Scholar
  155. Wells, S.E. P.E. Hilner, R.D. Vale, and A.B. Sachs. (1998) Circularization of mRNA by Eukaryotic Translation Initiation Factors. Molecular. Cell 2, 135–140.Google Scholar
  156. Wickens, M., P. Anderson, and R.J. Jackson. (1997) Life and death in the cytoplasm: messages from the 3′ end. Current opinion in Genetics and Development. 7, 220–232.CrossRefGoogle Scholar
  157. Wilson, T., and R. Treisman. (1988) Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3′ AU-rich sequences. Nature (London) 336, 396–399.CrossRefGoogle Scholar
  158. Ye, X., Fong, P., Iizuka, N., Choate, D., and Cavener, D. R. (1997). Ultrabithorax and Antennapedia 5′ untranslated regions promote developmentally regulated internal translation initiation. Mol. Cell. Biol. 17, 1714–1721.PubMedGoogle Scholar
  159. Zamecnik, P. C. and Stephenson, M. L. (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA 75, 280–284.PubMedCrossRefGoogle Scholar
  160. Zhou, Y., Aran, J., Gottesman, M. M., and Pastan, I. (1998). Co-expression of human adenosine deaminase and multidrug resistance using a bicistronic retroviral vector. Hum Gene Ther 9, 287–93.PubMedGoogle Scholar
  161. Zitvogel, L., Tahara, H., Cai, Q., Storkus, W. J., Muller, G., Wolf, S. F., Gately, M., Robbins, P. D., and Lotze, M. T. (1994). Construction and characterization of retroviral vectors expressing biologically active human interleukin-12. Hum Gene Ther 5, 1493–506.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • P. Pierandrei-Amaldi
    • 1
  • B. Cardinali
    • 1
  • Anne-Catherine Prats
    • 2
  • Hervé Prats
    • 2
  • Bev. Osborne
    • 3
  • Luc Paillard
    • 3
  • Georges Huez
    • 4
  • Véronique Kruys
    • 4
  • Jean-Jacques Toulme
    • 5
  1. 1.Istituto di Biologia CellulareCNRRomeItaly
  2. 2.INSERM U397, Endocrinologie et Communication Cellulaire, Institut Louis BugnardCHU RangueilToulouseFrance
  3. 3.Faculté de MédecineCNRS UPR41/Université de Rennes 1RennesFrance
  4. 4.Département de Biologie Moléculaire, Laboratoire de Chimie BiologiqueUniversité Libre de BruxellesRhode-St-GenèseBelgique
  5. 5.INSERM U 386Université Victor SegalenBordeaux cédexFrance

Personalised recommendations