Stress, Depression, and The Role of Cytokines

  • B. E. Leonard
  • Cai Song
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 461)


The concept of an inter-relationship between the psychological state of a depressed patient and the immune status can be traced back to Galen who, in 200 AD, suggested that melancholic women are more susceptible to breast cancer than sanguine women (Leonard, 1987). Over the past 15 years it has become apparent that the central nervous system (CNS) and the immune system are intimately connected and that a functional bidirectional communication exists between these systems (Ballieux, 1992). Indeed, it may be possible to conceive of the nervous, endocrine, and immune systems as being part of a single integrated network rather than three separate systems. The study of the interactions between these systems has given rise to the new discipline of psychoimmunology, a term first coined by Ader, Feiten, and Cohen in 1987.


Immune Function Depressed Patient Acute Phase Protein Natural Killer Cell Activity Psychosomatic Medicine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ader, R., Feiten, A., & Cohen, N. (1987). Brain, Behavior, Immunity. Brain, Behavior, and Immunity. 1987 (1) 1–6.Google Scholar
  2. Ader, R. & Cohen, N. (1991). Conditioning the immune system. Netherlands Journal of Medicine, 39, 263–276.PubMedGoogle Scholar
  3. Almawi, W. Y., Beyhum, H. N., Rahme, A. A., & Rieder, M. J. (1996). Regulation of cytokine and cytokine receptor expression by glucocorticoids. Journal of Leucocyte Biology, 60, 5563–5572.Google Scholar
  4. Arber, N., Berliner, S., & Tamir, A. (1991). The state of leucocyte adhesiveness/aggregation in the peripheral blood: a new independent marker of stress. Stress Medicine, 7, 75–78.CrossRefGoogle Scholar
  5. Baldessarini, R. J. (1975). The basis for amine hypothesis in affective disorder: a critical evaluation. Archives of General Psychiatry, 32, 1087–1093.PubMedGoogle Scholar
  6. Ballieux, R. E. (1992). Bidirectional communication between the brain and the immune system. European Journal of Clinical Investigation, 22,1, 6–9.PubMedGoogle Scholar
  7. Banks, W. A., Kastin, A. J., & Durham, D. A. (1989). Bidirectional transport of interleukin-1 alpha across the blood brain barrier. Brain Research Bulletin, 23, 77–84.CrossRefGoogle Scholar
  8. Bateman, A., Singh, A., Krai, T., & Solomon, S. (1989). The immune-hypothalamic-pituitary adrenal axis. Endocrine Reviews, 10, 92–112.PubMedGoogle Scholar
  9. Baumann, H. & Gauldie, J. (1994). The acute phase response. Immunology Today, 15, 74–80.PubMedCrossRefGoogle Scholar
  10. Blotta, M. H. (1997). Corticosteroids inhibit IL-12 production in human monocytes and enhance their capacity to induce IL-4 synthesis in CD4+ lymphocytes. Journal of Immunology, 158, 5589–5595.Google Scholar
  11. Borysenko, M. & Borysenko, J. (1982). Stress, behaviour and immunity: animal models and mediating mechanisms. General Hospital Psychiatry, 4, 59–67.PubMedCrossRefGoogle Scholar
  12. Bost, K. L. (1988). Hormone and neuropeptide receptors on mononuclear leucocytes. Progress Allergy, 43, 68–83.Google Scholar
  13. Cohen, J. J. & Crnic, L. S. (1982). Glucocorticoids, stress, and the immune response. In D. R. Webb (Ed.). Immunopharmacology and the Regulation of Leucocyte Function. New York, Marcel Dekker, pp. 61–91.Google Scholar
