Indicators of Immune Activation in Depressed Patients

  • Anna Sluzewska
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 461)


An interaction of genetic factors with environmental factors, including stress and infectious agents, is assumed to play a causal role in the pathogenesis of major depression. Since the rate of major depression in genetically succeptible populations has continued to increase over the past years, the identification of these environmental factors would provide targets for more effective antidepressant agents.


Major Depression Acute Phase Protein Acute Phase Response Total Serum Protein Major Depressed Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, K. I., Ieni, J. R., & Meyerson, L. R. (1987). Purification and properties of human plasma endogenous modulator for platelet tricyclic binding/serotonine transport complex. Bioch Bioph Acta, 923, 8–21.Google Scholar
  2. American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders. Fourth Edition, American Psychiatric Association. Washington, D.C.Google Scholar
  3. Amsterdam, J. D., Winokur, A., Bryant, S., Larkin, J., & Rickeis, K. (1983). The dexamethasone suppression test as a predictor of antidepressant response. American Journal of Psychiatry, 80, 43–45.Google Scholar
  4. Amsterdam, J. D., Winokur, A., Dyson, W., Herzog, S., Gonzalez, F., Rott, R., & Koprowski, H. (1985). Borna disease virus: a possible etiologic factor in human affective disorders? Archives of General Psychiatry, 42, 1093–1096.PubMedGoogle Scholar
  5. Amsterdam, J. D., Rosenzweig, M., & Mozley, P. D. (1994). Assessment of adrenocortical activity in refractory depression: steroid suppression with ketoconazole. In W. A. Nolen, J. Zohar, S. P. Roose, & J. D. Amsterdam (Eds.), Refractory Depression: Current Strategies and Future Directions (pp. 199–210). John Wiley & Sons Ltd.Google Scholar
  6. Balkwill, F. R. & Burke, F. (1989). The cytokine network. Immunology Today, 10, 299–303.PubMedCrossRefGoogle Scholar
  7. Balkwill, F. R. (1993). Cytokines in health and disease. Immunology Today, 14, 149–150.PubMedCrossRefGoogle Scholar
  8. Baumann, H., Richards, C., & Gauldie, J. (1987). Interaction among hepatocyte-stimulating factors, interleukin 1, and glucocorticoids for regulation of acute phase proteins in human hepatoma (Hep G2) cells. Journal of Immunology, 15, 4122–4128.Google Scholar
  9. Blalock, J. E. (1994). The syntax of immune-neuroendocrine communication. Immunology Today, 15,11, 504–511.PubMedCrossRefGoogle Scholar
  10. Bock, G. R., Marsh, J., & Widdows, K. (1992). Polyfunctional Cytokines: IL-6 and LIF. Ciba Foundation Symposium 167 Chichester: John Wiley and Sons.Google Scholar
  11. Bode, L., Riegel, S., Ludwig, H., Amserdam, J. D., Lange, W., & Koprowski, H. (1988). Borna disease virus-specific antibodies in patients with HIV infection and with mental disorders. Lancet, ii, 689.CrossRefGoogle Scholar
  12. Bode, L., Durrwald, R., Rantam, F. A., Ferszt, R., & Ludwig, H. (1996). First isolation of infectious human Borna disease virus from patients with mood disorders. Molecular Psychiatry, 1, 200–212.PubMedGoogle Scholar
  13. Breborowicz, J. & Mackiewicz, A. (1989). Affinity electrophoresis for diagnosis of cancer and inflammatory conditions. Electrophoresis, 10, 568–573.PubMedCrossRefGoogle Scholar
  14. Campbell, I. L., Chiang, Ch-Sh. (1995). Cytokine involvement in central nervous system disease: Implications from transgenic mices.: In G. P. Chrousou, R. Mc Carty, K. Pacak, G. Cizza, E. Sternberg, W. Gold Ph, & R. Kwetnewsky (Eds.), Stress: Basic Mechanisms and Clinical Implications. Annals of the New York Academy of Sciences, 777, 301–312.Google Scholar
