Inflammation and Brain Function under Basal Conditions and During Long-Term Elevation of Brain Corticotropin-Releasing Hormone Levels

  • Astrid C. E. Linthorst
  • Johannes M. H. M. Reul
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 461)


It is now well accepted that immune challenges elicit a variety of physiological processes, such as activation of the hypothalamic-pituitary-adrenocortical (HPA) axis, fever, and sickness behaviour, to promote survival and return of homeostasis. The underlying neurotransmitter responses in the brain, however, still need to be further characterized. Using an in vivo microdialysis method in rats, we have shown that peripheral inflammation (induced by intraperitoneal (i.p.) injection of endotoxin (lipopolysaccharide; LPS)) results in a highly differentiated serotonergic and noradrenergic neurotransmitter response in the brain. LPS caused a profound increase in extracellular levels of serotonin (5-HT) in the hippocampus, but not in the preoptic area. In contrast, this treatment induced a dramatic rise in extracellular levels of noradrenaline (NA) in the preoptic area, but had only moderate effects in the hippocampus. Based on studies using biotelemetry and observation of behavioural activity simultaneously with microdialysis, we have proposed that the increase in preoptic NA is involved in fever and/or HPA axis activation during inflammation. The rise in hippocampal 5-HT seems to be associated with the development of sickness behaviour.


Preoptic Area Extracellular Level Peripheral Inflammation Sickness Behaviour Serotonergic Neurotransmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, S. M., Kant, G. J., & De Souza, E. B. (1993). Effects of chronic stress on anterior pituitary and brain corticotropin-releasing factor receptors. Pharmacology, Biochemistry, & Behavior, 44, 755–761.CrossRefGoogle Scholar
  2. Auerbach, S. B., Minzenberg, M. J., & Wilkinson, L. O. (1989). Extracellular serotonin and 5-hydroxyin-doleacetic acid in hypothalamus of the unanesthetized rat measured by in vivo dialysis coupled to high-performance liquid chromatography with electrochemical detection: dialysate serotonin reflects neuronal release. Brain Research, 499, 281–290.PubMedCrossRefGoogle Scholar
  3. Blatteis.
    C. M. (1990). Neuromodulative actions of cytokines. Yale Journal of Biology & itMedicine, 63, 133–146.Google Scholar
  4. Brady, L. S., Lynn, A. B., Herkenham, M., & Gottesfeld, Z. (1994). Systemic interleukin-1 induces early and late patterns of c-fos mRNA expression in brain. Journal of Neuroscience, 14, 4951.PubMedGoogle Scholar
  5. Connor, T. J., Song, C, Leonard, B. E., Merali, Z., & Anisman, H. (1998). An assessement of the effects of central interleukin-1-beta,-2,-6, and tumor necrosis factor-alpha administration on some behavioural, neurochemical, endocrine, and immune parameters in the rat. Neuroscience, 84, 923–933.PubMedCrossRefGoogle Scholar
  6. Crespi, F., Garratt, J. C, Sleight, A. J., & Marsden, C. A. (1990). In vivo evidence that 5-hydroxytryptamine (5-HT) neuronal firing and release are not necessarily correlated with 5-HT metabolism. Neuroscience, 35, 139–144.PubMedCrossRefGoogle Scholar
  7. Dantzer, R., Bluthé, R. M., Kent, S., & Kelley, K. W. (1991). Behavioural effects of cytokines. In N. Rothwell & R. Dantzer (Eds.), Interleukin-1 in the brain (pp. 135–150). Oxford: Pergamon Press.Google Scholar
  8. De Souza, E. B., Insel, T. R., Perrin, M. H., Rivier, J., Vale, W. W., & Kuhar, M. J. (1985). Differential regulation of corticotropin-releasing factor receptors in anterior and intermediate lobes of pituitary and in brain following adrenalectomy in rats. Neuroscience Letters, 56, 121–128.PubMedCrossRefGoogle Scholar