  14. Connor, T. J. & Leonard, B. E. (1998). Depression, stress, and immunological activation: the role of cytokines in depressive disorders. Life Sciences, 62, 583–606.PubMedCrossRefGoogle Scholar
  15. Cooper, C. L. (1984). The social-psychological pressors to cancer. Journal of Human Stress, 10, 4–11.PubMedGoogle Scholar
  16. Cox, T. M. & MacKay, C. (1982). Psychosocial factors and psychophysiological mechanism in the aetiology and development of cancers. Social Science and Medicine, 16, 381–396.PubMedCrossRefGoogle Scholar
  17. Crestani, F., Seguy, F., & Dantzer, R. (1991). Behavioural effects of peripherally injected interleukin-1: role of prostaglandin. Brain Research, 542, 330–335.PubMedCrossRefGoogle Scholar
  18. Croiset, G., Heijnen, C. J., Veldhuis, H. D., de Wied, D., & Ballieux, R. E. (1987). Modulation of the immune response by emotional stress. Life Sciences, 40, 775–782.PubMedCrossRefGoogle Scholar
  19. Crook, T. H. & Miller, N. W. (1985). The challenge of Alzheimer’s disease. American Psychology, 40, 1245–1250.CrossRefGoogle Scholar
  20. Cunnick, J. E., Lysle, D. T, Aronfield, A., & Rabin, B. S. (1991). Stressor-induced changes in mitogenic activity are not associated with decreased IL-2 production or changes in lymphocyte subsets. Clinical Immunology and Immunopathology, 60, 419–429.PubMedCrossRefGoogle Scholar
  21. Cunningham, E. T. & de Souza, E. B. (1996). Interleukin 1 receptors in the brain and endocrine tissue. Immunology Today, 14, 171–176.Google Scholar
  22. Dantzer, R. (1994). How do cytokines say hello to the brain? Neural versus humoral mediation. European Cytokine Network, 5, 271–273.PubMedGoogle Scholar
  23. Dantzer, R., Bluthe, R. M., Aubert, A., Goodall, G., Bret-Dibat, J. L., Kent, S., Goujon, E., Laye, S., Parnet, P., & Kelley, K. W. (1996). Cytokine actions on behaviour. In Cytokines in the Nervous System. (Ed. Rothwell NJ), Chapman and Hall, London, 117–140.Google Scholar
  24. Dark, K., Peeke, H. V. S., Ellman, G., & Salfi, M. (1987). Behaviourally conditioned histamine release. Annals of the New York Academy of Sciences, 496, 578–582.PubMedCrossRefGoogle Scholar
  25. Davidson, L. M. & Baum, A. (1986). Chronic-stress and post traumatic stress disorder. Journal of Consultants in Clinical Psychology, 54, 303–308.CrossRefGoogle Scholar
  26. Daynes, R. A. & Araneo, B. A. (1989). Contrasting effects of glucocorticoids in the capacity of T cells to produce the growth factors interlukin 2 and interleukin 4. European Journal of Immunolgy. 19, 2319–2325.CrossRefGoogle Scholar
  27. Dinan, T. (1994). Glucocorticoids and the genesis of depressive illness—a psychobiological model. British Journal of Psychiatry, 164, 365–371.PubMedGoogle Scholar
  28. Dohmus, J. E. & Metz, A. (1991). Stress mechanisms of immunosuppression. Veterinary Immunology and Immunopathology, 30, 89–109.CrossRefGoogle Scholar
  29. Farrar, W. L. (1988). Evidence for the common expression of neuroendocrine hormones and cytokines in the immune and central nervous system. Brain Behaviour and Immunity, 2, 322–327.CrossRefGoogle Scholar
  30. Fiore, J., Becker, J., & Cooppel, D. B. (1983). Social network interactions: a buffer or a stress? American Journal of Communications in Psychology, 11, 423–429.CrossRefGoogle Scholar
