Stress, Learned Helplessness, and Brain Interleukin-1β

  • Steven F. Maier
  • Kien T. Nguyen
  • Terrence Deak
  • Erin D. Milligan
  • Linda R. Watkins
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 461)


Similarities between the behavioral, endocrine, and neurochemical sequelae of exposure to psychological stressors and agents that activate peripheral immune cells (viruses, lipopolysaccharide, arthritis inducing agents, etc.) have often been noted (Dunn, 1993). Central cytokines such as IL-1β play an important role in mediating many of these responses that follow immune activation, and the purpose of the present chapter is to summarize work that is directed at determining whether central cytokines also play a role in mediating the consequences of exposure to stressors. In addition, there will be a focus on whether central cytokines are involved in the production of a particular stress-related phenomenon, learned helplessness.


Acute Phase Protein Core Body Temperature Acute Phase Response Nucleus Tractus Solitarius Learned Helplessness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, G. & Czop, J. K. (1992). Stimulation of human monocyte beta-glucan receptors by glucan particles induces production of TNF-alpha and IL-1 beta. International Journal of Immunopharmacology, 14, 1363–1373.PubMedCrossRefGoogle Scholar
  2. Amano, Y., Lee, S. W., & Allsion, A. C. (1993). Inhibition by glucocorticoids of the formation of interleukin-1 alpha, interleukin-1 beta, and interleukin-6: Mediation by decreased mRNA stability. Molecular Pharmacology, 43, 176–182.PubMedGoogle Scholar
  3. Ban, E., Haour, F., & R., L. (1992). Brain interleukin-1 gene expression induced by peripheral lipopolysac-charide administration. Cytokine, 4, 48–54.PubMedCrossRefGoogle Scholar
  4. Bluthe, R.-M., Michaud, B., Kelley, K. W., & Dantzer, R. (1996). Vagotomy attenuates behavioural effects of interleukin-1 injected peripherally but not centrally. NeuroReport, 7, 1485–1488.PubMedCrossRefGoogle Scholar
  5. Cannon, J. G., Tatro, J. B., Reichlin, S., & Dinarello, C. A. (1986). α melanocyte stimulating hormone inhibits immunostimulatory and inflammatory actions of interleukin 1. Journal of Immunology, 137, 2232–2236.Google Scholar
  6. Catania, A. & Lipton, J. M. (1994). The neuropeptide alpha-melanocyte-stimulating hormone: A key component of neuroimmunomodulation. Neuroimmunomodulation, 1, 93–99.PubMedCrossRefGoogle Scholar
  7. Dantzer, R., Bluthé, R.-M., Kent, S., & Goodall, G. (1993). Behavioral effects of cytokines: An insight into mechanisms of sickness behavior. In E. G. DeSouza (Ed.), Neurobiology of cytokines (pp. 130–151). San Diego, CA: Academic Press.Google Scholar
  8. Deak, T., Meriweather, J. L., Fleshner, M., Spencer, R. L., Moldawer, L. L., Grahn, R. E., Watkins, L. R., & Maier, S. F. (1997). Evidence that brief stress may induce the acute phase response in rats. American Journal of Physiology, 273, R1998–R2004.PubMedGoogle Scholar
  9. DeSimoni, M. G., Seroni, M., DeLuigi, A., Manfridi, A., Mantovani, A., & Ghezzi, P. (1990). Intracerebroventricular injection of IL-1 induces high circulating levels of IL-6. Journal of Experimental Medicine, 171, 1773–1778.CrossRefGoogle Scholar
  10. Dinarello, C. A. (1992). ELISA kits based on monoclonal antibodies do not measure total IL-1 beta synthesis. Journal of Immunological Methods, 148, 255–259.PubMedCrossRefGoogle Scholar
  11. Dinarello, C. A. & Thompson, R. C. (1991). Blocking IL-1: Interleukin-1 receptor antagonist in vivo and in vitro. Immunology Today, 12, 404–410.PubMedCrossRefGoogle Scholar
  12. Dunn, A. J. (1993). Role of cytokines in infection-induced stress. Annals of the New York Academy of Science, 697, 189–202.CrossRefGoogle Scholar
  13. Dunn, A. J. (1995). Interactions between the nervous system and the immune system: Implications for psychopharmacology. In F. E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology: The fourth generation of progress (pp. 719–733). New York: Raven Press.Google Scholar