  9. De Souza, E. B., Whitehouse, P. J., Kuhar, M. J., Price, D. L., & Vale, W. W. (1986). Reciprocal changes in corticotropin-releasing factor (CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer’s disease. Nature, 319, 593–595.PubMedCrossRefGoogle Scholar
  10. Dinarello, C. A. (1991). Interleukin-1 and interleukin-1 antagonism. Blood, 77, 1627–1652.PubMedGoogle Scholar
  11. Dunn, A. J. (1988). Systemic interleukin-1 administration stimulates hypothalamic norepinephrine metabolism parallelling the increased plasma corticosterone. Life Sciences, 43, 429–435.PubMedCrossRefGoogle Scholar
  12. Dunn, A. J. (1992). Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: comparison with interleukin-1. Journal of Pharmacology and Experimental Therapeutics, 261, 964–969.PubMedGoogle Scholar
  13. Dunn, A. J. & Welch, J. (1991). Stress-and endotoxin-induced increases in brain tryptophan and serotonin metabolism depend on sympathetic nervous system activity. Journal of Neurochemistry, 57, 1615–1622.PubMedCrossRefGoogle Scholar
  14. Elmquist, J. K., Ackermann, M. R., Register, K. B., Rimler, R. B., Ross, L. R., & Jacobson, C. D. (1993). Induction of fos-like immunoreactivity in the rat brain following pasteurella-multocida endotoxin administration. Endocrinology, 133, 3054–3057.PubMedCrossRefGoogle Scholar
  15. Ericsson, A., Kovacs, K. J., & Sawchenko, P. E. (1994). A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. Journal of Neuroscience, 14, 897–913.PubMedGoogle Scholar
  16. Feiten, S. Y. & Feiten, D. L. (1991). Innervation of lymphoid tissue. In R. Ader, D. L. Feiten, & N. Cohen (Eds.), Psychoneuroimmunology (pp. 27–69). San Diego: Academic Press.Google Scholar
  17. Gemma, C., Ghezzi, P., & De Simoni, M. G. (1991). Activation of the hypothalamic serotoninergic system by central interleukin-1. European Journal of Pharmacology, 209, 139–140.PubMedCrossRefGoogle Scholar
  18. Gottschall, P. E., Komaki, G., & Arimura, A. (1992). Interleukin-1β activation of the central nervous system. In N. Rothwell & R. Dantzer (Eds.), lnterleukin-1 in the brain (pp. 27–49). Oxford: Pergamon Press.Google Scholar
  19. Hart, B. L. (1988). Biological basis of the behavior of sick animals. Neuroscience & itBiobehavioral Reviews, 12, 123–137.CrossRefGoogle Scholar
  20. Hauger, R. L., Millan, M. A., Lorang, M., Harwood, J. P., & Aguilera, G. (1988). Corticotropin-releasing factor receptors and pituitary adrenal responses during immobilization stress. Endocrinology, 123, 396–405.PubMedGoogle Scholar
  21. Holsboer, F. & Barden, N. (1996). Antidepressants and hypothalamic pituitary adrenocortical regulation. Endocrine Reviews, 17, 187–205.PubMedCrossRefGoogle Scholar
  22. Irwin, M., Lacher, U., & Caldwell, C. (1992). Depression and reduced natural killer cytotoxicity: a longitudinal study of depressed patients and control subjects. Psychological Medicine, 22, 1045–1050.PubMedGoogle Scholar
  23. Irwin, M. R., Vale, W., & Britton, K.T. (1987). Central corticotropin-releasing factor suppresses natural killer cytotoxicity. Brain, Behavior, & Immunity, 1, 81–87.CrossRefGoogle Scholar
  24. Jacobs, B. L. & Azmitia, E. C. (1992). Structure and function of the brain serotonin system. Physiological Reviews, 72, 165–229.PubMedGoogle Scholar
  25. Janssen, R. A. J., Mulder, N. H., The, T. H., & Deleij, L. (1994). The immunobiological effects of interleukin-2 in vivo. Cancer Immunology Immunotherapy, 39, 207–216.CrossRefGoogle Scholar
  26. Kabiersch, A., Del Rey, A., Honegger, C. G., & Besedovsky, H. O. (1988). Interleukin-1 induces changes in norepinephrine metabolism in the rat brain. Brain Behavior and Immunity, 2, 267–274.CrossRefGoogle Scholar
