Skip to main content

Is There Evidence for an Effect of Antidepressant Drugs on Immune Function?

  • Chapter
  • First Online:
Cytokines, Stress, and Depression

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 461))

Abstract

Depression is a complex disease which is likely to involve several pathophysiological pathways. There is clear evidence that depression is associated with neurochemical and neuroendocrine alterations. Reduced activity of the serotoninergic (5-HT) and noradrenergic (NA) central systems are observed in a majority of patients with major depression (Garver & Davis, 1979). Depressed patients usually also exhibit an alteration of the hypothalamus-pituitary-adrenal (HPA) axis activity characterized by an hyperproduction of corticotropin-releasing hormone (CRH), which stimulates adrenocorticotropic hormone (ACTH) and cortisol release (Holsboer, Bardeleben, Gerken, Stalla, & Muller, 1984). Therefore, the biochemical activity of most antidepressants, including selective 5-HT reuptake inhibitors, monoamine oxidase inhibitors, and tricyclic antidepressants, has been assessed on the basis of their ability to reverse the alterations of monoamine and/or HPA axis activities (Hollister, 1986). However, the metabolic activity of these drugs is not necessarily related directly to their clinical efficacy (Barden, Reul, & Holsboer, 1995; Blier & de Montigny, 1994). Despite repeated attempts, the neuro-hormonal abnormalities observed in depression have never been shown to predict therapeutic response, nor can they account for the symptomatic profile of the patients. Furthermore, depletion of 5-HT or NA in healthy individuals does not induce clinically significant depressive symptomatology (Young, Smith, Pihl, & Erwin, 1985). In addition, there are also some atypical antidepressants with known experimental and clinical therapeutic effects, but devoid of the classic antidepressant actions on central monoamine activity (Guelfi, 1992; Van Riezen & Leonard, 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht, J., Helderman, J. H., Schlesser, M. A., & Rush, A. J. (1985). A controlled study of cellular immune function in affective disorders before and during somatic therapy. Psychiatry Research, 15, 185–193.

    Article  CAS  PubMed  Google Scholar 

  • Altshuler, L. L., Plaeger-Marshall, S., Richeimer, S., Daniels, M., & Baxter, L. R. (1989). Lymphocyte function in major depression. Acta Psychiatrica Scandinavia, 80, 132–136.

    Article  CAS  Google Scholar 

  • Anderson, J. L. (1996). The immune system and major depression. Advanves in Neuroimmunology, 6, 119–129.

    Article  CAS  Google Scholar 

  • Arnold, F. J. & Meyerson, L. R. (1990). Olfactory bulbectomy alters alpha-1 acid glycoprotein levels in rat plasma. Brain Research Bulletin, 25, 259–262.

    Article  CAS  PubMed  Google Scholar 

  • Arrigoni Martelli, E., Toth, E., Segre, A. D., & Corsico, N. (1967). Mechanism of inhibition of experimental inflammation by antidepressant drugs. European Journal of Pharmacology, 2, 229–233.

    Article  CAS  Google Scholar 

  • Audus, K. L. & Gordon, M. A. (1982). Characteristics of murine tricyclic antidepressant binding sites associated with murine lymphocytes from spleen. Journal of Immunopharmacology, 4, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Audus, K. L. & Gordon, M. A. (1984). Effect of tricyclic antidepressant drugs on lymphocyte membrane structure. Journal of Immunopharmacology, 6, 105–132.

    Article  CAS  PubMed  Google Scholar 

  • Barden, N., Reul, J. M. H. M., & Holsboer, F. (1995). Do antidepressants stabilize mood through actions on hypothalamic-pituitary-adrenocortical system? Trends in Neurosciences, 18, 6–11.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, J., Hohagen, F., Gimmel, E., Bruns, F., Lis, S., Krieger, S., Ambach, W., Guthmann, A., Grunze, H., Fritsch-Montero, R., Weissbach, A., Ganter, U., Frommberger, U., Riemann, D., & Berger, M. (1995). Induction of cytokine synthesis and fever suppresses REM sleep and improves mood in patients with major depression. Biological Psychiatry, 38, 611–621.

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson, B. O., Zhu, J., Thorell, L. H., Olsson, T., Link, H., & Walinder, J. (1992). Effects of zimeldine and its metabolites, clomipramine, imipramine, and maprotiline in experimental allergic neuritis in lewis rats. Journal of Immunology, 39, 109–112.