  31. Fleshner, M., Bellgrau, D., Watkins, L. R., Laudenslager, M. L., & Maier, S. F. (1995). Stress induced reduction in the rat mixed lymphocyte reaction is due to macrophages and not to changes in T cell phenotypes. Journal of Neuroimmunology, 56, 45–52.PubMedCrossRefGoogle Scholar
  32. Glaser, R., Kiecolt-Glaser, J. K., & Stout, J. C. (1985). Stress related impairments in cellular immunity. Psychiatric Research, 16, 233–239.CrossRefGoogle Scholar
  33. Glaser, R., Rice, T., & Speicher, C. E. (1986). Stress depresses interferon production by leucocytes concomitant with a decrease in natural killer cell activity. Behavioural Neuroscience, 100, 675–678.CrossRefGoogle Scholar
  34. Gottesfeld, A. & Liehr, J. G. (1987). Chronic exposure to random restraint stress retards the development of oestrogen-induced pituitary prolactinoma in rats. Neuroscience Letters, 80, 44–48.PubMedCrossRefGoogle Scholar
  35. Gutierrez, E. G., Banks, W. A., & Kastin, A. J. (1993). Murine tumour necrosis factor alpha is transported from blood to brain in the mouse. Journal of Neuroimmunology, 47, 169–176.PubMedCrossRefGoogle Scholar
  36. Hamblin, A. S. (1994). Cytokines. In Textbook of Immunopharmacology. 3rd Edition. M. M. Dale, M. M. J. C. Foreman, T. D. Fan (Eds.), Blackwell Scientific Publication, Oxford, pp. 179–192.Google Scholar
  37. Healy, D., Calvin, J., Whitehouse, A. M., White, W., Wilton-Cox, H., Theodorou, A. E., Lawrence, K. M., Hawton, R. W, & Paykel, E. S. (1991). Alpha-1-acid glycoprotein in major depressive and eating disorders. J. Affective Disorders (22), 13–20.Google Scholar
  38. Hellerstein, M. K., Meydani, S. N., Meydani, M., Wu, K., & Dinarello, C. A. (1989). Interleukin-1 induces anorexia in the rat. Journal of Clinical Investigations, 84, 28–235.Google Scholar
  39. Hopkins, S. J. & Rothwell, N. J. (1995). Cytokines in the nervous system I: Expression and recognition. Trends in Neuroscience, 18, 83–88.CrossRefGoogle Scholar
  40. Irwin, M. (1995). Psychoneuroimmunology and depression In Psychopharmacology. The Fourth Generation of Progress. (Eds. Bloom, FE, Kupfer, DJ). Raven Press, New York, pp. 983–998.Google Scholar
  41. Irwin, M., Lacher, U. B., & Caldwell, C. (1992). Depression and reduced natural killer cytotoxicity: a longitudinal study of depressed patients and control subjects. Psychological Medicine, 22, 1045–1050.PubMedGoogle Scholar
  42. Katila, H., Rimon, R., Cantwell, K., Appelberg, B., & Nikkila, H. (1991). Interferon productions in acute psychiatric disorder. Psychiatric and Biological Factors, 16, 191–196.Google Scholar
  43. Keller, S. E., Weiss, J. M., Schleifer, S. J., Miller, N. E., & Stein, M. (1981). Suppression of immunity by stress: effect of a gradient series of Stressors on lymphocyte stimulation in the rat. Science, 213, 1397–1400.PubMedCrossRefGoogle Scholar
  44. Kiecolt-Glaser, J. K., Garner, W., & Speicher, C. E. (1984). Psychosocial modifiers of immune competence in medical students. Psychosomatic Medicine, 46, 7–14.PubMedGoogle Scholar
  45. Kiecolt-Glaser, J. K., Fisher, L., & Ogrocki, P. (1987). Marital quality, marital disruption, and immune function. sychosomatic Medicine, 49, 13–34.Google Scholar
  46. Kiecolt-Glaser, J. K. & Glaser, R. (1988). Methodological issue in behavioural immunology research in humans. Brain Behaviour and Immunity, 2, 67–78.CrossRefGoogle Scholar
