Advertisement

Effects of Cytokines on Cerebral Neurotransmission

Comparison with the Effects of Stress
  • Adrian J. Dunn
  • Jianping Wang
  • Tetsuya Ando
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 461)

Abstract

Stress is normally associated with coactivation of the sympathoadrenal system (sympathetic nervous system plus the adrenal medulla) and the hypothalamo-pituitary-adrenocortical (HPA) axis. However, extensive work in the past 30 years has indicated that responses also occur in the central nervous system. The major response occurs in noradrenergic (NA) neurons. Most studies have also noted responses in dopaminergic (DA) and serotonergic (5-HT) systems (Dunn & Kramarcy, 1984; Stone, 1975). Whether or not adrenergic (adrenaline-containing) neurons respond is not resolved, although there is evidence that adrenergic neurons (along with NA and 5-HT neurons) are involved in the regulation of hypothalamic corticotropin-releasing factor (CRF) secretion which initiates HPA activation (Plotsky, Cunningham, & Widmaier, 1989). The NA response is widespread and appears to affect to similar extents both the locus coeruleus (A6) system innervating the dorsal structures (cortex, hippocampus, cerebellum, etc.), and the nucleus tractus solitarius (A1/A2) system innervating the ventral structures (e.g., the hypothalamus). The DA response is also widespread with all the major neuronal systems (nigrostriatal, mesolimbic, mesocortical) showing responses, but the magnitude of the response is particularly large in the mesocortical system (i.e. in the prefrontal and cingulate cortices). The 5-HT response is not markedly regionally specific (although some (e.g., Kirby, Allen, & Lucki, 1995) have reported regional differences). There is also a robust elevation of concentrations of tryptophan (the natural precursor of 5-HT) in all regions of the brain.