  15. Cappel, R., Gregoire, E., Thiry, L., & Sprecher, S. (1978). Antibody and cell-mediated immunity to herpes simplex virus in psychotic depression. Journal of Clinical Psychiatry, 39, 266–268.PubMedGoogle Scholar
  16. Carroll, B. J., Curtis, G. C., Davies, B. M., Mendels, J., & Sugerman, A. A. (1976). Urinary free cortisol excretion in depression. Psychological Medicine, 6, 43–50.PubMedGoogle Scholar
  17. Caruso, C., Candore, G., Cigna, D., Colucci, A. T., & Modica, M. A. (1993). Biological significance of soluble IL-2 receptor. Med. Inflamm., 2, 3–21.CrossRefGoogle Scholar
  18. Cavallo, M. G., Pozzilli, P., & Thorpe, R. (1994). Cytokines and autoimmunity. Clinical and Experimental Immunology, 96, 1–7.PubMedCrossRefGoogle Scholar
  19. Christiansen, P., Lolk, A., & Gram, L. F. (1989). Cortisol and treatment of depression: Predictive value of spontaneous and suppressed cortisol levels and course of spontaneous plasma cortisol. Psychopharmacology, 97, 471–75.CrossRefGoogle Scholar
  20. Chrousos, G. P. & Gold, P. W. (1992). The concepts of stress and stress system disorders: overview of physical and behavioural homeostasis. Journal of the American Medical Association, 268, 200.CrossRefGoogle Scholar
  21. Chrousos, G. P. (1995). The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. The New England Journal of Medicine, 332, 1351–1362.PubMedCrossRefGoogle Scholar
  22. Cohen, I. R. & Cook, W. (1986). Natural antibodies might prevent autoimmune disease. Immunology Today, 7, 363–364CrossRefGoogle Scholar
  23. Costello, M., Field, B. A., & Gewurz, H. (1979). Inhibition of platelet aggregation by native and disialised alpha-1-acid glycoprotein. Nature, 281, 677–681.PubMedCrossRefGoogle Scholar
  24. Dayer, J-M. & Burger, D. (1994). Interleukin-1, tumor necrosis factor, and their specific inhibitors. European Cytokine Network, 5, 563–571.PubMedGoogle Scholar
  25. Dinarello, C. A. (1994). The biological properties of interleukin-1. European Cytokine Network, 5, 517–531.PubMedGoogle Scholar
  26. Dittrich, W., Bode, L., Ludwig, H., Kao, M., & Schneider, K. (1995). Learning deficiencies in Borna disease virus-infected but clinicaly healthy rats. Biological Psychiatry, 26, 818–828.CrossRefGoogle Scholar
  27. Dripps, D. J., Brandhuber, B. J., Thompson, R. C., & Eisenberg, S. P. (1991). Interleukin-1 (IL-1) receptor antagonist binds to the 80-kDa IL-1 receptor but does not initiate IL-1 signal transduction. Journal of Biological Chemistry, 266, 10331–10338.PubMedGoogle Scholar
  28. Dunbar, P. R., Hill, J., Neale, T. J., & Mellsop, G. W. (1992). Neopterin measurement provides evidence of altered cell-mediated immunity in patients with depression but not with schizophrenia. Psychological Medicine, 22, 1051–1057.PubMedGoogle Scholar
  29. Durand, G. (1989). Glycan variations of human alpha-1-acid glycoprotein modulate the biology of macrophages. Progress in Clinical and Biological Research, 300, 247–252.PubMedGoogle Scholar
  30. Fawcett, J. (1994). Progress in treatment-resistant and treatment refractory depression: we still have a long way to go. Psychiatric Annual, 24, 214–216.Google Scholar
  31. Fishman, P. H. (1988). Gangliosides as cell surface receptors and transducers of biological signals. In R. W. Ledeen, E. L. Hogan, G. Tettamanti, A. J.Yates, & R. R. Yu (Eds.), New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects. Liviana Press, Padova, pp 183–217.Google Scholar
  32. Fukata, J., Usui, T., Naitoh, Y., & Imura, H. (1989). Effects of recombinant human interleukin-1 alpha,-1 beta, 2, and 6 on ACTH synthesis and release in the mouse pituitary tumor cell line AtT-20. Journal of Endocrinology, 122, 33–39.PubMedGoogle Scholar
  33. Gastpar, M. & Muller, W. (1981). Autoantibodies in affective disorders. Prog. Neuropsychopharmacology, 5, 91–96.CrossRefGoogle Scholar
  34. Glaser, R., Kielcolt-Glaser, J. K., Speicher, C. E., & Holiday, J. E. (1985). Stress, loneliness and changes in herpes virus latency. Journal of Behavioral Medicine. 8, 249–253.PubMedCrossRefGoogle Scholar
  35. Gold, P. W., Chrousos, G., Keller, C., Post, R., Roy, A., Augerinlos, P., Schulte, H., Oldfield, E., & Loriaux, D. L. (1994). Psychiatric implications of basic and clinical studies with corticotropin-relasing factor. American Journal of Psychiatry, 141, 619–627.Google Scholar
  36. Gold, P. W. (1996). Editorial: Stress system abnormalities in melancholic and atypical depression: molecular, pathophysiological, and therapeutic implications. Molecular Psychiatry, 4, 265–277.Google Scholar
  37. Gosztonyi, G., Ludwig, H. (1995). Borna disease—neuropathology and pathogenesis. In H. Koprowski, W. I. Lipkin (Eds.), Borna disease. Current Topics in Microbiology and Immunology, 190, 39–73.Google Scholar
  38. Healy, D., Calvin, J., & Whitehouse, A. M. (1991). Alpha-1-acid glycoprotein in major depressives and eating disorders. Journal of Affective Disorders, 22, 13–20.PubMedCrossRefGoogle Scholar
  39. Heinrich, P. C., Castell, J. V., & Andus, T. (1990). Review article: interleukin-6 and the acute phase response. Biochemical Journal, 265, 621–636.PubMedGoogle Scholar
  40. Holsboer, F., Girken, A., Stalia, G. K., & Muller, O. A. (1984). Blunted corticotropin and normal cortisol response to human corticotropin-releasing factor in depression. New England Journal of Medicine, 311, 1127.PubMedGoogle Scholar
  41. Hornig-Rohan, M. & Amsterdam, J. D. (1994). Clinical and biological correlantes of treatment-resistant depression: an overview. Psychiatric Annuals, 24, 220–227.Google Scholar
  42. Irwin, M., Patterson, T., Smith, T. L., Caldwell, C., Brown, S. A., Gillin, J. C., & Grant, I. (1990). Reduction of immune function in life stress and depression. Biological Psychiatry, 27, 22–30.PubMedCrossRefGoogle Scholar
  43. Joyce, P. R., Hawes, C. R., & Mulder, R. T. (1992). Elevated levels of acute phase plasma proteins in major depression. Biological Psychiatry, 32, 1035–1041.PubMedCrossRefGoogle Scholar
  44. Kent, S., Bluthe, R. M., Kelly, K. W., & Dantzer, R. (1992). Sickness behavior as a new target for drug development. Trends in Pharmacological Sciences, 13, 24–28.PubMedCrossRefGoogle Scholar
  45. Kehoe, W., Kwentus, J., Sheffel, W., & Harralson, A. (1991). Increased alpha-1-acid glycoprotein in depression lowers free fraction of imipramine. Biological Psychiatry, 29, 489–93.PubMedCrossRefGoogle Scholar
  46. Kremer, J. M. H., Wilting, J., & Janssen, L. H. M. (1988). Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacological Review, 40, 1–47.Google Scholar
  47. Kriesel, J. D., Ricigliano, J., Spruance, S. L., Garza, H. H., & Hill, J. M. (1997). Neuronal reactivation of herpes simplex virus may involve interleukin-6. Journal of NeuroVirology, 3, 441–448.PubMedCrossRefGoogle Scholar
  48. Kronfol, Z., Nair, M., Goodson, J., Goael, K., Haskett, R., & Schwartz, S. (1989). Lymphocyte mitogenesis, immunoglobulin and component levels in depressed patients and normal controls. Acta Psychiatrica Scandinavica, 80, 142–147.PubMedCrossRefGoogle Scholar