    CAS  Google Scholar 

  • Besedovsky, H. O. & Del Rey, A. (1996). Immune-neuro-endocrine interactions: facts and hypotheses. Endocrine Reviews, 17, 64–102.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi, M., Rossoni, G., Sacerdote, P., Panerai, A. E., & Berti, F. (1995). effects of clomipramine and fluoxetine on subcutaneous carrageenin-induced inflammation in the rat. Inflammation Research, 44, 466–469.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi, M., Sacerdote, P., & Panerai, A. E. (1994a). Fluoxetine reduces inflammatory edema in the rat: involvement of the pituitary-adrenal axis. European Journal of Pharmacology, 263, 81–84.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi, M., Sacerdote, P., & Panerai, A. E. (1994b). Clomipramine differently affects inflammatory edema and pain in the rat. Pharmacology Biochemestry and Behavior, 4, 1037–1040.

    Article  Google Scholar 

  • Blier, P. & de Montigny, C. (1994). Current advances and trends in the treatment of depression. Trends in Pharmacological Sciences, 15, 220–226.

    Article  CAS  PubMed  Google Scholar 

  • Charles, G., Machowski, R., Brohee, D., Wilmotte, J., & Kennes, B. (1992). Lymphocyte subsets in major depressive patients. Influence of anxiety and corticoadrenal overdrive. Neuropsychobiology, 25, 94–98.

    Article  CAS  PubMed  Google Scholar 

  • Connor, T. J. & Leonard, B. E. (1998). Depression, stress, and immunological activation: the role of cytokines in depressive disorders. Life Sciences, 62, 583–606.

    Article  CAS  PubMed  Google Scholar 

  • Cosyns, P., Maes, M., Vandewoude, M., Stevens, W. J., De Clerck, L. S., & Schotte, C. (1989). Impaired mitogen-induced lymphocyte responses and the hypothalamic-pituitary-adrenal axis in depressive disorders. Journal of Affective Disorders, 16, 41–48.

    Article  CAS  PubMed  Google Scholar 

  • Darko, D. F., Lucas, A. H., Gillin, J. C, Risch, S. C., Golshan, S., Hamburger, R. N., Silverman, M. B., & Janowsky, D. S. (1988). Cellular immunity and the hypothalamic-pituitary axis in major affective disorder: a preliminary study. Psychiatry Research, 25, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Deleplanque, B. & Neveu, P. J. (1995). Immunological effects of neuropsychotropic substances. In M. Guenounou (Ed.). Forum on immunomodulators (pp. 287–302). Paris: John Libbey Eurotext.

    Google Scholar 

  • Delrue, C, Deleplanque, B., Rouge-Pont, F., Vitiello, S., & Neveu, P. J. (1994), Brain monoaminergic, neuroendocrine, and immune responses to an immune challenge in relation to brain and behavioral lateralization. Brain Behavior and Immunity, 8, 137–152.

    Article  CAS  Google Scholar 

  • Descotes, J., Tedone, R., & Evreux, J. C. (1985). Different effects of psychotropic drugs on delayed hypersensitivity responses in mice. Journal of Neuroimmunology, 9, 81–85.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, A. J. (1992). Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: comparison with interleukin-1. Journal of Pharmacology and Experimental Therapeutics, 261, 964–969.

    CAS  PubMed  Google Scholar 

  • Eisen, J. N., Irwin, J., Quay, J., & Livnat, S. (1989). The effect of antidepressants on immune function in mice. Bioliogical Psychiatry, 26, 805–817.

    Article  CAS  Google Scholar 

  • Frommberger, U. H., Bauer, J., Haselbauer, P., Fräulin, A., Riemann, D., & Berger, M. (1997). Interleukin-6-(IL-6) plasma levels in depression and schizophrenia: comparison between the acute state and after remission. European Archives of Psychiatry and Clinical Neuroscience, 247, 228–233.

    Article  CAS  PubMed  Google Scholar 

  • Garver, D. L. & Davis, J. M. (1979). Biogenic amine hypothesis of affective disorders. Life Sciences, 24, 283–394.

    Article  Google Scholar 

  • Goldman, L. S. (1994). Successful treatment of interferon alfa-induced mood disorder with nortriptyline. Psychosomatics, 35, 412–413.

    Article  CAS  PubMed  Google Scholar 

  • Guelfi, J. D. (1992). Efficay of tianeptine in comparative trials versus reference antidepressants. An overview. British Journal of Psychiatry, 160, 72–75.

    Article  Google Scholar 

  • Hickie, I. (1990). Is there immune dysfunction in depressive disorders? Psychololical Medecine, 20, 755–761.