Keywords

Influenza Virus Plasma Corticosterone Nucleus Tractus Solitarius Plasma ACTH Influenza Virus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abreu, P., Llorente, E., Hernández, M. M., & González, M. C. (1994). Interleukin-1β stimulates tyrosine hydroxylase activity in the median eminence. NeuroReport, 5, 1356–1358.PubMedGoogle Scholar
  2. Ando, T. & Dunn, A. J. (1998). Mouse tumor necrosis factor a increases brain tryptophan concentrations and norepinephrine metabolism while activating the HPA axis in mice. Neuroimmunomodulation, 5, in press.Google Scholar
  3. Beisel, W. R. (1981). Alterations in hormone production and utilization during infection. In M. C. Powanda & P. G. Canonico (Eds.), Infections: The Physiologic and Metabolic Responses of the Host (pp. 147–172). Elsevier/North-Holland Biomedical Press.Google Scholar
  4. Ben Hur, T., Rosenthal, J., Itzik, A., & Weidenfeld, J. (1996). Adrenocortical activation by herpes virus: involvement of IL-1β and central noradrenergic system. NeuroReport, 7, 927–931.PubMedCrossRefGoogle Scholar
  5. Berkenbosch, F., De Goeij, D. E. C., del Rey, A., & Besedovsky, H. O. (1989). Neuroendocrine, sympathetic and metabolic responses induced by interleukin-1. Neuroendocrinology, 50, 570–576.PubMedGoogle Scholar
  6. Besedovsky, H. O., del Rey, A., Klusman, I., Furukawa, H., Monge Arditi, G., & Kabiersch, A. (1991). Cytokines as modulators of the hypothalamus-pituitary-adrenal axis. Journal of Steroid Biochemistry and Molecular Biology, 40, 613–618.PubMedCrossRefGoogle Scholar
  7. Besedovsky, H. O., del Rey, A., Sorkin, E., & Dinarello, C. A. (1986). Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science, 233, 652–654.PubMedCrossRefGoogle Scholar
  8. Bianchi, M., Ferrario, P., Zonta, N., & Panerai, A. E. (1995). Effects of interleukin-1β and interleukin-2 on amino acids levels in mouse cortex and hippocampus. NeuroReport, 6, 1689–1692.PubMedCrossRefGoogle Scholar
  9. Bianchi, M. & Panerai, A. E. (1995). CRH and the noradrenergic system mediate the antinociceptive effects of central interleukin-1 α in the rat. Brain Research Bulletin, 36, 113–117.PubMedCrossRefGoogle Scholar
  10. Bliss, E. L., Migeon, C. J., Eik-Nes, K., Sandberg, A. A., & Samuels, L. T. (1954). The effects of insulin, histamine, bacterial pyrogen, and the antabuse-alcohol reaction upon the levels of 17-hydroxycorticosteroids in the peripheral blood of man. Metabolism, 3, 493–501.PubMedGoogle Scholar
  11. Chuluyan, H., Saphier, D., Rohn, W. M., & Dunn, A. J. (1992). Noradrenergic innervation of the hypothalamus participates in the adrenocortical responses to interleukin-1. Neuroendocrinology, 56, 106–111.PubMedGoogle Scholar
  12. Crnic, L. S. & Segall, M. A. (1992). Behavioral effects of mouse interferon-α and interferon-γ and human interferon-α in mice. Brain Research, 590, 277–284.PubMedCrossRefGoogle Scholar
  13. Curzon, G., Joseph, M. H., & Knott, P. J. (1972). Effects of immobilization and food deprivation on rat brain tryptophan metabolism. Journal of Neurochemistry, 19, 1967–1974.PubMedCrossRefGoogle Scholar
  14. del Rey, A. & Besedovsky, H. O. (1992). Metabolic and neuroendocrine effects of pro-inflammatory cytokines. European Journal of Clinical Investigation, 22, 10–15.PubMedGoogle Scholar
  15. Delrue, C., Deleplanque, B., Rouge-Pont, F., Vitiello, S., & Neveu, P. J. (1994). Brain monoaminergic, neuroendocrine, and immune responses to an immune challenge in relation to brain and behavioral lateralization. Brain Behavior and Immunity, 8, 137–152.CrossRefGoogle Scholar
  16. Dunn, A. J. (1988a). Changes in plasma and brain tryptophan and brain serotonin and 5-hydroxyindoleacetic acid after footshock stress. Life Sciences, 42, 1847–1853.PubMedCrossRefGoogle Scholar
  17. Dunn, A. J. (1988b). Systemic interleukin-1 administration stimulates hypothalamic norepinephrine metabolism parallelling the increased plasma corticosterone. Life Sciences, 43, 429–435.PubMedCrossRefGoogle Scholar
  18. Dunn, A. J. (1992a). Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: comparison with interleukin-1. Journal of Pharmacology and Experimental Therapeutics, 261, 964–969.PubMedGoogle Scholar
  19. Dunn, A. J. (1992b). The role of interleukin-1 and tumor necrosis factor a in the neurochemical and neuroendocrine responses to endotoxin. Brain Research Bulletin, 29, 807–812.PubMedCrossRefGoogle Scholar
  20. Dunn, A. J. (1993). Nitric oxide synthase inhibitors prevent the cerebral tryptophan and serotonergic responses to endotoxin and interleukin-1. Neuroscience Research Communications, 13, 149–156.Google Scholar
  21. Dunn, A. J. & Brown, R. F. (1996). The interleukin-1-receptor antagonist fails to alter the neurochemical and HPA responses to LPS. Society for Neuroscience Abstracts, 22, 1456.Google Scholar