  47. Kiecolt-Glaser, J. K., Dura, J. R., Speicher, C.E., Trask, O.J., & Glaser, R. (1991). Spousal caregivers of dementia victims: longitudinal changes in immunity and health. Psychosomatic Medicine, 53, 345–362.PubMedGoogle Scholar
  48. Komaki, G., Arimura, A., & Koves, K. (1991). Effect of intraveous injection of IL-IB on PGE2 levels in several brain areas as determined by microdialysis. Endocrinology and Metabolism, 143, 220–227.Google Scholar
  49. Kronfol, Z. & House, J. D. (1985). Depression, hypothalamic pituitary adrenal cortical activity and lymphocyte function. British Journal of Psychiatry, 148, 70–73.Google Scholar
  50. Kronfol, Z. & House, J. D. (1989). Depression, HPA activity, and lymphocyte function. Act a Psychiatrica Scandinavica, 80, 142–147.CrossRefGoogle Scholar
  51. Lavicky, J. & Dunn, A. J. (1995). Endotoxin administration stimulates cerebral catecholamine release in hypothalamus and prefrontal cortex in freely moving rats as assessed by microdialysis. Journal of Neuroscience Research, 40, 407–413.PubMedCrossRefGoogle Scholar
  52. Leonard, B. E. (1987). Stress, the immune system and mental illness. Stress Medicine, 3, 257–258.CrossRefGoogle Scholar
  53. Leonard, B. E. (1990). Stress and the immune system: immunological aspects of depressive illness. International Reviews of Psychiatry, 2, 321–330.CrossRefGoogle Scholar
  54. Levy, S., Herberman, R., Lippman, M., & d’Angelo, T. (1987). Correlation of stress factors with sustained suppression of NKC activity and predicted prognosis in patients with breast cancer. Journal of Clinical Oncology, 5, 348–353.PubMedGoogle Scholar
  55. Linkowski, P., Mendlewicz, J., & Kerklofs, M. (1987). 24hr profiles of ACTH, cortisol, and growth hormone in major depressed illness: effect of AD treatment. Journal of Clinical Endocrinology and Metabolism, 65, 141–146.PubMedCrossRefGoogle Scholar
  56. McAdams, C. & Leonard, B. E. (1993). Neutrophil and monocyte phagocytosis in depressed patients. Progress in Neuropsychopharmacology and Biological Psychiatry. 17, 971–984.CrossRefGoogle Scholar
  57. Maes, M., Smith, R., & Scharpe, S. (1995). The monocyte-T-lymphocyte hypothesis of major depression. Psychoneuroendocrinology, 20, 111–116.PubMedCrossRefGoogle Scholar
  58. Maes, M., Planken, V. D., & Stevens, W. J. (1992). Leucocytosis, monocytosis, and neutrophilia: hallmarks of severe depression. Journal of Psychiatric Research, 261, 125–134.CrossRefGoogle Scholar
  59. Maes, M., Smith, R. S., Christophe, A., Cosyns, P., Desnyder, R., & Melzer, H. Y. (1996). Fatty acid composition in major depression: decreased omega 3 fractions in cholesteryl esters and increased C20: 4W6/C20:5W3 ratio in cholesteryl esters and phospholipids. Journal of Affective Disorders, 38, 35–46.PubMedCrossRefGoogle Scholar
  60. Maes, M. & Smith, R. S. (1998). Fatty acids, cytokines, and major depression. Biological Psychiatry, 43, 313–314.PubMedCrossRefGoogle Scholar
  61. Maier, S. F., Watkins, L. R., & Fleshner, M. (1994). Psychoneuroimmunology—the interface between behaviour, brain, and immunity. American Psychologist, 49, 1004–1017.PubMedCrossRefGoogle Scholar
  62. Martin, R. C, Cloninger, R., Guze, S., & Clayton, P. (1985). Mortality in a follow-up to 500 psychiatric outpatients. I. Total mortality and II cause specific mortality. Archives of General Psychiatry, 47–54 and 58–66.Google Scholar
  63. Mason, J. W. (1971). A re-evaluation of the concept of “non-specificity” in stress theory. Journal of Psychiatric Research, 8, 123–140.CrossRefGoogle Scholar
  64. Mefford, I. N. & Heyes, M. P. (1990). Increased biogenic amine release in mouse hypothalamus following immunological challenge: antagonism by indomethacin. Journal of Neuroimmunology, 27, 55–62.PubMedCrossRefGoogle Scholar
  65. Miller, A. H., Asmis, G. M., & Lackner, C. (1991). Depression, natural killer cell activity and cortisol secretion. Biological Psychiatry, 29, 878–886.PubMedCrossRefGoogle Scholar
  66. Miller, A. H., Spencer, R. L., McEwen, B. S., & Stein, M. (1993). Depression, adrenal steroids, and the immune system. Annuals of Medicine, 25, 481–487.Google Scholar
  67. Monjan, A. A. & Collector, M. I. (1977). Stress-induced modulation of immune response. Science, 196, 307–308.PubMedCrossRefGoogle Scholar
  68. Mormede, P., Dantzer, R., Michaul, B., Kelly, K., & Le Maoal, M. (1988). Influence of Stressor predictability and behavioural control on lymphocyte reactivity, antibody response and neuroendocrine activation in rats. Physiology and Behaviour, 43, 577–583.CrossRefGoogle Scholar
  69. Munck, A. & Naray-Fejes-Toth, A. (1994). Glucocorticoids and stress: permissive and suppressive actions. Annals of the New York Academy of Sciences, 746, 115–130.PubMedCrossRefGoogle Scholar
  70. Nathan, C. F. (1987). Secretory products of macrophages. Journal of Clinical Investigation, 79, 319–324.PubMedGoogle Scholar
  71. Nemeroff, C. B., Widlerlov, E., & Bissette, G. (1984). Elevated concentration of CSF-CRF-like immunoreactivity in depressed patients. Science, 226, 1342–1348.PubMedCrossRefGoogle Scholar
  72. O’Neill, B. & Leonard, B. E. (1990). Abnormal zymosan-induced neutrophil chemiliuminescence as a marker of depression. Journal of Affective Disorders, 19, 265–272.PubMedCrossRefGoogle Scholar
  73. Owens, M. J. & Nemeroff, C. B. (1991). Physiology and pharmacology of corticotropin releasing factor. Pharmacological Reviews, 43, 425–473.PubMedGoogle Scholar
  74. Persky, V.W., Kempthone-Rawson, J., & Shekelle, R. B. (1991). Personality and risk of cancer: 20 year follow-up of the Western Electric Study. Psychosomatic Medicine, 49, 435–47.Google Scholar
  75. Rabin, B. S., Cunnick, J. E., & Lysle, D. T. (1990). Stress induced alteration of immune function. Progress in Neuroendocrinology and Immunology, 3, 116–124.Google Scholar
  76. Ramamoorthy, S., Ramamoorthy, J. D., Pradad, P., Bhat, G. K., & Mahesh, V. B. (1995). Regulation of the human serotonin transporter by interleukin-1 beta. Biochemical Biophysics Research Communications, 216, 560–567.CrossRefGoogle Scholar
  77. Rasmussen, A. F. (1969). Emotions and immunity. Annals of the New York Academy of Sciences, 164, 458–462.PubMedCrossRefGoogle Scholar
  78. Rivier, C. & Rivest, S. (1993). Mechanisms mediating the effects of cytokines on neuroendocrine functions in the rat. In Corticotrophin-releasing factor. W. W. Vale (Ed.), Ciba Foundation Symposium, 172, John Wiley & Sons, Chichester, UK, pp. 204–225.CrossRefGoogle Scholar
  79. Schettini, G. (1990). Interleukin in the neuroendocrine system: from gene to function. Progress in Neuroendocrinimmunology, 3, 157–166.Google Scholar