    Article  CAS  Google Scholar 

  • Hollister, L. E. (1986). Current antidepressants. Annual Review of Pharmacology and Toxicology, 26, 23–37.

    Article  CAS  PubMed  Google Scholar 

  • Holsboer, F., Bardeleben, U. von, Gerken, A., Stalla, G. K., & Muller, O. A. (1984). Blunted corticotropin and normal cortisol response to human corticotropin-releasing factor in depression. New England Journal of Medecine, 311, 1127–1132.

    CAS  Google Scholar 

  • Irwin, M. R., Daniels, M., Bloom, E., Smith, T. L., & Weiner, H. (1987). Life events, depressive symptoms, and immune function. American Journal of Psychiatry, 144, 431–441.

    Google Scholar 

  • Irwin, M., Patterson, T., Smith, T. L., Caldwell, C., Brown, S. A., Gillin, J. C, & Grant, I. (1990). Reduction of immune function in life stress and depression. Biological Psychiatry, 27, 22–30.

    Article  CAS  PubMed  Google Scholar 

  • Janscar, S. & Leonard, B. E. (1983). The olfactory bulbectomized rat as a model of depression. In: Frontiers in Neuropsychiatric ressearch (E. Usdin, M. Goldstein, A. J. Friedhoff, A. Geogatas, Eds.) pp 357–372, MacMillan, New-York

    Google Scholar 

  • Jeanningros, R., Mazzola, P., Azorin, J. M., Samuelian-Massa, C., & Tissot, R. (1991). B-adrenoreceptor density of intact mononuclar leukocytes in subgroups of depressive disorders. Biological Psychiatry, 29, 789–798.

    Article  CAS  PubMed  Google Scholar 

  • Joyce, P. R., Hawes, C. R., Mulder, R.T., Sellman, J. D., Wilson, D. A., & Boswell, D. R. (1992). Elevated levels of acute phase plasma proteins in major depression. Biological Psychiatry, 32, 1035–1041.

    Article  CAS  PubMed  Google Scholar 

  • Katon, W. & Sullivan, M. D. (1990). Depression and chronic medical illness. Journal of Clinical Psychiatry, 57, 3–11.

    Google Scholar 

  • Kent, S., Bluthé, R. M., Kelley, K. W., & Dantzer, R. (1992). Sickness behavior as a new target for drug development. Trends in Pharmacological Sciences, 13, 24–28.

    Article  CAS  PubMed  Google Scholar 

  • Kronfol, Z. & House, J. D. (1985). Depression, hypothalamic-pituitary-adrenocortical activity, and lymphocyte function. Psychopharmacology Bulletin, 21, 476–478.

    CAS  PubMed  Google Scholar 

  • Kronfol, Z., Silva, J., Greden, J., Dembinski, S., Gardner, R., & Carroll, B. J. (1983). Lymphocyte function in depressive illness. Life Sciences, 33, 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Krulik, R., Sliva, D., Sikora, J., Farska, I., & Fuksova, K. (1988). Tricyclic antidepressant binding to lymphocyte membranes and changes during depression. European Journal of Pharmacology, 149, 357–361.

    Article  CAS  PubMed  Google Scholar 

  • Kubera, M., Symbirtsev, A., Basta-Kaim, A., Borycz, J., Roman, A., Papp, M., & Claesson, M. (1996). Effect of chronic treatment with imipramine on interleukin 1 and interleukin 2 production by splenocytes obtained from rats subjected to a chronic mild stress model of depression. Polish Journal of Pharmacology, 48, 503–506.

    CAS  PubMed  Google Scholar 

  • Landmann, R., Schaub, B., Link, S., & Wacker, H. R. (1997). Unaltered monocyte function in patients with major depression before and after three months of antidepressive therapy. Biological Psychiatry, 41, 675–681.

    Article  CAS  PubMed  Google Scholar 

  • Layé, S., Parnet, P., Goujon, E., & Dantzer, R. (1994). Peripheral administration of lipopolisaccharide induces the expression of cytokine transcripts in the brain and pituitary in mice. Molecular Brain Research, 27, 157–162.

    Article  PubMed  Google Scholar 

  • Levenson, J. L. & Fallon, H. J. (1993). Fluoxetine treatment of depression caused by interferon-α. American Journal of Gastroenterology, 88, 760–761.