  14. Eberle, A. N. (1988). The melanotropins: Chemistry, physiology, and mechanisms of action. Basel: Karger.Google Scholar
  15. Enk, A. H., Angeloni, V. L., Udey, M. C, & Katz, S. J. (1993). An essential role for Langerhans cell derived IL-1 beta in the initiation of primary immune responses in skin. Journal of Immunology, 150, 3698–3704.Google Scholar
  16. Ericsson, A., Kovacs, K. J., & Sawchenko, P. E. (1994). A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. Journal of Neuroscience, 14, 897–913.PubMedGoogle Scholar
  17. Fleshner, M., Deak, T., Spencer, R. L., Laudenslager, M. L., Watkins, L. R., & Maier, S. F. (1995). A long-term increase in basal levels of corticosterone and a decrease in corticosteroid-binding globulin following acute stressor exposure. Endocrinology, 136, 5336–5342.PubMedCrossRefGoogle Scholar
  18. Fleshner, M., Nguyen, K. T., Cotter, C. S., Watkins, L. R., & Maier, S. F. (in press). Acute Stressor exposure both suppresses acquired immunity and potentiates innate immunity. American Journal of Physiology.Google Scholar
  19. Glyn, J. R. & Lipton, J. M. (1981). Hypothermic and antipyretic effects of centrally administered ACTH(1-24) and α-melanotropin. Peptides, 2, 177–187.PubMedCrossRefGoogle Scholar
  20. Grahn, R. E. & Maier, S. F. (1995). The elevated plus-maze is not sensitive to the effects of Stressor controllability in rats. Pharmacology, Biochemistry, & Behavior, 52, 565–570.CrossRefGoogle Scholar
  21. Griffiths, R. J., Stam, E. J., Downs, J. T, & Otterness, I. G. (1995). ATP induces the release of IL-1 from LPS-primed cells in vivo. Journal of Immunology, 154, 2821–2828.Google Scholar
  22. Hagan, P., Poole, S., & Bristow, A. F. (1993). Endotoxin-stimulated production of rat hypothalamic interleukin-lβ in vivo and in vitro, measured by specific immunoradiometric assay. Journal of Molecular Endocrinology, 11, 31–36.PubMedCrossRefGoogle Scholar
  23. Hart, B. L. (1988). Biological basis of the behavior of sick animals. Neuroscience and Biobehavioral Reviews, 12, 123–137.PubMedCrossRefGoogle Scholar
  24. Kakucska, I., Qi, Y., Clark, B. D., & Lechan, R. M. (1993). Endotoxin-induced corticotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus is mediated centrally by interleukin-1. Endocrinology, 133, 815–821.PubMedCrossRefGoogle Scholar
  25. Keane, K. M., Giegel, D. A., Lipinski, W. J., Callahan, M. G., & Shivers, B. D. (1995). Cloning, tissue expression and regulation of rat interleukin 1 beta converting enzyme. Cytokine, 7, 105–110.PubMedCrossRefGoogle Scholar
  26. Kent, S., Bluthé, R.-M., Kelley, K. W., & Dantzer, R. (1992). Sickness behavior as a new target for drug development. Trends in Pharmacological Science, 13, 24–28.CrossRefGoogle Scholar
  27. Kent, S., Rodriguez, F., Kelley, K. W., & Dantzer, R. (1994). Anorexia induced by microinjection of interleukin-Iβ in the ventromedial hypothalamus of the rat. Physiology and Behavior, 56, 1031–1036.PubMedCrossRefGoogle Scholar
  28. Kern, J. A., Lamb, R. J., Reed, J. C., Daniele, R. P., & Nowell, P. C. (1988). Dexamethasone inhibition of interleukin 1 beta production by human monocytes: Posttranscriptional mechanisms. Journal of Clinical Investigation, 81, 237–244.PubMedGoogle Scholar
  29. Klir, J. J., McClellan, J. L., & Kluger, M. J. (1994). Interleukin-1 causes the increase in anterior hypothalamic interleukin-6 during LPS-induced fever in rats. American Journal of Physiology, 266, 1845–1848.Google Scholar
  30. Kluger, M. J. (1991). Fever: The role of pyrogens and cryogens. Physiological Review, 71, 93–127.Google Scholar
  31. Krueger, J. M., Walter, J., Dinarello, C. A., Wolf, S. M., & Chedid, L. (1984). Sleep promoting effects of endogenous pyrogen (interleukin-1). American Journal of Physiology, 246, R994–R999.PubMedGoogle Scholar
  32. Lee, S. W., Tsou, A. P., Chan, H., Thomas, J., Petrie, K., Eugui, E. M., & Allison, A. C. (1988). Glucocorticoids selectively inhibit the transcription of the interleukin 1 beta gene and decrease the stability of inter-leukin1 beta mRNA. Proceedings of the National Academy of Science, 85, 1204–1208.CrossRefGoogle Scholar