  49. Kushner, I. & Mackiewicz, A. (1993). The acute phase response: An overview. In A. Mackiewicz, I. Kushner, & H. Baumann (Eds.), Acute phase proteins. Molecular biology, biochemistry, and clinical applications. (pp. 3–19). Boca Raton, FL: CRP Press.Google Scholar
  50. LaMay, L. G., Vander, A. J., & Kluger, M. J. (1990). The effect of psychological stress on plasma interleukin-6 activity in rats. Physiology and Behavior, 47, 957–961.CrossRefGoogle Scholar
  51. Lieb, J. & Karmali, R. (1993). Elevated levels of prostaglandin E2 and tromboxane B2 in depression. Prost. Leukotr. Med., 10, 361–368.CrossRefGoogle Scholar
  52. Linker-Israeli, M., Hyun, S., Ozeri-Chen, T., Wallace, D. J., Banks, K., & Klinenberg, J. R. (1994). Elevated in vivo and in vitro secretion of CD8-alpha molecules in patients with systemic lupus erythematosus. Journal of Immunology, 152, 3158–3167.Google Scholar
  53. Lycke, E., Norrby, R., & Roos, B-E. (1974). A serological study on mentally ill patients with particular reference to prevalence of herpes virus infections. British. Journal of Psychiatry, 124, 273.PubMedGoogle Scholar
  54. Mackiewicz, A. & Mackiewicz, S. (1986). Determination of lectin-sugar dissociation constants by agarose affinity electrophoresis. Annals of Biochemistry, 56, 480–484.Google Scholar
  55. Mackiewicz, A., Pawlowski, T., Mackiewicz-Pawlowska, A., Wiktorowicz, K., & Mackiewicz, S. (1987). Micro-heterogeneity forms of alpha-1-acid glycoprotein as indicator of rheumatoid arthritis activity. Clin Chim Acta, 163, 185–190.PubMedCrossRefGoogle Scholar
  56. Maes, M., Bosmans, E., Suy, E., Minner, B., & Raus, J. (1989). The impaired mitogen lymphocyte stimulation in severely depressed patients: a complex interface between HPA-axis hyperfunction, noradrenergic activity, and ageing process British Journal of Psychiatry, 155, 793–798.PubMedCrossRefGoogle Scholar
  57. Maes, M., Bosmans, E., Suy, E., Vandervorst, C., Dejonckheere, C., & Raus, J. (1991). Antiphospholipid, anti-nuclear, Ebstein-Barr and cytomegalovirus antibodies, and soluble interleukin-2 receptor in depressive patients. Journal of Affective Disorders, 21, 133–140.PubMedCrossRefGoogle Scholar
  58. Maes, M., Scharpe, S., Van Grootel, L., Uyttenbroeck, W., Cooreman, W., Cosyns, P., & Suy, E. (1992a). Higher alpha-1-antitrypsin, haptoglobin, ceruloplasmin, and lower retinol protein plasma levels during depression. Futher evidence for the existence of an inflammatory process during that illness. Journal of Affective Disorders, 24, 183–192.PubMedCrossRefGoogle Scholar
  59. Maes, M., Scharpe, S., Bosmans, E., Vandewoude, M., Suy, E., Uyttenbroeck, W., Cooreman, W., Vandervorst, C., & Raus, J. (1992b). Disturbances in acute phase proteins during melancholia: additional evidence for presence of inflammatory process during that illness. Progress in Neuropsychopharmacology and Biological Psychiatry, 16, 501–515.CrossRefGoogle Scholar
  60. Maes, M., Van Der Planken, M., Stevens, J. W., Peeters, D., De Clerck, L. S., Bridts, C. H., Schotte, C., & Cosyns, P. (1992c). Leukocytosis, monocytosis and neutrophilia: hallmarks of severe depression. Journal of Psychiatric Research, 26, 125–134.PubMedCrossRefGoogle Scholar
  61. Maes, M. (1993). Acute phase protein alterations in major depression: A review. Reviews of Neuroscience, 4, 407–16.Google Scholar
  62. Maes, M., Meltzer, H. Y., Stevens, W., Cosyns, P., & Block, P. (1994a). Multiple reciprocal relationships between in vivo cellular immunity and hypothalamic-pituitary-adrenal axis in depression. Psychological Medicine, 24, 167–177.PubMedGoogle Scholar
  63. Maes, M., Scharpe, S., & Meltzer, H. Y. (1994b). Increased neopterin and interferon secretion and lower availability of L-tryptophan in major depression; further evidence for activation of cell-mediated immunity. Psychiatric Research, 20, 111–116.Google Scholar
  64. Maes, M., Meltzer, H. Y., & Bosmans, E. (1995a). Increased plasma levels of interleukin-6, soluble interleukin-2, and transferrin receptors in major depression. Journal of Affective Disorders, 34, 301–309.PubMedCrossRefGoogle Scholar
  65. Maes, M., Wautwers, A., Neels, H., Scharpe, S., Van Gastel, A., Dhondt, P., Peeters, D., Cosnys, P., & Desnyder, R. (1995b). Total serum protein and serum protein fractions in depression: relationships to depressive symptoms and glucocorticoid activity. Journal of Affective Disorders, 34, 61–69.PubMedCrossRefGoogle Scholar
  66. Maes, M., Bosmans, E., & Meltzer, H. Y. (1995c). Immunoendocrine aspects of major depression. European Archives of Psychiatry and Clinical Neuroscience, 245, 172–178.PubMedCrossRefGoogle Scholar
  67. Maes, M., Delanghe, J., Ranjan, R., Meltzer, H. Y., Desnyder, R., Cooreman, W., & Scharpe, S. (1997). The acute phase protein response in schizophrenia, mania, and major depression: effects of psychotropic drugs. Psychiatry Research, 26, 221–225.Google Scholar
  68. McLeod, W. R. (1972). Poor response to antidepressants and dexamethasone nonsuppression. In B. Davis, B. J. Carroll, & R. M. Mowbray (Eds.), Depression illness: Some Research Stdies. (pp. 202–206). Springfield, IL. Thomas.Google Scholar
  69. Muller, N., Hofschuster, E., Ackenheil, M., Mempel, W., & Eckstein, R. (1993). Investigations of the cellular immunity during depression and the free interval: evidence for immune activation in affective psychosis. Progress in Neuro-Psychopharmacol and Biological Psychiatry, 17, 713–730.CrossRefGoogle Scholar
  70. Murphy, B. E. P., Dhar, V., Ghadirian, A. M., Chouinard, G., & Keller, R. (1991). Response to steroid suppression in major depression resistant to antidepressant therapy. Journal of Clinical Psychopharmacology, 2, 121–125.Google Scholar
  71. Naitoh, Y., Fukato, J., Tomiga, T., Nakai, Y., Tamai, S., Mori, K., & Immura, H. (1988). Interleukin-1 stimulates the secretion of adrenocorticotropic hormone in conscious freely-moving rats. Biochemistry, Biophysiology Research Communications, 155, 1459–1466.CrossRefGoogle Scholar
  72. Navarra, P., Tsagarakis, S., Faria, M. S., Rees, L. H., Besser, G. M., & Grossman, A. B. (1991). Interleukin-1 and interleukin-6 stimulate the release of corticotropin-releasing hormone from rat hypothalamus in vitro via the ecosanoid cyclooxygenase pathway. Endocrinology, 128, 37–44.PubMedGoogle Scholar
  73. Nemeroff, C. B., Krisnam, R. R., Blazer, D. G., Knight, D. L., Benjamin, D., & Meyerson, I. R. (1990). Elevated plasma concentration of alpha-1-acid glycoprotein, a putative endogenous inhibitor of tritiated imipramine binding site in depressed patients. Archives of General Psychiatry, 47, 337–340.PubMedGoogle Scholar
  74. Nemeroff, C. B. (1996). The corticotropin-releasing factor (CRF) hypothesis of depression: new findings and new directions. Molecular Psychiatry, 4, 336–342.Google Scholar
  75. Nessberger, L. & Traskman-Bendz, L. (1993). Increased soluble interleukin-2 receptor concentration in suicide attempters. Acta Psychiatrica Scandinavica, 88, 48–52.CrossRefGoogle Scholar
  76. Paul, W. E. & Seder, R. A. (1994). Lymphocyte responses and cytokines. Cell, 76, 241–251.PubMedCrossRefGoogle Scholar
  77. Pawlowski, P., Mackiewicz, S., & Mackiewicz, A. (1989). Microheterogeneity of alpha-1-acid glycoprotein in detection of intercurrent infection in rheumatoid arthritis. Arthritis Rheumatology, 32, 347–351.CrossRefGoogle Scholar
  78. Pos, O., Van Dijk, W., Ladiges, N., Sala, M., Van Tiel, D., & Boers, W. (1988). Glycosylation of four acute-phase glycoproteins secreted by rat liver cells in vivo and in vitro. Effects of inflammation and dexamethasone. European Journal of Cell Biology, 46, 121–128.PubMedGoogle Scholar
  79. Pos, O., Van der Stelt, M. E., & Wolbik, G. J. (1990). Changes in the serum concentration and glycosylation of human alpha-1-acid glycoprotein and alpha-1protease inhibitor in severely burned patients: relation to interleukin-6 levels. Clinical and Experimental Immunology, 82, 579–582.PubMedCrossRefGoogle Scholar
  80. Putnam, F. W. (1984a). Progress in plasma proteins. In: The plasma proteins: structure, function, and genetic control. (pp. 2–44) Second edition. Academic Press, Orlando.Google Scholar
  81. Putnam, F. W. (1984b). Alpha, beta, gamma omega-the structure of plasma proteins. In: The plasma proteins: structure, function, and genetic control, (pp. 46–166). Secon edition. Academic Press, Orlando.Google Scholar
  82. Ritzmann, S. E. & Daniels, J. C. (1976). Serum protein electrophoresis and total serum proteins. In: Serum protein abnormalities: Diagnostic and clinical aspects. (pp. 3–25) Little, Brown and Company, Boston, MA.Google Scholar
  83. Rott, R., Herzog, S., Fleisher, B., Winokur, H., Amsterdam, J. D., Dyson, W., & Koprowski, H. (1985). Detection of serum antibodies to Borna disease virus in patients with psychiatric disorders. Science, 228, 755–756.PubMedCrossRefGoogle Scholar
  84. Schleifer, S. J., Keller, S. E., Meyerson, A. T., Raskin, D., Davis, K. L., & Stein, M. (1984). Lymphocyte function in major depressive disorder. Archives of General Psychiatriatry, 41, 484–486.Google Scholar
  85. Schott, K., Batra, A., Klein, R., Bartels, M., Koch, W., & Berg, P. A. (1992). Antibodies against serotonin and gangliosides in schizophrenia and major depressive disorder. European Psychiatry, 7, 209–212.Google Scholar
  86. Schott, K. & Batra, A. (1995). No antibody binding to serotonin in serum of patients with paranoid schizophrenia and major depressive disorder. European Psychiatry, 10, 372.CrossRefPubMedGoogle Scholar
  87. Sluzewska, A. & Rybakowski, J. K. (1993). Cortisol levels and immunological indices in depression. Neuropsychopharmacology, 9, 107S.Google Scholar
  88. Sluzewska, A., Nowakowska, E., Gryska, K., & Mackiewicz, A. (1994a). Haptoglobin levels in chronic mild stress model of depression in rats before and after treatment. European Neuropsychopharmacology, 4, 3, 302.CrossRefGoogle Scholar
  89. Sluzewska, A., Rybakowski, J. K., Sobieska, M., & Wiktorowicz, K. (1994b). The effect of lithium, carba-mazepine and fluoxetine on alpha-1-acid glycoprotein, and alpha-1-antichymotripsin in depressed patients. Neuropsychopharmacology, 10, 202.Google Scholar
  90. Sluzewska, A., Wiktorowicz, K., Mackiewicz, S., & Rybakowski, J. K. (1994c). The effect of short-term treatment with lithium and carbamazepine on some immunological indices in depressed patients. Lithium, 5, 41–46.Google Scholar
  91. Sluzewska, A., Rybakowski, J. K., Laciak, M., Mackiewicz, A., Sobieska, M., & Wiktorowicz, K. (1995a). Inter-leukin-6 levels in depressed patients before and after treatment with fluoxetine. Annals of the New York Academy of Science, 762, 474–477.CrossRefGoogle Scholar
  92. Sluzewska, A., Rybakowski, J. K., Sobieska, M., Bosmans, E., Pollet, H., & Wiktorowicz, K. (1995b). Increased levels of alpha-1-acid glycoprotein and interleukin-6 in refractory depression. Depression, 3, 170–175.CrossRefGoogle Scholar
  93. Sluzewska, A., Rybakowski, J. K., Bosmans, E., Maes, M., Berhmans, R., & Pollet, H. (1995c). The effects of treatment with lithium and carbamazepine on some interleukin and their receptors in depressed patients. Pharmacological Research, 3, 366.CrossRefGoogle Scholar
  94. Sluzewska, A., Horing-Rohan, M., Sobieska, M., Rybakowski, J. K., & Amsterdam, J. D. (1995d). Changes in acute phase proteins in depressed patients during treatment with fluoxetine and venlafaxine. European Neuropsychopharmacology, 5,3, 295–296.CrossRefGoogle Scholar
  95. Sluzewska, A., Rybakowski, J. K., Sobieska, M., & Wiktorowicz, K. (1996a). Concentration and micro-heterogeneity glycophorms of alpha-1-acid glycoprotein in major depression. Journal of Affective Disorders, 39, 149–155.PubMedCrossRefGoogle Scholar
  96. Sluzewska, A., Rybakowski, J., Bosmans, E., Sobieska, M., Berghans, R., Maes, M., & Wiktorowicz, K. (1996b). Indicators of immune activation in major depression. Psychiatry Research, 63,3, 161–167.CrossRefGoogle Scholar
  97. Sluzewska, A., Rybakowski, J., & Sobieska, M. (1996c). Immune activation in endogenous depression. Psychiatria Polska, 5, 771–782.Google Scholar
  98. Sluzewska, A., Gryska, K., & Mackiewicz, A. (1996d). Acute phase proteins in chronic mild model of depression. Behavioural Pharmacology, 7,1, 105–106.CrossRefGoogle Scholar
  99. Sluzewska, A., Rybakowski, J. K., Sobieska, M., & Amsterdam, J. D. (1996e). Changes in concentration and microheterogeneity of two acute phase proteins in major depression. Glycoconjugate Journal, 13, 891–892.Google Scholar
  100. Sluzewska, A., Sobieska, M., & Rybakowski, J. K. (1997a). Changes in acute-phase proteins during lithium potentiation of antidepressants in refractory depression. Neuropsychobiology, 35, 123–127.PubMedGoogle Scholar
  101. Sluzewska, A., Rybakowski, J. K., & Sobieska, M. (1997b). Total serum protein and serum protein fractions in major depression and treatment resistant depression. Biological Psychiatry, 42,1S, 114.CrossRefGoogle Scholar
  102. Sluzewska, A., Bosmans, E., & Rybakowski, J. (1997c). Relationships between selected immunological parameters and cortisol in treatment resistant depression. European Neuropsychopharmacology, 7,2, 170.CrossRefGoogle Scholar
  103. Sluzewska, A., Samborski, W., Sobieska, M., Klein, R., Bosmans, E., & Rybakowski, J. K. (1997d). Serum antibodies in relation to immune activation in major depression. Human Psychopharmacology, 12, 453–458.CrossRefGoogle Scholar
  104. Song, C. & Leonard, B. L. (1993). Changes in plasma proteins in depressed patients and rodent model of depression. Neuropsychopharmacology, 9, 106S.Google Scholar
  105. Song, C, Dinan, T., & Leonard, B. E. (1994a). Changes in immunoglobulines, component and acute phase proteins levels in depressed patients and normal controls. Journal of Affective Disorders, 30, 283–288.PubMedCrossRefGoogle Scholar
  106. Song, C. & Leonard B. E. (1994b). An acute phase protein response in the olfactory bulbectomised rat: effect of sertraline treatment. Medical Science Research, 22, 313–314.Google Scholar
  107. Stroop, W. G. (1986). Herpes simplex virus encephalitis of the human adult: reactivation of latent brain infection. Pathology Immunopathology Research, 5, 156–161.Google Scholar
  108. Swartz, C. M. (1990). Albumin decrement in depression and cholesterol decrement in mania. Journal of Affective Disorders, 19, 173–176.PubMedCrossRefGoogle Scholar
  109. Thase, M. E. & Rush, A. J. (1995). Treatment-resistant depression. In F. E. Bloom, D. J. Kupfer (Eds.), Psychopharmacology, the forth Generation of Progress, (pp. 1081–1098). Raven Press, New York.Google Scholar
  110. Tominga, T., Fukata, J., & Naitoh, Y. (1991). Prostaglandin-dependent in vitro stimulation of adrenocortical steroidogenesis by interleukins. Endocrinology, 128, 526–531.CrossRefGoogle Scholar
  111. Tomkinson, B. E., Brown, M. C., Ip, S. H., Carrabis, S., & Sullivan, J. L. (1989). Soluble CD8 during T cell activation. Journal of Immunology, 142, 2230–2236.Google Scholar
  112. Turner, G. A. (1992). N-glycosylation of serum proteins in disease and its investigation using lectins. Clin. Chem. Acta., 208, 149–171.CrossRefGoogle Scholar
  113. Van Dijk, W. & Mackiewicz, A. (1993). Control of glycosylation alterations of acute phase proteins. In A. Mackiewicz, I. Kuchner, & H. Bauman (Eds.), Acute Phase Glycoproteins: Molecular Biology, Biochemistry, and Applications, (pp. 559–580). Boca Raton, FL: CRC Press.Google Scholar
  114. Van Dijk, W., Turner, G. A., & Mackiewicz, A. (1994). Changes in glycosylation of acute phase proteins in health and disease: occurence regulation and function. Glycosylation and Disease, 1, 5–14.CrossRefGoogle Scholar
  115. Van Hunsel, F., Wauters, A., Vandoolaeghe, E., Neels, H., Demedts, P., & Maes, M. (1996). Lower total serum protein, albumin, and globulin in major and treatment resistant depression: effects of antidepressant treatment. Psychiatry Research, 65, 159–169PubMedCrossRefGoogle Scholar
  116. Vasson, M. P., Roche-Arvellier, M., Coudrec, R., Baguet, J. C., & Raichvarg, D. (1994). Effects of alpha-1-acid glycoprotein on human polynuclear neutrophils: Influence of glycan microheterogeneity. Cli Chim Acta, 224, 65–71.CrossRefGoogle Scholar
  117. Villemain, F., Magnin, H., Feuillet-Fieux, MR, Zarifian, E., Loo, H., & Bach, J. H. (1988). Antihistone antibodies in schizophrenia and affective disorders. Psychiatry Research, 24, 53–60.PubMedCrossRefGoogle Scholar
  118. Woith, W., Nusslein, I., & Antoni, C. (1993). A soluble form of the human transferrin receptor is released by activated lymphocytes in vitro. Clinical and Experimental Immunology, 92, 537–542.PubMedCrossRefGoogle Scholar
  119. Wolvekamp, M. C. J. & Marquet, R. L. (1990). Interleukin-6: historical background, genetics, and biological significance. Immunology Letters, 24, 1–10.PubMedCrossRefGoogle Scholar
  120. Zhou, D., Kusnecov, A. W., Shurin, M. R., DePaoli, M., & Rabin, B. S. (1993). Exposure to physical and psychological stressors elevates plasma interleukin-6: relationships to the activation of hypothalamic-pituitary-adrenal axis. Endocrinology, 133, 2523–2530.PubMedCrossRefGoogle Scholar
  121. Zorzenon, M., Colle, R., Vecchio, D., Bertoli, M., Giavedoni, A., Degrassi, A., Lavaroni, S., & Aguglia, E. (1996). Major depression, viral reactivation and immune system. European Psychiatry, 11,4, 332.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • Anna Sluzewska
    • 1
  1. 1.Department of Adult PsychiatryUniversity of Medical Sciences in PoznanPoznanPoland

Personalised recommendations