  22. Dunn, A. J. & Chuluyan, H. (1992). The role of cyclo-oxygenase and lipoxygenase in the interleukin-1-induced activation of the HPA axis: dependence on the route of injection. Life Sciences, 51, 219–225.PubMedCrossRefGoogle Scholar
  23. Dunn, A. J. & Chuluyan, H. E. (1994). Endotoxin elicits normal tryptophan and indolamine responses but impaired catecholamine and pituitary-adrenal responses in endotoxin-resistant mice. Life Sciences, 54, 847–853.PubMedCrossRefGoogle Scholar
  24. Dunn, A. J. & Kramarcy, N. R. (1984). Neurochemical responses in stress: relationships between the hypothalamic-pituitary-adrenal and catecholamine systems. In L. L. Iversen, S. D. Iversen, & S. H. Snyder (Eds.), Handbook of Psychopharmacology (pp. 455–515). New York: Plenum Press.Google Scholar
  25. Dunn, A. J., Powell, M. L., Meitin, C., & Small, P. A. (1989). Virus infection as a Stressor: influenza virus elevates plasma concentrations of corticosterone, and brain concentrations of MHPG and tryptophan. Physiology and Behavior, 45, 591–594.PubMedCrossRefGoogle Scholar
  26. Dunn, A. J. & Swiergiel, A. H. (1997). Cytokines and behavior: The role of biogenic amines in hypophagia. Neuroimmunomodulation, 4, 213.Google Scholar
  27. Dunn, A. J., Swiergiel, A. H., & Stone, E. A. (1996). The role of cerebral noradrenergic systems in the Fos response to interleukin-1. Brain Research Bulletin, 41, 61–64.PubMedCrossRefGoogle Scholar
  28. Dunn, A. J. & Welch, J. (1991). Stress-and endotoxin-induced increases in brain tryptophan and serotonin metabolism depend on sympathetic nervous system activation. Journal of Neurochemistry, 57, 1615–1622.PubMedCrossRefGoogle Scholar
  29. Elenkov, I. J., Kovacs, K., Duda, E., Stark, E., & Vizi, E. S. (1992). Presynaptic inhibitory effect of TNF-a on the release of noradrenaline in isolated median eminence. Journal of Neuroimmunology, 413, 117–120.CrossRefGoogle Scholar
  30. Fantuzzi, G., Zheng, H., Faggioni, R., Benigni, F., Ghezzi, P., Sipe, J. D., Shaw, A. R., & Dinarello, C. A. (1996). Effect of endotoxin in IL-1β-deficient mice. Journal of Immunology, 157, 291–296.Google Scholar
  31. Fleshner, M., Goehler, L. E., Hermann, J., Relton, J. K., Maier, S. F., & Watkins, L. R. (1995). Interleukin-1β induced corticosterone elevation and hypothalamic NE depletion is vagally mediated. Brain Research Bulletin, 37, 605–610.PubMedCrossRefGoogle Scholar
  32. Guo, Z. M., Qian, C. G., Peters, C. J., & Liu, C. T. (1993). Changes in platelet-activating factor, catecholamine, and serotonin concentrations in brain, cerebrospinal fluid, and plasma of Pichinde virus-infected guinea pigs. Laboratory Animal Science, 43, 569–574.PubMedGoogle Scholar
  33. Hurst, S. M. & Collins, S. M. (1994). Mechanism underlying tumor necrosis factor-α suppression of norepinephrine release from rat myenteric plexus. American Journal of Physiology, 266, G1123–1129.PubMedGoogle Scholar
  34. Ishizuka, Y., Ishida, Y., Kunitake, T., Kato, K., Hanamori, T., Mitsuyama, Y., & Kannan, H. (1997). Effects of area postrema lesion and vagotomy on interleukin-1β-induced norepinephrine release in the hypothalamic paraventricular nucleus region in the rat. Neuroscience Letters, 223, 57–60.PubMedCrossRefGoogle Scholar
  35. Kabiersch, A., del Rey, A., Honegger, C. G., & Besedovsky, H. O. (1988). Interleukin-1 induces changes in norepinephrine metabolism in the rat brain. Brain Behavior and Immunity, 2, 267–274.CrossRefGoogle Scholar
  36. Kass, E. H. & Finland, M. (1958). Corticosteroids and infections. 9, 45–80.Google Scholar
  37. Kirby, L. G., Allen, A. R., & Lucki, I. (1995). Regional differences in the effects of forced swimming on extracellular levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Research, 682, 189–196.PubMedCrossRefGoogle Scholar
  38. Linthorst, A. C. E., Flackskamm, C., Holsboer, F., & Reul, J. M. H. M. (1996). Activation of serotonergic and noradrenergic neurotransmission in the rat hippocampus after peripheral administration of bacterial endotoxin: involvement of the cyclo-oxygenase pathway. Neuroscience, 72, 989–997.PubMedCrossRefGoogle Scholar
  39. Merlo Pich, E., Lorang, M., Yeganeh, M., Rodriguez De Fonseca, F., Raber, J., Koob, G. F, & Weiss, F. (1995). Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis. Journal of Neuroscience, 15, 5439–5447.PubMedGoogle Scholar
  40. Michie, H. R., Spriggs, D. R., Manogue, K. R., Sherman, M. L., Revhaug, A., O’Dwyer, S. T., Arthur, K., Dinarello, C. A., Cerami, A., Wolff, S. M., Kufe, D. W., & Wilmore, D. W. (1988). Tumor necrosis factor and endotoxin induce similar metabolic responses in human beings. Surgery, 104, 280–286.PubMedGoogle Scholar
  41. Miller, A. H., Spencer, R. L., Pearce, B. D., Pisell, T. L., Tanapat, P., Leung, J. J., Dhabhar, F. S., McEwen, B. S., & Biron, C. A. (1997). Effects of viral infection on corticosterone secretion and glucocorticoid receptor binding in immune tissues. Psychoneuroendocrinology, 22, 455–474.PubMedCrossRefGoogle Scholar