  33. Linthorst, A. C. E., Flachskamm, C., Holsboer, F., & Reul, J. M. H. M. (1994). Local administration of recombinant human interleukin-1 beta in the rat hippocampus increases serotonergic neurotransmission, hypothalamic-pituitary-adrenocortical axis activity, and body temperature. Endocrinology, 135, 520–532.PubMedCrossRefGoogle Scholar
  34. Long, N. C., Vander, A. J., & Kluger, M. J. (1990). Stress-induced rise of body temperature in rats is the same in warm and cool environments. Physiology and Behavior, 47, 773–775.PubMedCrossRefGoogle Scholar
  35. Maier, S. F. (1990). The role of fear in mediating the shuttle escape learning deficit produced by inescapable shock. Journal of Experimental Psychology: Animal Behavior Processes, 16, 137–150.PubMedCrossRefGoogle Scholar
  36. Maier, S. F. (1993). Learned helplessness, fear, and anxiety. In C. Stanford & P. Salmon (Eds.), Stress: From synapse to syndrome (pp. 207–248). London: Academic Press Ltd.Google Scholar
  37. Maier, S. F. & Seligman, M. E. P. (1976). Learned helplessness: Theory and evidence. Journal of Experimental Psychology: General, 105, 3–46.CrossRefGoogle Scholar
  38. Maier, S. F., Ryan, S. M., Barksdale, C. M., & Kalin, N. H. (1986). Stressor controllability and the pituitary-adrenal system. Behavioral Neuroscience, 100, 669–678.PubMedCrossRefGoogle Scholar
  39. Maier, S. F. & Watkins, L. R. (1995). Intracerebroventricular interleukin-1 receptor antagonist blocks the enhancement of fear conditioning and interference with escape produced by inescapable shock. Brain Research, 695, 279–286.PubMedCrossRefGoogle Scholar
  40. Maier, S. F. & Watkins, L. R. (1998). Cytokines for psychologists: Implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychological Review, 105, 83–107.PubMedCrossRefGoogle Scholar
  41. Minami, M., Kuraishi, Y., Yagaguchi, T, Nakai, S., Hirai, Y., & Satoh, M. (1991). Immobilization stress induces interleukin-lβ mRNA in the rat hypothalamus. Neuroscience Letters, 123, 254–256.PubMedCrossRefGoogle Scholar
  42. Minor, T. R. & Saade, S. (1997). Poststress glucose mitigates behavioral impairments in rats in the “learned helplessness” model of psychopathology. Biological Psychiatry, 42, 324–334.PubMedCrossRefGoogle Scholar
  43. Morimoto, A., Sakata, Y., Watanabe, T., & Murakami, N. (1989). Characteristics of fever and acute-phase response induced by IL-1 and TNF. American Journal of Physiology, 363, R35–R41.Google Scholar
  44. Morrow, L. E., McClellan, J. L., Conn, C. A., & Kluger, M. J. (1993). Glucocorticoids alter fever and IL-6 responses to psychological stress and to lipopolysaccharide. American Journal of Physiology, 264, R1010–R1016.PubMedGoogle Scholar
  45. Nguyen, K. T., Deak, T., Owens, S. M., Kohno, T, Fleshner, M., Watkins, L. R., & Maier, S. F. (1998). Exposure to acute stress induces brain interleukin-1 beta protein in the rat. Journal of Neuroscience, 18, 2239–2246.PubMedGoogle Scholar
  46. Plata-Salaman, C. R., Oomura, Y., & Kai, Y. (1988). Tumor necrosis factor and interleukin-1 beta: Suppression of food intake by direct action in the central nervous system. Brain Research, 448, 106–114.PubMedCrossRefGoogle Scholar
  47. Quan, N., Sundar, S. K., & Weiss, J. M. (1994). Induction of interleukin-1 in various brain regions after peripheral and central injections of lipopolysaccharide. Journal of Neuroimmunology, 49, 125–134.PubMedCrossRefGoogle Scholar
  48. Quan, N., Zhang, Z., Emery, M., Bosnall, R., & Weiss, J. M. (1996). Detection of interleukin-1 bioactivity in various brain regions of normal healthy rats. Neuroimmunomodulation, 3, 47–55.PubMedCrossRefGoogle Scholar
  49. Rothwell, N. M. (1989). CRF is involved in the pyrogenic and thermogenic effects of interleukin 1 beta in the rat. American Journal of Physiology, 256, E111–E115.PubMedGoogle Scholar