  80. Schleifer, S. J., Keller, S. E., Siris, S. G., Davis, K. L., & Stein, M. (1985). Depression and Immunity: lymphocyte stimulation in ambulatory depressed patients. Archives of General Psychiatry, 42, 129–133.PubMedGoogle Scholar
  81. Schleifer, S. J., Keller, S. E., Bond, R. N., Cohen, J., & Stein, M. (1989). Major depressive disorder: role of age, sex, severity, and hospitalization. Archives of General Psychiatry, 46, 81–87.PubMedGoogle Scholar
  82. Shekelle, R. B., Raynor, W. J., & Ostfeld, A. M. (1981). Psychological depression and 17 years risk of death from cancer. Psychosomatic Medicine, 43, 117–125.PubMedGoogle Scholar
  83. Sklar, L. S. & Anisman, H. (1981). Stress and cancer. Psychological Bulletin, 89, 369–06.PubMedCrossRefGoogle Scholar
  84. Smith, R. S. (1991). The macrophage theory of depression. Medical Hypothesis, 35, 298–306.CrossRefGoogle Scholar
  85. Solomon, G. F. (1969). Stress and antibody response in rats. International Archives of Allergy and Applied Immunology, 35, 97–104.PubMedGoogle Scholar
  86. Solvason, H. B., Ghanta, Y. K., & Hiramoto, R. N. (1988). Conditioned augmentation of Natural Killer Cell activity: independence from nociceptive effects and dependence on interferon beta. Journal of Immunology, 140, 661–665.Google Scholar
  87. Song, C, Dinan, T., & Leonard, B. E. (1994). Changes in immunoglobulin, complement and acute phase protein concentrations in depressed patients and normal controls. Journal of Affective Disorders, 30, 283–288.PubMedCrossRefGoogle Scholar
  88. Tejwani, G. A., Gudehithlu, K. P., Hanissian, S. H., Gienapp, I. E., Whitacre, C. C, & Malarkey, W. B. (1991). Facilitation of dimethylbenaz (a) anthracine induced rat mammory tumorigenesis by restraint stress: role of beta endorphin, prolactin, and naltrexone. Carcinogenesis, 12, 637–641.PubMedCrossRefGoogle Scholar
  89. Weisse, C. S. (1992). Depression and immunocompetence: a review of the literature. Psychological Bulletin, 7/7, 475–487.CrossRefGoogle Scholar
  90. Wiegers, G. J. & Reul, J. M. H. M. (1998). Induction of cytokines receptors by glucocorticoids: functional and pathological significance. Trends in Pharmacological Sciences, 19, 317–321.PubMedCrossRefGoogle Scholar
  91. Wiegers, G. J., Labeur, M. S., Stec, I. E., Klinkert, W. E., Holsboer, F., & Reul, J. M. (1995). Glucocorticoids accelerate anti-T cell receptor induced T cell growth. Journal of Immunology, 155, 1893–1902.Google Scholar
  92. Wu, C. Y., Fargeas, G, Nakajima, T., & Delespesse, G. (1991). Glucocorticoids suppress the production of interleukin 4 by human lymphocytes. European Journal of Immunology, 10, 2645–2647.CrossRefGoogle Scholar
  93. Wu Sarfati, M., Heusser, C, Fourneir, S., Rubio-Trujillo, M., Peleman, R., & Delespesse, G. (1991). Glucocorticoids increase the synthesis of immunoglobulin E by interleukin 4-stimulated human lymphocytes. Journal of Clinical Investigations, 87, 870–877.Google Scholar
  94. Xia, Z., De Piere, J. W, & Nassberger. L. (1996). TCA’s inhibit IL-6, IL-1 and TNF release in human blood monocytes and IL2 and interferon in T cells. Immunopharmacology, 34, 27–37.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • B. E. Leonard
    • 1
  • Cai Song
    • 2
  1. 1.Department of PharmacologyNational University of IrelandGalwayIreland
  2. 2.Life Sciences Research InstituteCarlton UniversityOttawaCanada

Personalised recommendations