    CAS  PubMed  Google Scholar 

  • Linthorst, A. C. E., Flachskamm, G, Holsboer, F., & Reul, J. M. H. M. (1995). Intraperitoneal administration of bacterial endotoxin enhances noradrenergic neurotransmission in the rat preoptic area: relationship with body temperature and hypothalamic-pituitary-adrenocortical axis activity. European Journal of Neuroscience, 7, 2418–2430.

    Article  CAS  PubMed  Google Scholar 

  • Maes, M., Bosmans, E., Suy, E., Vandervorst, C., Dejonckheere, C., Minner, B., & Raus, J. (1991). Depression-related disturbances in mitogen-induced lymphocyte responses, interleukin-lβ, and soluble interleukin-2-receptor production. Acta Psychiatrica Scandinavia, 84, 379–386.

    Article  CAS  Google Scholar 

  • Maes, M. (1995). Evidence for an immune response in major depression: a review and hypothesis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 19, 11–38.

    Article  CAS  Google Scholar 

  • Maes, M., Bosnians, E., Meltzer, H. Y., Scharpé, S., & Suy, E. (1993a). Interleukin-lβ: a putative mediator of HPA axis hyperactivity in major depression? American. Journal of Psychiatry, 150, 1189–1193.

    Article  CAS  PubMed  Google Scholar 

  • Maes, M., Bosmans, E., Suy, E., Minner, B., & Raus, J. (1989). Impaired lymphocyte stimulation by mitogens in severely depressed patients. A complex interface with HPA-axis hyperfonction, noradrenergic activity, and the ageing process. British. Journal of Psychiatry, 155, 793–798.

    Article  CAS  PubMed  Google Scholar 

  • Maes, M., Lambrechts, J., Bosmans, E., Jacobs, J., Suy, E., Vandervorst, C., De Jonckheere, C., Minner, B., & Raus, J. (1992). Evidence for a systemic immune activation during depression: results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining. Psychological Medecine, 22, 45–53.

    Article  CAS  Google Scholar 

  • Maes, M., Scharpé, S., Meltzer, H. Y., Bosmans, E., Suy, E., Calabrese, J., & Cosyns, P. (1993b). Relationship between interleukin-6 activity, acute phase proteins, and function of the hypothalamic-pituitary-adrenal axis in severe depression. Psychiatry Research, 49, 11–27.

    Article  CAS  PubMed  Google Scholar 

  • Maes, M., Smith, R., & Scharpe, S. (1995). The monocyte-T-lymphocyte hypothesis of major depression. Psychoneuroendocrinology, 20, 111–116.

    Article  CAS  PubMed  Google Scholar 

  • Maier, S. F. & Watkins, L. R. (1995). Intracerebroventricular interleukin-1 receptor antagonist blocks the enhancement of fear conditioning and interference with escape produced by inescapable shock. Brain Research, 695, 279–282.

    Article  CAS  PubMed  Google Scholar 

  • McAdams, C. & Leonard, B. E. (1993). Neutrophil and monocyte phagocytosis in depressed patients. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 17, 971–984.

    Article  CAS  Google Scholar 

  • McDonald, E. M., Mann, A. H., & Thomas, H. C. (1987). Interferon as mediatiors of psychiatric morbidity. Lancet, 2, 1175–1178.

    Article  CAS  PubMed  Google Scholar 

  • Meijer, A., Zakay-Rones, Z., & Morag, A. (1988). Post influenza psychiatric disorder in adolescents. Acta Psychiatica Scandinavia, 78, 176–181.

    Article  CAS  Google Scholar 

  • Merendino, R. A., Mancuso, G., Tomasello, F., Gazzara, D., Cusumano, V., Chiliemi, S., Spadaro, P., & Mesiti, M. (1994). Effects of lithium carbonate on cytokine production in patients affected by breast cancer. Journal of Biological Regulators and Homeostatic Agents, 8, 88–91.

    CAS  PubMed  Google Scholar 

  • Miller, A. H., Asnis, G. M., Lackner, C., Halbreich, U., & Norin, A. J. (1991). Depression, natural killer cell activity, and cortisol secretion. Biological Psychiatry, 29, 878–886.

    Article  CAS  PubMed  Google Scholar 

  • Mitchinson, M. & Ball, R. (1987). Macrophages and atherogenesis. Lancet, 1, 146–148.

    Article  Google Scholar 

  • Mohr, D. C., Goodkin, D. E., Likosky, W., Gatto, N., Baumann, K. A., & Rudick, R. A. (1997). Treatment of depression improves adherence to interferon beta-1β therapy for multiple sclerosis. Archives of Neurology, 54, 531–533.