  50. Saperstein, A., Brand, H., Audhya, T., Nobriski, D., Hutchinson, B., Rosenzwieg, J., & Hollander, C. S. (1992). Interleukin-1 beta mediates stress-induced immunosuppression via CRH. Endocrinology, 130, 152–158.PubMedCrossRefGoogle Scholar
  51. Shintani, F., Nakaki, T, Kanba, S., Sato, K., Yagi, G., Shiozawa, M., Aiso, S., Kato, R., & Asai, M. (1995). Involvement of interleukin-1 in immobilization stress-induced increase in plasma adrenocorticotropic hormone and in release of hypothalamic monoamines in the rat. Journal of Neuroscience, 15, 1961–1970.PubMedGoogle Scholar
  52. Spadaro, F. & Dunn, A. J. (1990). Intracerebroventricular administration of interleukin-1 to mice alters investigation of stimuli in a novel environment. Brain, Behavior, and Immunity, 4, 308–322.PubMedCrossRefGoogle Scholar
  53. Sperlagh, B., Sershen, H., Lojtha, A., & Vizi, E. S. (1998). Co-release of endogenous ATP and [3H] noradrenaline from rat hypothalamic slices: Origin and modulation of alpha 2-adrenoceptors. Neuroscience, 82, 511–528.PubMedCrossRefGoogle Scholar
  54. Sundar, S. K., Cierpial, M. A., Kilts, C., Ritchie, J. C., & Weiss, J. M. (1990). Brain interleukin-1-induced immunosuppression occurs through activation of both pituitary-adrenal axis and sympathetic nervous system by corticotropin-releasing factor. Journal of Neuroscience, 10, 3701–3706.PubMedGoogle Scholar
  55. Takahashi, S., Kapás, L., Fang, J., Seyer, J. M., Wang, Y, & Krueger, J. M. (1996). An interleukin-1 receptor fragment inhibits spontaneous sleep and muramyl dipeptide-induced sleep in rabbits. American Journal of Physiology, 271, 101–108.Google Scholar
  56. Tatro, J. B. (1993). Brain receptors for central and peripheral melanotropins. Annals of the New York Academy of Science, 680, 621–625.CrossRefGoogle Scholar
  57. Tringali, G., Mancuso, C., Mirtella, A., Pozzoli, G., Parente, L., Preziosi, P., & Navarra, P. (1996). Evidence for the neuronal origin of immunoreactive interleukin-1β released by hypothalamic expiants. Neuroscience Letters, 219, 143–146.PubMedCrossRefGoogle Scholar
  58. Tringali, G., Mirtella, A., Mancuso, C., Guerriero, G., Preziosi, P., & Navarra, P. (1997). The release of immunoreactive interleukin-1 beta from rat hypothalamic expiants is modulated by neurotransmitters and corticotropin-releasing hormone. Pharmacological Research, 36, 269–273.PubMedCrossRefGoogle Scholar
  59. Uehara, Y., Shimizu, H., Sato, N., Tanaka, Y., Shimomura, Y., & Mori, M. (1992). Carboxyl-terminal tripeptide of α-melanocyte-stimulating hormone antagonizes interleukin-1-induced anorexia. European Journal of Pharmacology, 220, 119–122.PubMedCrossRefGoogle Scholar
  60. Van Dam, A.-M., Brouns, M., Louisse, S., & Berkenbosch, F. (1992). Appearance of interleukin-1 in macrophages and in ramified microglia in the brain of endotoxin-treated rats: A pathway for the induction of non-specific symptoms of sickness? Brain Research, 588, 291–296.PubMedCrossRefGoogle Scholar
  61. Weiss, J. M., Sundar, S. K., Cierpial, M. A., & Ritchie, J. C. (1991). Effects of interleukin-1 infused into brain are antagonized by α-MSH in a dose-dependent manner. European Journal of Pharmacology, 192, 177–179.PubMedCrossRefGoogle Scholar
  62. Woodmansee, W. W., Silbert, L. H., & Maier, S. F. (1993). Factors that modulate inescapable shock-induced reductions in daily activity in the rat. Pharmacology, Biochemistry, & Behavior, 45, 553–559.CrossRefGoogle Scholar
  63. Zelazowski, P., Patchev, V. K., Zelazowska, E. B., Chrousos, G. P., Gold, P. W., & Sternberg, E. M. (1993). Release of hypothalamic corticotropin-releasing hormone and arginine-vasopressin by interleukin 1β and αMSH: Studies in rats with different susceptibility to inflammatory disease. Brain Research, 631, 22–26.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • Steven F. Maier
    • 1
  • Kien T. Nguyen
    • 1
  • Terrence Deak
    • 1
  • Erin D. Milligan
    • 1
  • Linda R. Watkins
    • 1
  1. 1.University of ColoradoBoulder

Personalised recommendations