  27. Kalén, P., Strecker, R. E., Rosengren, E., & Björklund, A. (1988). Endogenous release of neuronal serotonin and 5-hydroxyindoleacetic acid in the caudate-putamen of the rat as revealed by intracerebral dialysis coupled to high-performance liquid chromatography with fluorimetric detection. Journal of Neurochemistry, 51, 1422–1435.PubMedCrossRefGoogle Scholar
  28. Kalén, P., Rosegren, E., Lindvall, O., & Björklund, A. (1989). Hippocampal noradrenaline and serotonin release over 24 hours as measured by the dialysis technique in freely moving rats: correlation to behavioural activity state, effect of handling and tail-pinch. European Journal of Neuroscience, 1, 181–188.PubMedCrossRefGoogle Scholar
  29. Karanth, S., Lyson, K., & McCann, S. M. (1993). Role of nitric oxide in interleukin 2-induced corticotropin-releasing factor release from incubated hypothalami. Proceedings of the National Academy of Sciences of the united States of America, 90, 3383–3387.PubMedCrossRefGoogle Scholar
  30. Katsuura, G., Gottschall, P. E., Dahl, R. R., & Arimura, A. (1988). Adrenocorticotropin release induced by intracerebroventricular injection of recombinant human interleukin-1 in rats: possible involvement of prostaglandin. Endocrinology, 122, 1773–1779.PubMedGoogle Scholar
  31. Katsuura, G., Gottschall, P. E., Dahl, R. R., & Arimura, A. (1989). Interleukin-1 beta increases prostaglandin E2 in rat astrocyte cultures: modulatory effect of neuropeptides. Endocrinology, 124, 3125–3127.PubMedCrossRefGoogle Scholar
  32. Kluger, M. J. (1991). Fever: role of pyrogens and cryogens. Physiological Reviews, 71, 93–127.PubMedGoogle Scholar
  33. Komaki, G., Arimura, A., & Koves, K. (1992). Effect of intravenous injection of IL-lbeta on PGE2 levels in several brain areas as determined by microdialysis. American Journal of Physiology, 262, E246–E251.PubMedGoogle Scholar
  34. Labeur, M. S., Arzt, E., Wiegers, G. J., Holsboer, F., & Reul, J. M. H. M. (1995). Long-term intracerebroventricular corticotropin-releasing hormone administration induces distinct changes in rat splenocyte activation and cytokine expression. Endocrinology, 136, 2678–2688.PubMedCrossRefGoogle Scholar
  35. Lavicky, J. & Dunn, A. J. (1995). Endotoxin administration stimulates cerebral catecholamine release in freely moving rats as assessed by microdialysis. Journal of Neuroscience Research, 40, 407–413.PubMedCrossRefGoogle Scholar
  36. Linthorst, A. C. E., Flachskamm, C., Holsboer, F., & Reul, J. M. H. M. (1994). Local administration of recombinant human interleukin-1 beta in the rat hippocampus increases serotonergic neurotransmission, hypothalamic-pituitary-adrenocortical axis activity, and body temperature. Endocrinology, 135, 520–532.PubMedCrossRefGoogle Scholar
  37. Linthorst, A. C. E., Flachskamm, C, Holsboer, F., & Reul, J. M. H. M. (1995a). Intraperitoneal administration of bacterial endotoxin enhances noradrenergic neurotransmission in the rat preoptic area: relationship with body temperature and hypothalamic-pituitary-adrenocortical axis activity. European Journal of Neuroscience, 7, 2418–2430.PubMedCrossRefGoogle Scholar
  38. Linthorst, A.C. E., Flachskamm, C., Müller-Preuss, P., Holsboer, F., & Reul, J. M. H. M. (1995b). Effect of bacterial endotoxin and interleukin-1 beta on hippocampal serotonergic neurotransmission, behavioral activity, and free corticosterone levels: an in vivo microdialysis study. Journal of Neuroscience, 15, 2920–2934.PubMedGoogle Scholar
  39. Linthorst, A. C. E., Flachskamm, C., Holsboer, F., & Reul, J. M. H. M. (1996). Activation of serotonergic and noradrenergic neurotransmission in the rat hippocampus after peripheral administration of bacterial endotoxin: involvement of the cyclo-oxygenase pathway. Neuroscience, 72, 989–997.PubMedCrossRefGoogle Scholar
  40. Linthorst, A. C. E., Flachskamm, C., Hopkins, S. J., Hoadley, M. E., Labeur, M. S., Holsboer, F., & Reul, J. M. H. M. (1997). Long-term intracerebroventricular infusion of corticotropin-releasing hormone alters neuroendocrine, neurochemical, autonomic, behavioral, and cytokine responses to a systemic inflammatory challenge. Journal of Neuroscience, 17, 4448–4460.PubMedGoogle Scholar
  41. Luo, X., Kiss, A., Rabadandiehl, C., & Aguilera, G. (1995). Regulation of hypothalamic and pituitary corticotropin-releasing hormone receptor messenger ribonucleic acid by adrenalectomy and glucocorticoids. Endocrinology, 136, 3877–3883.PubMedCrossRefGoogle Scholar
  42. Maes, M. (1995). Evidence for an immune response in major depression: a review and hypothesis. Progress in Neuro-Psychopharmacology & itBiological Psychiatry, 19, 11–38.CrossRefGoogle Scholar
  43. Makino, S., Schulkin, J., Smith, M. A., Pacak, K., Palkovits, M., & Gold, P. W. (1995). Regulation of corticotropin-releasing hormone receptor messenger ribonucleic acid in the rat brain and pituitary by glucocorticoids and stress. Endocrinology, 136, 4517–4525.PubMedCrossRefGoogle Scholar
  44. Mefford, I. N. & Heyes, M. P. (1990). Increased biogenic amine release in mouse hypothalamus following immunological challenge: antagonism by indomethacin. Journal of Neuroimmunology, 27, 55–61.PubMedCrossRefGoogle Scholar
  45. Merali, Z., Lacosta, S., & Anisman, H. (1997). Effects of interleukin-1-beta and mild stress on alterations of norepinephrine, dopamine, and serotonin neurotransmission—a regional microdialysis study. Brain Research, 767, 225–235.CrossRefGoogle Scholar
  46. Mohankumar, P. S., Thyagarajan, S., & Quadri, S. K. (1993). Interleukin-1 beta increases 5-hydroxyindoleacetic acid release in the hypothalamus in vivo. Brain Research Bulletin, 31, 745–748.PubMedCrossRefGoogle Scholar
  47. Mohankumar, P. S. & Quadri, S. K. (1993). Systemic administration of interleukin-1 stimulates norepinephrine release in the paraventricular nucleus. Life Sciences, 52, 1961–1967.PubMedCrossRefGoogle Scholar
  48. Molina-Holgado, F. & Guaza, C. (1996). Endotoxin administration induced differential neurochemical activation of the rat brain stem nuclei. Brain Research Bulletin, 40, 151–156.PubMedCrossRefGoogle Scholar
  49. Munck. A., Guyre, P. M., & Holbrook, N. J. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Reviews, 5, 25–44.PubMedCrossRefGoogle Scholar
  50. Munck, A. & Guyre, P. M. (1991). Glucocorticoids and immune function. In R. Ader, D. S. Feiten, & N. Cohen (Eds.), Psychoneuroimmunology (pp. 447–474). Sun Diego: Academic Press.Google Scholar
  51. Nemeroff, C. B., Widerlov, E., Bissette, G., Walleus, H., Karlsson, I., Eklund, K., Kilts, C. D., Loosen, P. T., & Vale, W. (1984). Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science, 226, 1342–1344.PubMedCrossRefGoogle Scholar
  52. Owens, M. J. & Nemeroff, C. B. (1991). Physiology and pharmacology of corticotropin-releasing factor. Pharmacological Reviews, 43, 425–473.PubMedGoogle Scholar
  53. Owens, M. J. & Nemeroff, C. B. (1993). The role of corticotropin-releasing factor in the pathophysiology of affective and anxiety disorders: laboratory and clinical studies. In D. J. Chadwick, J. Marsh, & K. Ackrill (Eds.), Corticotropin-Releasing Factor, Ciba Foundation Symposium 172 (pp. 296–308). Chichester: John Wiley & Sons.CrossRefGoogle Scholar
  54. Pacak, K., Palkovits, M., Kopin, I. J., & Goldstein, D. S. (1995). Stress-induced norepinephrine release in the hypothalamic paraventricular nucleus and pituitary-adrenocortical and sympathoadrenal activity: In vivo microdialysis studies. Frontiers in Neuroendocrinology, 16, 89–150.PubMedCrossRefGoogle Scholar
  55. Pauli, S., Linthorst, A.C. E., & Reul, J. M. H. M. (1998). Tumour necrosis factor-alpha and interleukin-2 differentially affect hippocampal serotonergic neurotransmission, behavioural activity, body temperature and hypothalamic-pituitary-adrenocortical axis activity in the rat. European Journal of Neuroscience, 10, 868–878.PubMedCrossRefGoogle Scholar
  56. Pomara, N., Singh, R. R., Deptula, D., Le Witt, P. A., Bissette, G., Stanley, M., & Nemeroff, C. B. (1989). CSF corticotropin-releasing factor (CRF) in Alzheimer’s disease: its relationship to severity of dementia and monoamine metabolites. Biological Psychiatry, 26, 500–504.PubMedCrossRefGoogle Scholar
  57. Raadsheer, F C, Hoogendijk, W. J. G., Stam, F. C., Tilders, F. J. H., & Swaab, D. F. (1994). Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology, 60, 436–444.PubMedGoogle Scholar
  58. Raadsheer, F. C., Van Heerikhuize, J. J., Lucassen, P. J., Hoogendijk, W. J. G., Tilders, F. J. H., & Swaab, D. F. (1995). Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimer’s disease and depression. American Journal of Psychiatry, 152, 1372–1376.PubMedGoogle Scholar
  59. Raber, J.& Bloom, F. E. (1994). IL-2 induces vasopressin release from the hypothalamus and the amygdala: Role of nitric oxide-mediated signaling. Journal of Neuroscience, 14, 6187–6195.PubMedGoogle Scholar
  60. Reul, J. M. H. M., Labeur, M. S., Wiegers, G. J., & Linthorst, A. C. E. (1998). Altered neuroimmunoendocrine communication during a condition of chronically increased brain corticotropin-releasing hormone drive. Annals of the New York Academy of Sciences, 840, 444–455.PubMedCrossRefGoogle Scholar
  61. Reul, J. M. H. M. & Linthorst, A.C.E. (1997). Central administration of corticotropin-releasing hormone profoundly stimulates rat hippocampal serotonergic neurotransmission and behavioral activity: no effect of adrenalectomy. Proceedings of the 26th Annual Meeting of the Society for Neuroscience, New Orleans, LA, 56, 7.Google Scholar
  62. Rivest, S. & Rivier, C. (1993). Central mechanisms and sites of action involved in the inhibitory effects of CRF and cytokines on LHRH neuronal activity. Annals of the New York Academy of Sciences, 697, 117–141.PubMedCrossRefGoogle Scholar
  63. Rivier, C. & Rivest, S. (1993). Mechanisms mediating the effects of cytokines on neuroendocrine functions in the rat. In D. J. Chadwick, J. Marsh, & K. Ackrill (Eds.), Corticotropin-Releasing Factor, Ciba Foundation Symposium 172 (pp. 204–225). Chichester: John Wiley & Sons.CrossRefGoogle Scholar
  64. Rivier, C. & Shen, G. H. (1994). In the rat, endogenous nitric oxide modulates the response of the hypothalamic-pituitary-adrenal axis to interleukin-1 beta, vasopressin, and oxytocin. Journal of Neuroscience, 14, 1985–1993.PubMedGoogle Scholar
  65. Rothwell, N. J. (1991). Functions and mechanisms of interleukin 1 in the brain. Trends in Pharmacological Sciences, 2, 430–436.CrossRefGoogle Scholar
  66. Rueter, L. E. & Jacobs, B. L. (1996). A microdialysis examination of serotonin release in the rat forebrain induced by behavioral environmental manipulations. Brain Research, 739, 57–69.PubMedCrossRefGoogle Scholar
  67. Sagar, S. M., Price, K. J., Kasting, N. W., & Sharp, F. R. (1995). Anatomic patterns of FOS immunostaining in rat brain following systemic endotoxin administration. Brain Research Bulletin, 36, 381–392.PubMedCrossRefGoogle Scholar
  68. Shintani, F, Kanba, S., Nakaki, T, Nibuya, M., Kinoshita, N., Suzuki, E., Yagi, G., Kato, R., & Asai, M. (1993). Interleukin-1 beta augments release of norepinephrine, dopamine, and serotonin in the rat anterior hypothalamus. Journal of Neuroscience, 13, 3574–3581.PubMedGoogle Scholar
  69. Sirko, S., Bishai, I., & Coceani, F. (1989). Prostaglandin formation in the hypothalamus in vivo: effect of pyrogens. American Journal of Physiology, 256, R616–24.PubMedGoogle Scholar
  70. Sluzewska, A., Rybakowski, J., Bosmans, E., Sobieska, M., Berghmans, R., Maes, M., & Wiktorowicz, K. (1996). Indicators of immune activation in major depression. Psychiatry Research, 64, 161–167.PubMedCrossRefGoogle Scholar
  71. Smagin, G. N., Swiergiel, A. H., & Dunn, A. J. (1996). Peripheral administration of interleukin-1 increases extracellular concentrations of norepinephrine in rat hypothalamus: Comparison with plasma corticosterone. Psychoneuroendocrinology, 21, 83–93.PubMedCrossRefGoogle Scholar
  72. Smith, T, Hewson, A. K., Quarrie, L., Leonard, J. P., & Cuzner, M. L. (1994). Hypothalamic PGE(2) and cAMP production and adrenocortical activation following intraperitoneal endotoxin injection—In vivo microdialysis studies in Lewis and Fischer rats. Neuroendocrinology, 59, 396–405.PubMedGoogle Scholar
  73. Swanson, L. W. (1987). The hypothalamus. In A. Björklund, T. Hökfelt, & L. W Swanson (Eds.), Handbook of Chemical Neuroanatomy. Vol. 5: Integrated systems of the CNS, Part I. (pp. 1–124). Amsterdam: Elsevier Science.Google Scholar
  74. Swanson, L. W., Köhler, C., & Björklund, A. (1987). The limbic region. I: The septohippocampal system. In A. Björklund, T. Hökfelt, & L. W. Swanson (Eds.), Handbook of Chemical Neuroanatomy. Vol. 5: Integrated Systems of the CNS, Part I. (pp. 125–277). Amsterdam: Elsevier Science.Google Scholar
  75. Terao, A., Oikawa, M., & Saito, M. (1993). Cytokine-induced change in hypothalamic norepinephrine turnover: involvement of corticotropin-releasing hormone and prostaglandins. Brain Research, 622, 257–261.PubMedCrossRefGoogle Scholar
  76. Terrazzino, S., Perego, C., & De Simoni, M. G. (1995). Noradrenaline release in hypothalamus and ACTH secretion induced by central interleukin-1 beta. Neuroreport, 6, 2465–2468.PubMedCrossRefGoogle Scholar
  77. Tizabi, Y. & Aguilera, G. (1992). Desensitization of the hypothalamic-pituitary-adrenal axis following prolonged administration of corticotropin-releasing hormone or vasopressin. Neuroendocrinology, 56, 611–618.PubMedGoogle Scholar
  78. Vale, W., Vaughan, J., & Perrin, M. (1997). Corticotropin-releasing factor (CRF) family of ligands and their receptors. Endocrinologist, 7, S3–S9.CrossRefGoogle Scholar
  79. Wan, W., Janz, L., Vriend, C. Y., Sorensen, C. M., Greenberg, A. H., & Nance, D. M. (1993). Differential induction of c-Fos immunoreactivity in hypothalamus and brain stem nuclei following central and peripheral administration of endotoxin. Brain Research Bulletin, 32, 581–587.PubMedCrossRefGoogle Scholar
  80. Wiegers, G. J., Labeur, M. S., Stec, I. E. M., Klinkert, W. E. F., Holsboer, F., & Reul, J. M. H. M. (1995). Glucocorticoids accelerate anti-T cell receptor-induced T cell growth. Journal of Immunology, 155, 1893–1902.Google Scholar
  81. Wiegers, G. J. & Reul, J. M. H. M. (1998). Induction of cytokine receptors by glucocorticoids: functional and pathological significance. Trends in Pharmacological Sciences, 19, 317–321.PubMedCrossRefGoogle Scholar
  82. Wilkinson, L. O., Auerbach, S. B., & Jacobs, B. L. (1991). Extracellular serotonin levels change with behavioral state but not with pyrogen-induced hyperthermia. Journal of Neuroscience, 11, 2732–2741.PubMedGoogle Scholar
  83. Zalcman, S., Green-Johnson, J. M., Murray, L., Nance, D. M., Dyck, D., Anisman, H., & Greenberg, A. H. (1994). Cytokine-specific central monoamine alterations induced by interleukin-1,-2, and-6. Brain Research, 643, 40–49.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • Astrid C. E. Linthorst
    • 1
  • Johannes M. H. M. Reul
    • 1
  1. 1.Section NeuropsychopharmacologyMax Planck Institute of PsychiatryMunichGermany

Personalised recommendations