    Article  CAS  PubMed  Google Scholar 

  • Muller, N. (1995). Psychoneuroimmunology: implications for the drug treatment of psychiatric disorders. Central Nervous System Drugs, 4, 125–140.

    Google Scholar 

  • Munck, A., Guyre, P. M., & Meltzer, M. S. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Reviews, 1, 25–44.

    Article  Google Scholar 

  • Nerozzi, D., Santoni, A., Bersani, G., Magnani, A., Bressan, A., Pasini, A., Antonozzi, I., & Frajese, G. (1989). Reduced natural killer cell activity in major depression: neuroendocrine implications. Psychoneuroendocrinology, 14, 295–301.

    Article  CAS  PubMed  Google Scholar 

  • Perini, G. I., Zara, M., Carraro, C., Tosin, C., Gava, F., Santucci, M. G., Valverde, S., & De Franchis, G. (1995). Psychoimmunoendocrine aspects of panic disorder. Human Psychopharmacology, 10, 461–465.

    Article  Google Scholar 

  • Rabkin, J. G. & Harrison, W. M. (1990). Effect of imipramine on depression and immune status in a sample of men with HIV infection. American Journal of Psychiatry, 147, 495–497.

    Article  CAS  PubMed  Google Scholar 

  • Sacerdote, P., Bianchi, M., & Panerai, A. E. (1997). In vivo and in vitro clomipramine treatment decreases the migration of macrophages in the rat. European Journal of Pharmacology, 319, 287–290.

    Article  CAS  PubMed  Google Scholar 

  • Sacerdote, P., Bianchi, M., & Panerai, A. E. (1994). Chlorimipramine and nortriptyline but not fluoxetine and fluvoxamine inhibit human polymorphonuclear cell chemotaxis in vitro. General Pharmacol, 25, 409–412.

    Article  CAS  Google Scholar 

  • Schleifer, S. J., Keller, S. E., Bond, R. N., Cohen, J., & Stein, M. (1989). Major depressive disorder and immunity: role of age, sex, severity, and hospitalisation. Archives of General Psychiatry, 46, 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Schleifer, S. J., Keller, S. E., Bartlett, J. A., Eckholdt, H. M., & Delaney, B. R. (1996). Immunity in young adults with major depressive disorder. American Journal of Psychiatry, 153, 477–482.

    Article  CAS  PubMed  Google Scholar 

  • Seidel, A., Arolt, V., Hunstiger, M., Rink, L., Behnisch, A., & Kirchner, H. (1996). Major depressive disorder is associated withe elevated monocyte counts. Acta Psychiatrica Scandinavia, 94, 198–204.

    Article  CAS  Google Scholar 

  • Seidel, A., Arolt, V., Hunstiger, M., Rink, L., Behnisch, A., & Kirchner, H. (1995). Cytokine production and serum proteins in depression. Scandinavian Journal of Immunology, 41, 534–538.

    Article  CAS  PubMed  Google Scholar 

  • Shintani, F, Nakaki, T, Kanba, S., Sato, K., Yagi, G., Shiozawa, M., Aiso, S., Kato, R., & Asai, M. (1995). Involvement of interleukin-1 in immobilization stress-induced increase in plasma adrenocorticotropic hormone and in release of hypothalamic monoamines in the rat. Journal of Neuroscience, 15, 1961–1970.

    Article  CAS  PubMed  Google Scholar 

  • Sluzewska, A., Rybakowski, J. K., Laciak, M., Mackiewicz, A., Sobieska, M., & Wiktorowicz, K. (1995a). Inter-leukin-6 serum levels in depressed patients before and after treatment with fluoxetine. Annals of the. New York Academy of Sciences, 762, 474–471.

    Article  CAS  PubMed  Google Scholar 

  • Sluzewska, A., Rybakowski, J. K., Sobieska, M., Bosmans, E., Pollet, H., & Wiktorowicz, K. (1995b). Increased levels of alpha-1-acid glycoprotein and interleukin-6 in refractory depression. Depression, 3, 170–175.

    Article  Google Scholar 

  • Smith, R. S. (1991). The macrophage theory of depression. Medecine Hypotheses, 35, 298–306.

    Article  CAS  Google Scholar 

  • Sommer, N., Löschmann, P.-A., Northoff, G. H., Weiler, M., Steinbrecher, A., Steinbach, J. P., Lichtenfels, R., Meyerman, R., Riethmüller, A., Fontana, A., Dichgans, J., & Martin, R. (1995). The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis. Nature Medecine, 1, 244–248.