  42. MohanKumar, P. S. & Quadri, S. K. (1993). Systemic administration of interleukin-1 stimulates norepineph-rine release in the paraventricular nucleus. Life Sciences, 52, 1961–1967.PubMedCrossRefGoogle Scholar
  43. Molina-Holgado, F. & Guaza, C. (1996). Endotoxin administration induced differential neurochemical activation of the rat brain stem nuclei. Brain Research Bulletin, 40, 151–156.PubMedCrossRefGoogle Scholar
  44. Ovadia, H., Abramsky, O., & Weidenfeld, J. (1989). Evidence for the involvement of the central adrenergic system in the febrile response induced by interleukin-1 in rats. Journal of Neuroimmunology, 25, 109–116.PubMedCrossRefGoogle Scholar
  45. Perlstein, R. S., Whitnall, M. H., Abrams, J. S., Mougey, E. H., & Neta, R. (1993). Synergistic roles of inter-leukin-6, interleukin-1, and tumor necrosis factor in the adrenocorticotropin response to bacterial lipopolysaccharide in vivo. Endocrinology, 132, 946–952.PubMedCrossRefGoogle Scholar
  46. Plotsky, P. M., Cunningham, E. T., & Widmaier, E. P. (1989). Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocrine Reviews, 10, 437–458.PubMedGoogle Scholar
  47. Pohorecky.
    L. A., Wurtman, R. J., Taam, D., & Fine, J. (1972). Effects of endotoxin on monoamine metabolism in the rat. Proceedings of the Society for Experimental Biology and Medicine, 140, 739–746.Google Scholar
  48. Rada, P., Mark, G. P., Vitek, M. P., Mangano, R. M., Blume, A. J., Beer, B., & Hoebel, B. G. (1991). Interleukin-1β decreases acetylcholine measured by microdialysis in the hippocampus of freely moving rats. Brain Research, 550, 287–290.PubMedCrossRefGoogle Scholar
  49. Sharp, B. M. & Matta, S. G. (1993). Prostaglandins mediate the adrenocorticotropin response to tumor necrosis factor in rats. Endocrinology, 132, 269–274.PubMedCrossRefGoogle Scholar
  50. Sharp, B. M., Matta, S. G., Peterson, P. K., Newton, R., Chao, C., & McAllen, K. (1989). Tumor necrosis factor-α is a potent ACTH secretagogue: comparison to interleukin-1β. Endocrinology, 124, 3131–3133.PubMedCrossRefGoogle Scholar
  51. Smagin, G. N., Swiergiel, A. H., & Dunn, A. J. (1996). Peripheral administration of interleukin-1 increases extracellular concentrations of norepinephrine in rat hypothalamus: comparison with plasma corticosterone. Psychoneuroendocrinology, 21, 83–93.PubMedCrossRefGoogle Scholar
  52. Stone, E. A. (1975). Stress and catecholamines. In A. J. Friedhoff (Ed.), Catecholamines and Behavior. Vol. 2 Neuropsychopharmacology (pp. 31–72). New York: Plenum Press.Google Scholar
  53. Swiergiel, A. H., Smagin, G. N., & Dunn, A. J. (1997). Influenza virus infection of mice induces anorexia: comparison with endotoxin and interleukin-1 and the effects of indomethacin. Pharmacology Biochemistry and Behavior, 57, 389–396.CrossRefGoogle Scholar
  54. Terao, A., Oikawa, M., & Saito, M. (1993). Cytokine-induced change in hypothalamic norepinephrine turnover: involvement of corticotropin-releasing hormone and prostaglandins. Brain Research, 622, 257–261.PubMedCrossRefGoogle Scholar
  55. Vale, W., Spiess, J., Rivier, C., & Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science, 213, 1394–1397.PubMedCrossRefGoogle Scholar
  56. Wang, J. P. & Dunn, A. J. (1996). The role of interleukin-6 in the activation of the hypothalamo-pituitary-adrenocortical axis induced by endotoxin and IL-1. Society for Neuroscience Abstracts, 22, 1354.Google Scholar
  57. Wang, J. P. & Dunn, A. J. (1998). Mouse interleukin-6 stimulates the HPA axis and increases brain tryptophan and serotonin metabolism. Neurochemistry International, 33, 143–154.PubMedCrossRefGoogle Scholar
  58. Weidenfeld, J., Abramsky, O., & Ovadia, H. (1989). Evidence for the involvement of the central adrenergic system in interleukin 1-induced adrenocortical response. Neuropharmacology, 28, 1411–1414.PubMedCrossRefGoogle Scholar
  59. Weidenfeld, J., Wohlman, A., & Gallily, R. (1995). Mycoplasma fermentans activates the hypothalamopituitary adrenal axis in the rat. NeuroReport, 6, 910–912.PubMedCrossRefGoogle Scholar
  60. Zalcman, S., Green-Johnson, J. M., Murray, L., Nance, D. M., Dyck, D., Anisman, H., & Greenberg, A. H. (1994). Cytokine-specific central monoamine alterations induced by interleukin-1,-2, and-6. Brain Research, 643, 40–49.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • Adrian J. Dunn
    • 1
  • Jianping Wang
    • 2
  • Tetsuya Ando
    • 3
  1. 1.Department of Pharmacology and TherapeuticsLouisiana State University Medical CenterShreveport
  2. 2.Inflammatory Joint Diseases SectionNIAMS/NIHBethesda
  3. 3.National Institute of Mental Health, National Center of Neurology and PsychiatryDivision of Psychosomatic ResearchIchikawaJapan

Personalised recommendations