    Article  CAS  Google Scholar 

  • Song, C. & Leonard, B. E. (1994). An acute phase protein response in the olfactory bulbectomized rat: effect of sertraline treatment. Medical Science Research, 22, 313–314.

    CAS  Google Scholar 

  • Stein, M., Miller, A. H., & Trestman, R. L. (1991). Depression, the immune system, and health and illness: findings in search of meaning. Archives of General Psychiatry, 48, 171–177.

    Article  CAS  PubMed  Google Scholar 

  • Sundar, S. K., Cierpial, M. A., Kilts, C., Ritchie, J. C., & Weiss, J. M. (1990). Brain IL-1 induced immunosup-pression occurs through activation of both pituitary-adrenal axis and sympathetic nervous system by corticotropin-releasing factor. Journal of Neuroscience, 10, 3701–3706.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, E., Shintani, F., Kanba, S., Asai, M., & Nakaki, T. (1996). Induction of interleukin-lβ and interleukin-1 receptor antagonist mRNA by chronic treatment with various psychotropics in widespread area of rat brain. Neuroscience Letters, 215, 201–204.

    Article  CAS  PubMed  Google Scholar 

  • Targum, S. D., Marshall, L. E., Ficshman, P., & Martin, D. (1989). Lymphocyte subpopulations in depressed elderly women. Biological Psychiatry, 26, 581–589.

    Article  CAS  PubMed  Google Scholar 

  • Udelman, D. L. & Udelman, H. D. (1985). A preliminary report on anti-depressant therapy and its effects on hope and immunity. Social Science and Medicine, 20, 1069–1072.

    Article  CAS  PubMed  Google Scholar 

  • Ur, E., White, P. D., & Grossman, A. (1992). Hypothesis: cytokines may be activated to cause depressive illness and chronique fatigue syndrome. European Archives of Psychiatry and Clinical Neuroscience, 241, 317–322.

    Article  CAS  PubMed  Google Scholar 

  • Van Riezen, H. & Leonard, B. E. (1990). Effects of psychotropic drugs on the behavior and neurochemistry of olfactory bulbectomized rats. Pharmacology and Therapeutics, 47, 21–34.

    Article  PubMed  Google Scholar 

  • Weizman, R., Laor, N., Podliszewski, E., Notti, I., Djaldetti, M., & Bessler, H. (1994). Cytokine production in major depressed patiens before and after clomipramine treatment. Biololical Psychiatry, 35, 42–47.

    Article  CAS  Google Scholar 

  • Xia, Z., De Pierre, J. W, & Nassberger, L. (1996). Tricyclic antidepressants inhibit IL-6, IL-1 beta, and TNF-alpha release in human blood monocytes and IL-2 and interferon-gamma in T cells. Immunopharmacology, 34, 27–37.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, L. & Eneroth, P. (1995). Tricyclic antidepressants inhibit human natural killer cells. Toxicology and Applied Pharmacology, 137, 157–162.

    Article  Google Scholar 

  • Yirmiya, R. (1996). Endotoxin produces a depresive-like episode in rats. Brain Research, 711, 163–174.

    Article  CAS  PubMed  Google Scholar 

  • Young, S. N., Smith, S. E., Pihl, R. O., & Ervin, F. R. (1985). Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology, 87, 173–177.

    Article  CAS  PubMed  Google Scholar 

  • Zalcman, S., Green-Johnson, J. M., Murray, L., Nance, D. M., Dyck, D., Anisman, H., & Greenberg, A. H. (1994). Cytokine-specific central monoamine alterations induced by interleukin-1,-2, and-6. Brain Research, 643, 40–49.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J., Bengtsson, B. O., Mix, E., Thorell, L. H., Olsson, T., & Link, H. (1994). Effect of monoamine reup-take inhibiting antidepressants on major histocompatibility complex expression on macrophages in normal rats and rats with experimental allergic neuritis (EAN). Immunopharmacology, 27, 225–244.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Neveu, P.J., Castanon, N. (1999). Is There Evidence for an Effect of Antidepressant Drugs on Immune Function?. In: Dantzer, R., Wollman, E.E., Yirmiya, R. (eds) Cytokines, Stress, and Depression. Advances in Experimental Medicine and Biology, vol 461. Springer, New York, NY. https://doi.org/10.1007/978-0-585-37970-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-37970-8_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-306-46135-4

  • Online ISBN: 978-0-585-37970-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics