Advertisement

Anhedonic and Anxiogenic Effects of Cytokine Exposure

  • Hymie Anisman
  • Zul Merali
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 461)

Abstract

It is abundantly clear that interactions occur between the immune, endocrine, central, and autonomic nervous systems. Immunologic manipulations (or products of an activated immune system, e.g., cytokines) affect neuroendocrine and central neurotransmitter processes, and conversely, neuroendocrine and central neurotransmitter alterations may impact on immune activity (Anisman, Zalcman, & Zacharko, 1993; Blalock, 1994; Dunn, 1990; Rivier, 1993; Rothwell & Hopkins, 1995). It has been posited that, among other things, the immune system acts like a sensory organ informing the brain of antigenic challenge (Blalock, 1984, 1994). Furthermore, given the nature of the neurochemical changes elicited by antigens and cytokines, it was suggested that immune activation may be interpreted by the CNS as a stressor (Anisman et al., 1993; Dunn, 1990; Dunn, Powell, Meitin, & Small, 1989). To be sure, the effects of systemic Stressors (e.g., those associated with viral insults, bacterial endotoxins, cytokines) are not entirely congruous with those elicited by processive stressors (i.e., those involving higher-order sensory processing, e.g., fear conditioning, exposure to a predator or novel environment) (Herman & Cullinan, 1997). Nevertheless, cytokines may be part of a regulatory loop that, by virtue of effects on CNS functioning, might influence behavioral outputs and may even contribute to the symptoms of behavioral pathologies, including mood and anxiety-related disorders (Anisman et al., 1993; Crnic, 1991). It is curious that while cytokines have found an increasingly greater role in immunotherapy, and may contribute to neurodegenerative processes (Rothwell, Luheshi, & Toulmond, 1996), limited attention has been devoted to behavioral analyses of these cytokines in animal studies.

Keywords

Nucleus Accumbens Sensitization Effect Sickness Behavior Chocolate Milk Cytokine Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, R., Chaudieu, I., Dori, J., Krishnamurthy, A., Quirion, R., & Boksa, P. (1993). Interleukin-2 modulates evoked release of [3H]dopamine in rat cultured mesencephalic cells, Journal of Neurochemistry, 61, 1284–1290.PubMedCrossRefGoogle Scholar
  2. Anisman, H., Zalcman, S., Shanks, N., & Zacharko, R. M. (1991). Multisystem regulation of performance deficits induced by Stressors: An animal model of depression. In A. Boulton, G. Baker, & M. Martin-Iverson (Eds.), Neuromethods, vol. 19: Animal Models of Psychiatry, II. (pp. 1–59). New Jersey: Humana Press.Google Scholar
  3. Anisman, H., Zalcman, S., & Zacharko, R. M. (1993). The impact of Stressors on immune and central neurotransmitter activity: Bidirectional communication. Reviews in the Neurosciences, 4, 147–180.PubMedGoogle Scholar
  4. Anisman, H., Kokkinidis, L., & Merali, Z. (1996). Influence of interleukin-2 on responding for electrical brain stimulation from the hypothalamus. Brain Research, 731, 1–11.PubMedCrossRefGoogle Scholar
  5. Anisman, H., Lu, Z. W., Song, C, Kent, P., Mclntyre, D. C, & Merali, Z. (1997). Influence of psychogenic and neurogenic Stressors on endocrine and immune activity: differential effects in fast and slow seizing rat strains. Brain, Behavior, and Immunity, 11, 63–74.PubMedCrossRefGoogle Scholar
  6. Anisman, H., Kokkinidis, L., Borowski, T., & Merali, Z. (1998a). Differential effects of interleukin (IL)-l, IL-2, and IL-6 on responding for rewarding lateral hypothalamic stimulation. Brain Research, 779, 177–187.PubMedCrossRefGoogle Scholar
  7. Anisman, H., Ravindran, A. V., Griffiths, J., & Merali, Z. (1998b). Behavioral, endocrine, and cytokine correlates of major depression and dysthymia with typical or atypical features. Molecular Psychiatry, in pressGoogle Scholar
  8. Araujo, B. M., Lapchak, P. A., Collier, B., & Quirion, R. (1989). Localization of interleukin-2 immunoreactivity and interleukin-2 receptors in the rat brain: interaction with the cholinergic system. Brain Research, 498, 257–266.PubMedCrossRefGoogle Scholar
  9. Ban, E. M., Haour, F., & Lenstra, R. (1992). Brain interleukin-1 gene expression induced by peripheral lipopolysaccharide administration. Cytokine, 4, 48–54.PubMedCrossRefGoogle Scholar
  10. Banks, W. A., Ortz, L., Plotkin, S. R., & Kasten, A. J. (1991). Human interleukin (IL)-l alpha, murine IL-1 alpha, and murine IL-2 beta are transported from blood to brain in the mouse by a shared saturable mechanism. Journal of Pharmacological and Experimental Therapeutics, 259, 988–996.Google Scholar
  11. Bartanusz, V, Jezova, D., Bertini, L. T., Tilders, F. J., Aubry, J. M., & Kiss, J. Z. (1993). Stress-induced increase in vasopressin and corticotropin-releasing factor expression in hypophysiotrophic paraventricular neurons. Endocrinology, 132, 895–902.PubMedCrossRefGoogle Scholar
  12. Bartholemew, S. A. & Hoffman, S. A. (1993). Effects of peripheral cytokine injections on multiple unit activity in the anterior hypothalamic area of the mouse. Brain, Behavior, and Immunity, 7, 301–316.CrossRefGoogle Scholar
  13. Blalock, J. E. (1984). The immune system as a sensory organ. Journal of Immunology, 132, 1067–1070.Google Scholar
  14. Blalock, J. E. (1994). The syntax of immune-neuroendocrine communication. Immunology Today, 15, 504–511.PubMedCrossRefGoogle Scholar
  15. Bluthe, R. M., Dantzer, R., & Kelley, K. W. (1989). Corticotropin releasing hormone is not involved in the behavioral effects of peripherally injected interleukin-1 in the rat. Neuroscience Research Communincations, 5, 149–154.Google Scholar
  16. Bluthe, R. M., Michaud, B., Kelley, K. W., & Dantzer, R. (1996). Vagotomy attenuates behavioral effects of interleukin-1 injected peripherally but not centrally. Neuroreport, 7, 1485–1488.PubMedGoogle Scholar
  17. Bluthe, R. M., Dantzer, R., & Kelley, K. W. (1997). Central mediation of the effects of interleukin-1 on social exploration and body weight in mice. Psychoneuroendocrinology, 22, 1–11.PubMedCrossRefGoogle Scholar
  18. Borowski, T, Kokkinidis, L., Merali, Z., & Anisman, H. (1997). Behavioral and central monoamine alterations induced by interleukin-1, interleukin-6, and lipopolysaccharide. Society for Neurosciences Abstract, 23, 1508.Google Scholar
  19. Brady, L. S., Lynn, A. B., Herkenham, M., & Gottesfeld, Z. (1994). Systemic interleukin-1 induces early and late patterns of c-fos mRNA expression in brain. Journal of Neuroscience, 14, 4951–4964.PubMedGoogle Scholar
  20. Brebner, K., Hayley, S., Lacosta, S., Zacharko, R., Merali, Z., & Anisman, H. (1998). Synergistic actions of interleukin (IL)-lβ, IL-6, and TNFα: Central neurochemical, neuroendocrine and behavioral alterations. Society for Neurosciences Abstract, in press.Google Scholar
  21. Bret-Dibat, J. L., Bluthe, R. M., Kent, S., Kelley, K. W., & Dantzer, R. (1995). Lipopolysaccharide and interleukin-1 depress food-motivated behavior in mice by a vagal-mediated mechanism. Brain, Behavior, and Immunity, 9, 242–246.PubMedCrossRefGoogle Scholar
  22. Buttini, M. & Boddeke, H. (1995). Peripheral lipopolysaccharide stimulation induces interleukin-Iβ messenger RNA in rat brain microglial cells. Neuroscience, 65, 523–530.PubMedCrossRefGoogle Scholar
  23. Capuron, L., Ravaud, A., Radat, F., Dantzer, R., & Goodall, G. (1998). Effects of interleukin-2 and alpha interferon cytokine immunotherapy on the mood and cognitive performance of cancer patients. Neuroimmunomodulation, 5, 9.CrossRefGoogle Scholar
  24. Caraceni, A., Martini, G, Belli, F., Mascheroni, L., Rivoltini, L., Arienti, F., & Cascinelli, N. (1992). Neuropsychological and neurophysiological assessment of the central effects of interleukin-2 administration, European Journal of Cancer, 29A, 1266–1269.Google Scholar
  25. Connor, T. J. & Leonard, B. E. (1998). Depression, stress and immunological activation: The role of cytokines in depressive disorders. Life Sciences, 62, 583–606.PubMedCrossRefGoogle Scholar
  26. Connor, T., Song, G, Leonard, B. E., Merali, Z., & Anisman, H. (1998). An assessment of the effects of central interleukin-1 β,-2,-6 and tumor necrosis factor-α administration on some behavioural, neurochemical, endocrine, and immune parameters in the rat. Neuroscience, 84, 923–933.PubMedCrossRefGoogle Scholar
  27. Crnic, L. S. (1991). Behavioral consequences of viral infection. In R. Ader, D. L. Feiten, & N. Cohen (Eds.), Psychoneuroimmunology (pp. 749–770). San Diego: Academic Press.Google Scholar
  28. Dantzer, R., Bluthe, R. M., Aubert, A., Goodall, G, Bret-Dibat, J-L., Kent, S., Goujon, E., Laye, S., Parnet, P., & Kelley, K. W. (1996). Cytokine actions on behavior. In N. J. Rothwell (Ed.), Cytokines and the Nervous System, (pp. 117–144). London: Landes.Google Scholar
  29. Day, H. E. & Akil, H. (1996). Differential pattern of c-fos mRNA in the rat brain following central and systemic administration of interleukin-1-beta: implications for mechanism of action. Neuroendocrinology, 63, 207–218.PubMedGoogle Scholar
  30. Denicoff, K. D., Rubinow, D. R., Papa, M. Z., Simpson, L., Seipp, L. A., Lotze, M. T., Chang, A. E., Rosenstein, D., & Rosenberg, S. A. (1987). The neuropsychiatric effects of treatment with interleukin-2 and lymphokine-activated killer cells. Annals of Internal Medicine, 107, 293–300.PubMedGoogle Scholar
  31. De Sarro, G., Gareri, P., Sinopoli, V. A., David, E., & Rotiroti, D. (1997). Comparative, behavioural, and electrocortical effects of tunor necrosis factor-alpha and interleukin-1 microinjected into the locus coeruleus of rat. Life Sciences, 60, 555–564.PubMedCrossRefGoogle Scholar
  32. De Simoni, M. G, Del Bo, R., De Luigi, A., Simard, S., & Forloni, G. (1995). Central endotoxin induces different patterns of interleukin (IL)-lb and IL-6 messenger robonucleic acid expression and IL-6 secretion in the brain and periphery. Endocrinology, 136, 897–902.PubMedCrossRefGoogle Scholar
  33. Dunn, A., J. (1990). Interleukin-1 as a stimulator of hormone secretion. Progress in NeuroEndocrinlmmunology, 3, 26–34.Google Scholar
  34. Dunn, A. J. (1995). Interactions between the nervous system and the immune system. In F. E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology: The Fourth Generation of Progress (pp. 719–731). New York: Raven Press.Google Scholar
  35. Dunn, A. J. & Welch, J. (1991). Stress-and endotoxin-induced increases in brain tryptophan and serotonin metabolism depend on sympathetic nervous system activity. Journal of Neurochemistry, 57, 1615–1622.PubMedCrossRefGoogle Scholar
  36. Dunn, A. J., Powell, M. L., Meitin, C, & Small, P. A. (1989). Virus infection as a stressor: Influenza virus elevates plasma concentrations of corticosterone, and brain concentrations of MHPG and tryptophan. Physiology and Behavior, 45, 591–594.PubMedCrossRefGoogle Scholar
  37. Elmquist, J. K., Scammell, T. E., & Saper, C. B. (1997). Mechanisms of CNS response to systemic immune challenge: the febrile response. Trends in Neurosciences, 20, 565–570.PubMedCrossRefGoogle Scholar
  38. Ericsson, A., Kovacs, K. J., & Sawchenko, P. E. (1994). A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. Journal of Neuroscience, 14, 89–913.Google Scholar
  39. Ericcson, A., Ek, M., Wahlstrom, I., Kovacs, K., Liu, C-L., Hart, R., & Sawchenko, P. E. (1996). Pathways and mechanisms for interleukin-1 mediated regulation of the hypothalamo-pituitary-adrenal axis. In R. McCarty, G. Aguilera, E. L. Sabban, & R. Kvetnancky (Eds.), Stress: molecular genetic and neurobiological advances (pp. 101–120). New York: Gordon & Breach.Google Scholar
  40. Ericsson, A., Arias, C, & Sawchenko, P. E. (1997). Evidence for an intermedullary prostaglandin-dependent mechanism in the activation of stres-related neuroendocrine circuitry by intravenous interleukin-1. Journal of Neuroscience, 17, 7166–7179.PubMedGoogle Scholar
  41. Fibiger, H. C. & Phillips, A. G. (1988). Mesocorticolimbic dopamine systems and reward. In P. Kalivas & C. Nemeroff (Eds.), The Mesocorticolimbic System, (pp. 206–215). New York: New York Academy of Science.Google Scholar
  42. Gabellec, M-M., Griffais, R., Fillion, G, & Haour, F. (1996). Interleukin-1 receptors type I and type II in the mouse brain: kinetics of mRNA expressions after peripheral administration of bacterial lipopolysaccharide. Journal of Neuroimmunology, 66, 65–70.PubMedCrossRefGoogle Scholar
  43. Gaillard, R. C. (1995). Immunoendocrine interactions at the hypothalamo-pituitary level. Annales D’Endocrinologie, 56, 561–566.PubMedGoogle Scholar
  44. Gold, P. W., Chrousos, G. P., Kellner, C, Post, R. M., Roy, A., Augerinas, P., Schulte, H., Oldgield, E. H., & Loriaux, D. L. (1984). Psychiatric implications of basic and clinical studies with corticotropin-releasing factor. American Joural of Psychiatry 141 619–627Google Scholar
  45. Gray, T. S. (1991). Amygdala: Role in autonomic, and neuroendocrine responses to stress. In J. A. McCubbin, P. G. Kaufmann, & C. B. Nemeroff (Eds.), Stress, Neuropeptides, and Systemic Disease (pp. 37–53). New York: Academic Press.Google Scholar
  46. Griffiths, J., Ravindran, A. V., Merali, Z., & Anisman, H. (1996). Immune and behavioral correlates of typical and atypical depression. Society for Neuroscieces Abstract, 22, 1350.Google Scholar
  47. Gutierrez, E. G., Banks, W. A., & Kastin, A. J. (1993). Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. Journal of Neuroimmunology, 47, 169–176.PubMedCrossRefGoogle Scholar
  48. Hanisch, U-W. & Quirion, R. (1996). Interleukin-2 as a neuroregulatory cytokine. Brain Research Reviews, 21, 246–284.CrossRefGoogle Scholar
  49. Hanisch, U-W, Seto, D., & Quirion, R. (1993). Modulation of hippocampal acetylcholine release: a potent central action of interleukin-2. Journal of Neuroscience, 13, 3368–3374.PubMedGoogle Scholar
  50. Hanisch, U-W, Rowe, W., Sharma, S., Meaney, M. J., & Quirion, R. (1994). Hypothalamic-pituitary-adrenal activity during chronic central administration of interleukin-2. Endocrinology, 135, 2465–2472.PubMedCrossRefGoogle Scholar
  51. Hanisch, U-W, Neuhaus, J., Rowe, W, van Rossum, D., Moller, T., Kettenmann, H., & Quirion, R. (1997). Neurotoxic consequences of central long-term administration of interleukin-2 in rats. Neuroscience, 79, 799–818.PubMedCrossRefGoogle Scholar
  52. Haour, F., Marquette, G, Ban, E., Crumeyrolle-Arias, M., Rostene, W., Tsiang, H. & Fillion, G. (1995). Receptors for interleukin-1 in the central nervous system and neuroendocrine systems. Annales d’Endocrinologie, 56, 173–179.PubMedGoogle Scholar
  53. Harbuz, M. S. & Lightman, S. L. (1992). Stress and the HPA axis: Acute, chronic and immunological activation. Journal of Endocrinology, 134, 327–339.PubMedGoogle Scholar
  54. Hayley, S. Brebner, K., Staines, W, Merali, Z., & Anisman, H. (1998). Sensitization effects of tumor necrosis factor-a: behavioral, neuroendocrine and neurochemical alterations. Society for Neurosciences Abstract, in press.Google Scholar
  55. Hebb, A. L. O., Zacharko, R. M., & Anisman, H. (1998). Self-stimulation from the mesencephalon following intraventricular interleukin-2 administration. Brain Research Bulletin, 45, 549–556.PubMedCrossRefGoogle Scholar
  56. Heilig, M., Koob, G. F., Ekman, R., & Britton, K. T. (1994). Corticotropin releasing factor and neuropeptide Y: role in emotional integration. Trends in Neurosciences, 17, 80–84.PubMedCrossRefGoogle Scholar
  57. Hellerstein, M. K., Meydani, S. R, Meydani, M., Wu, K., & Dinarello, G A. (1989). Interleukin-1-induced anorexia in the rat. Influence of prostaglandins. Journal of Clinical Investigation, 84, 228–235.PubMedGoogle Scholar
  58. Herman, J. P. & Cullinan, W. E. (1997). Neurocircuitry of stress: Central control of hypothalamo-pituitary-adrenocortical axis. Trends in Neurosciences, 20, 78–84.PubMedCrossRefGoogle Scholar
  59. Holden, R. J. & Pakula, I. S. (1996). The role of tumor necrosis factor-alpha in the pathogenesis of anorexia and bulimia nervosa, cancer cachexia and obesity. Medical Hypotheses, 47, 423–438.PubMedCrossRefGoogle Scholar
  60. Holsboer, F. (1995). Neuroendocrinology of Mood Disorders. In F. E. Bloom & Kupfer, D. J. (Eds.), Psychopharmacology: The Fourth Generation of Progress (pp. 957–969). New York: Raven Press.Google Scholar
  61. Hopkins, S. J., Rothwell, N. J. (1995). Cytokines and the nervous system. Trends in Neurosciences, 18, 83–88.PubMedCrossRefGoogle Scholar
  62. Ilyin, S. E. & Plata-Salaman, C. R. (1996). In vivo regulation of the IL-1 beta system (ligand, receptors I and II, receptor accessory protein, and receptor antagonist) and TNF-alpha mRNAs in specific brain regions. Biochemical and Biophysical Research Communications, 227, 861–867.PubMedCrossRefGoogle Scholar
  63. Imura, H., Fukata, J-I., & Mori, T. (1991). Cytokines and endocrine function: an interaction between the immune and neuroendocrine systems. Clinical Endocrinology, 35, 107–115.PubMedGoogle Scholar
  64. Kalivas, P. W. & Duffy, P. (1995). Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Research, 675, 325–328.PubMedCrossRefGoogle Scholar
  65. Katsumata, S. & Satoh, M. (1993). In situ hybridization study of interleukin-1β mRNA induced by kainic acid in the rat brain. Molecular Brain Research, 20, 153–161.PubMedCrossRefGoogle Scholar
  66. Kent, S., Bluthe, R-M., Kelley, K. W, & Dantzer, R. (1992). Sickness behavior as a new target for drug development. Trends in Pharmacological Sciences, 13, 24–28.PubMedCrossRefGoogle Scholar
  67. Kent, S., Rodriguez, F., Kelley, K. W., & Dantzer, R. (1994). Reduction in food and water intake induced by microinjection of interleukin-1 beta in the ventromedial hypothalamus of the rat. Physiology and Behavior, 56, 1031–1036.PubMedCrossRefGoogle Scholar
  68. Kent, S., Bret-Dibat, J. L., Kelley, K. W, & Dantzer, R. (1996). Mechanisms of sickness-induced decreases in food-motivated behavior. Neuroscience and Biobehavioral Reviews, 20, 171–175.PubMedCrossRefGoogle Scholar
  69. Kinouchi, K., Brown, G., Pasternak, G., & Donner, D. B. (1991). Identification and characterization of receptors for tumor necrosis factor-a in the brain. Biochemical and Biophysical Research Communications, 181, 1532–1538.PubMedCrossRefGoogle Scholar
  70. Kluger, M. J. (1991). Fever: Role of endogenous pyrogens and cryogens. Physiologal Reviews, 71, 93–127.Google Scholar
  71. Kokkinidis, L. & Anisman, H. (1980). Amphetamine models of paranoid schizophrenia: An overview and elaboration of animal environmentation Psychological Bulletin 88 551–579PubMedCrossRefGoogle Scholar
  72. Lacosta, S., Kulczycki, J., Merali, Z., Anisman, H. (1996). Behavioral, endocrine and central neurochemical alterations induced by interleukin-1. Society for Neurosciences Abstract, 22, 2059.Google Scholar
  73. Lacosta, S., Merali, Z., & Anisman, H. (1998a). Behavioral and neurochemical consequences of acute and chronic interleukin-2 administration. Society for Neurosciences Abstract, in press, (a)Google Scholar
  74. Lacosta, S., Merali, Z., & Anisman, H. (1998b). Influence of interleukin-1 on exploratory behaviors, plasma ACTH and cortisol, and central biogenic amines in mice. Psychopharmacology, in press, (b)Google Scholar
  75. Lapchak, P. A. (1992). A role for interleukin-2 in the regulation of striatal dopaminergic function. Neuroreport, 3, 165–168.PubMedCrossRefGoogle Scholar
  76. Laye, S., Bluthe, R. M., Kent, S., Combe, C, Medina, C, Parnet, P., Kelly, K., & Dantzer, R. (1995). Subdiaphragmatic vagotomy blocks induction of IL-1 beta mRNA in mice brain in response to peripheral LPS. American Journal of Physiology, 37, R1327–R1331.Google Scholar
  77. Lee, Y. & Davis, M. (1997). Role of the hippocampus, bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. Journal of Neuroscience, 17, 6434–7446.PubMedGoogle Scholar
  78. Linthorst, A. C. E., Flachskamm, C, Muller-Preuss, P. Holsboer, F., & Reul, J. M. H. M. (1995). Effect of bacterial endotoxin and interleukin-1 b on hippocampal serotonergic neurotransmision, behavioral activity, and free corticosterone levels: An in vivo microdialysis study. Journal of Neuroscience, 15, 2920–2934.PubMedGoogle Scholar
  79. Liu, L., Kita, T., Tanaka, N., & Kinoshita, Y. (1996). The expression of tumor necrosis factor in the hypothalamus after treatment with lipopolysaccharide. International Journal of Experimental Pathology, 77, 37–44.PubMedCrossRefGoogle Scholar
  80. Loddick, S. A., MacKenzie, A., & Rothwell, N. J. (1996). An ICE inhibitor, z-VAD-DCB attenuates ischaemic brain daage in the rat. Neuroreport, 7, 1465–1468.PubMedCrossRefGoogle Scholar
  81. Loddick, S. A., Wong, M. L., Bongiorno, P. B., Gold, P. W., Licinio, J., & Rothwell, N. J. (1997). Endogenous interleukin-1 receptor antagonist is neuroprotective. Biochemical and Biophysical Research Communications, 234, 211–215.PubMedCrossRefGoogle Scholar
  82. Maes, M. (1995). Evidence for an immune response in major depression: A review and hypothesis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 19, 11–38.PubMedCrossRefGoogle Scholar
  83. Maes, M., Bosmans, E., Suy, E., Vandervorst, C, DeJonckheere, C, Minner, B., & Raus, J. (1991). Depression-related disturbances in mitogen-induced lymphocyte responses, interleukin-1β, and soluble interleukin-2-receptor production. Acta Psychiatrica Scandinavica, 84, 379–386.PubMedCrossRefGoogle Scholar
  84. Maes, M., Lambrechts, J., Bosmans, E., Jacobs, J., Suy, E., Vandervorst, C, DeJonckheer, C, Minner, B., & Raus, J. (1992). Evidence for a systemic immune activation during depression: Results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining. Psychological Medicine, 22, 45–53.PubMedCrossRefGoogle Scholar
  85. Maes, M., Stevens, W. J., Peeters, D., DeClerck, L. S., Bridts, C. H., Peeters, D., Schotte, G, & Cosyns, P. (1993). Significantly increased expression of T-cell activation markers (interleukin-2 and HLA-DR) in depression: further evidence for an inflammatory process during that illness. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 17, 241–255.PubMedCrossRefGoogle Scholar
  86. Maes, M., Meltzer, H. Y, Bosmans, E., Bergmans, R., Vandoolaeghe, E., Ranjan, R., & Desnyder, R. (1995). Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2, and transferrin receptor in major depression. Journal of Affective Disorders, 34, 301–309.PubMedCrossRefGoogle Scholar
  87. Maier, S. F. & Watkins, L. R. (1995). Intracerebroventricular interleukin-1 receptor antagonist blocks the enhancement of fear conditioning and interference with escape produced by inescapable shock. Brain Research, 695, 279–286.PubMedCrossRefGoogle Scholar
  88. Maier, S. F. & Watkins, L. R. (1998). Cytokines for psychologists: Implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychological Review, 105, 83–107.PubMedCrossRefGoogle Scholar
  89. Masana, M. I., Heyes, M. P., & Mefford, I. N. (1990). Indomethacin prevents increased catecholamine turnover in rat brain following systemic endotoxin challenge. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 74, 609–621.CrossRefGoogle Scholar
  90. Mclntyre, D. C. (1980). Amygdala kindling in rats: facilitation after local amygdala norepinephrine depletion with 6-hydroxydopamine. Experimental Neurology, 69, 395–407.CrossRefGoogle Scholar
  91. Mefford, I. N. & Heyes, M. P. (1990). Increased biogenic amine release in mouse hypothalamus following immunological challenge: antagonism by indomethacin. Journal of Neuroimmunology, 27, 55–61.PubMedCrossRefGoogle Scholar
  92. Mefford, I. N., Masters, C. F., Heyes, M. P., & Eskay, R. L. (1991). Cytokine-induced activation of the neuroendocrine stress axis persists in endotoxin-tolerant mice. Brain Research, 557, 327–330.PubMedCrossRefGoogle Scholar
  93. Merali, Z., Lacosta, S., & Anisman, H. (1997). Effects of interleukin-lβ and mild stress on alterations of central monoamines: A regional microdialysis study. Brain Research, 761, 225–235.PubMedCrossRefGoogle Scholar
  94. Meyers, C. A. & Valentine, A. D. (1995). Neurological and psychiatric adverse effects of immunological therapy, CNS Drugs, 3, 56–68.CrossRefGoogle Scholar
  95. Minami, M., Kuraishi, Y., Yamaguchi, T., Nakai, S., Hirai, Y., & Satoh, M. (1990). Convulsants induce inter-leukin-lb messenger RNA in rat brain. Biochemical and Biophysical Research Communications, 171, 832–837.PubMedCrossRefGoogle Scholar
  96. Minami, M., Kuraishi, Y., Yamaguchi, T., Nakai, S., Hirai, Y, & Satoh, M. (1991). Immobilization stress induces interleukin-lβ mRNA in rat hypothalamus. Neuroscience Letters, 123, 254–256.PubMedCrossRefGoogle Scholar
  97. Mohankumar, P. S. & Quadri, S. K. (1993). Systemic administration of interleukin-1 stimulates norepinephrine release in the paraventricular nucleus. Life Sciences, 52, 1961–1967.PubMedCrossRefGoogle Scholar
  98. Mohankumar, P. S., Thyagarajan, S., & Quadri, S. K. (1991). Interleukin-1 stimulates the release of dopamine and dihydroxyphenylacetic acid from hypothalamus in vivo. Life Sciences, 48, 925–930.PubMedCrossRefGoogle Scholar
  99. Mohankumar, P. S., Thyagarajan, S., & Quadri, S. K. (1993). Interleukin-lβ increases 5-hydroxyindoleacetic acid release in the hypothalamus in vivo. Brain Research Bulletin, 31, 745–748.PubMedCrossRefGoogle Scholar
  100. Mohapel, P. & Mclntyre, D. C. (1998). Amygdala kindling-resistant (SLOW) or-prone (FAST) rat strains show differential fear responses. Behavioral Neurosciences, in press.Google Scholar
  101. Moldofsky, H. (1995). Sleep and the immune system. International Journal of Immunopharmacology, 17, 649–665.PubMedCrossRefGoogle Scholar
  102. Muaramami, N., Fukata, J., Tsukada, T., Kobayashi, H., Ebisui O. Segawa, H., Muro, S., Imura, H., & Nakao, K. (1993). Bacterial lipopolysaccharide expression of interleukin-6 messenger ribonucleic acid in the rat hypothalamus, pituitary, adrenal gland, and spleen. Endocrinology, 133, 2574–2578.CrossRefGoogle Scholar
  103. Mullar, N. & Ackenheil, M. (1998). Psychoneuroimmunology and the cytokine action in the CNS: Implications for psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 22, 1–33.CrossRefGoogle Scholar
  104. Nassberger, L. & Traskman-Bendz, L. (1993). Increased soluble interleukin-2 receptor concentrations in suicide attempters. Acta Psychiatrica Scandinavica, 88, 48–52.PubMedCrossRefGoogle Scholar
  105. Nemeroff, C. B. (1996). The coricotropin-releasing factor (CRF) hypothsesis of depression: New findings and new directions. Molecular Psychiatry, 1, 336–342.PubMedGoogle Scholar
  106. Nguyen, K. T., Deak, T, Owens, S. M., Kohno, T, Fleshner, M., Watkins, L. R., & Maier, S. F. (1998). Exposure to acute stress induces brain interleukin-lβ protein in the rat. Journal Neuroscience, 18, 2239–2246.Google Scholar
  107. Petitto, J. M., McCarthy, D. B., Rinker, C. M., Huang, Z., & Getty, T. (1997). Modulation of behavioral and neurochemical measures of forebrain dopamine function in mice by species-specific interleukin-2. Journal of Neuroimmunology, 73, 183–190.PubMedCrossRefGoogle Scholar
  108. Pitossi, F., del Rey, A., Kabiersch, A., & Besedovsky, H. (1997). Induction of cytokine transcripts in the CNS and pituitary following peripheral administration of endotoxin to mice. Journal of Neuroscience Research, 48, 287–298.PubMedCrossRefGoogle Scholar
  109. Plata-Salaman, C. R. (1989). Immunomodulators and feeding regulation: A humoral link between the immune and nervous systems. Brain, Behavior and Immunity, 3, 193–213.CrossRefGoogle Scholar
  110. Plata-Salaman, C. R. (1994). Meal patterns in response to the intracerebroventricular administration of interleukin-1<b> in rats. Physiology and Behavior, 55, 727–733.PubMedCrossRefGoogle Scholar
  111. Plata-Salaman, C. R. (1998). Cytokines and anorexia: A brief overview. Seminars in Oncology, 25, 64–72.PubMedGoogle Scholar
  112. Quan, N., Sundar, S. K., & Weiss, J. M. (1994). Induction of interleukin-1 in various brain regions after peripheral and central injections of lipopolysaccharide. Journal of Neuroimmunology, 49, 125–134.PubMedCrossRefGoogle Scholar
  113. Raber, J., Koob, G. F., & Bloom, F. E. (1995). Interleukin-2 (IL-2) induces corticotropin-releasing factor (CRF) release from the amygdala and involves a nitric oxide-mediated signaling: Comparison with the hypothalamic response. Journal of Pharmacology and Experimental Therapeutics, 272, 815–824.PubMedGoogle Scholar
  114. Rajora, N., Boccoli, G., Burns, D., Sharma, S., Catania, A. P., & Lipton, J. M. (1997). α-MSH modulates local and circulating tumor necrosis factor-α in experimental brain inflammation. Journal of Neuroscience, 15, 2181–2186.Google Scholar
  115. Richardson, N. R. & Roberts, D. C. S. (1996). Progressive ratio schedules in drug self-administration studies in rats: a method to evaluyate reinforcing efficacy. Journal of Neuroscience Methods, 66, 1–11.PubMedCrossRefGoogle Scholar
  116. Rivest, S. (1995). Molecular mechanisms and neural pathways mediating the influence of interleukin-1 on the activity of neuroendocrine CRF motoneurons in the rat. International Journal of Developmental Neuroscience, 13, 135–146.PubMedCrossRefGoogle Scholar
  117. Rivest, S. & Rivier, C. (1994). Stress and interleukin-1 beta-induced activation of c-Fos, Ngfi-B, and CRF gene expression in the hypothalamic PVN—Comparison between Sprague-Dawley, Fisher-344, and Lewis rats. Journal of Neuroendocrinology, 6, 101–117.PubMedCrossRefGoogle Scholar
  118. Rivest, S. & Laflamme, N. (1995). Neuronal activity and neuropeptide gene transcription in the brains of immune-challenged rats. Journal of Neuroendocrinology, 7, 501–525.PubMedCrossRefGoogle Scholar
  119. Rivier, C. (1993). Effect of peripheral and central cytokines on the hypothalamic-pituitary-adrenal axis of the rat. Annals of the New York Academy of Sciences, 697, 97–105.PubMedCrossRefGoogle Scholar
  120. Rothwell, N. J. & Hopkins, S. J. (1995). Cytokines and the nervous system II: Actions and mechanisms of action. Trends in Neurosciences, 18, 130–136.PubMedCrossRefGoogle Scholar
  121. Rothwell, N. J., Luheshi, G., & Toulmond, S. (1996). Cytokines and their receptors in the central nervous system: physiology, pharmacology, and pathology. Pharmacology and Therapeutics, 69, 85–95.PubMedCrossRefGoogle Scholar
  122. Rothwell, N. J., Loddick, S. A., & Stroemer, P. (1997). Interleukins and cerbral ischemia. International Review of Neurobiology, 40, 291–298.Google Scholar
  123. Sato, S., Reiner, S. L., Jensen, M. A., & Roos, R. P. (1997). Central nervous system mRNA expression following Theiler’s murine encephalomyelitis virus infection. Journal of Neuroimmunology, 76, 213–223.PubMedCrossRefGoogle Scholar
  124. Sawchenko, P. E., Brown, E. R., Chan, R. K. W., Ericsson, A., Li, H.-Y, Roland, B. L., & Kovacs, K. J. (1996). The paraventricular nucleus of the hypothalamus and the functional neuroanatomy of visceromotor responses to stress. Progress in Brain Research, 107, 201–222.PubMedGoogle Scholar
  125. Schmidt, E. D., Janszen, A. W. J. W., Wouterlood, F. G., & Tilders, F. J. H. (1995). Interleukin-1 induced long-lasting changes in hypothalamic corticotropin-releasing hormone (CRH) neurons and hyperrespon-siveness of the hypothalamic-pituitary-adrenal axis. Journal of Neuroscience, 15, 7417–7426.PubMedGoogle Scholar
  126. Schobitz, B., De Kloet, E. R., Sutanto, W., & Holsboer, F. (1993). Cellular localization of interleukin-6 mRNA and interleukin 6 mRNA in rat brain. European Journal of Neuroscience, 5, 1426–1435.PubMedCrossRefGoogle Scholar
  127. Seto, D., Karr, S., & Quirion, R. (1997). Evidence for direct and indirect mechanisms in the potent modulatory action of interleukin-2 on the release of acetylcholine in rat hippocampal slices. British Journal of Pharmacology, 120, 1151–1157.PubMedCrossRefGoogle Scholar
  128. Shintani, F., Kanba, S., Nakaki, T., Nibuya, M., Kinoshita, N., Suzuki, E., Yagi, G., Kato, R., & Asai M. (1993). Interleukin-1β augments release of norepinephrine, dopamine and serotonin in the rat anterior hypothalamus, Journal of Neuroscience, 13, 3574–3581.PubMedGoogle Scholar
  129. Shintani, F., Nakaki, T., Kanba, S., Sato, K., Kato, R., & Asai, M. (1995a). Role of interleukin-1 in stress responses. Molecular Neurobiology, 10, 41–71. aCrossRefGoogle Scholar
  130. Shintani, F., Nakaki, T., Kanba, S., Sato, K., Yagi, G., Shiozawa, M., Aiso, S., Kato, R., & Asai, M. (1995b). Involvement of interleukin-1 in immibilization stress-induced increase in plasma adrenocorticotropic hormone and in release of hypothalamic monoamines in the rat. Journal of Neuroscience, 15, 1961–1970. bPubMedGoogle Scholar
  131. Sluzewska, A., Rybakowski, J. K., Laciak, M., Mackiewicz, A., Sobieska, M., & Wiktorowicz, K. (1995). Inter-leukin-6 serum levels in depressed patients before and after treatment with fluoxetine. Annals of the New York Academy of Sciences, 762, 474–476.PubMedCrossRefGoogle Scholar
  132. Smagin, G. N., Swiergiel, A. H., & Dunn, A. J. (1996). Peripheral administration of interleukin-1 increases extracellular concentrations of norepinephrine in rat hypothalamus: Comparison with plasma corticosterone. Psychoneuroendocrinology, 21, 83–93.PubMedCrossRefGoogle Scholar
  133. Smith, R. S. (1991). The macrophage theory of depression. Medical Hypotheses, 35, 298–306.PubMedCrossRefGoogle Scholar
  134. Song, C, Dinan, T., & Leonard, B. E. (1994). Changes in immunoglobulin, complement and acute phase protein levels in depressed patients and normal controls. Journal of Affective Disorders, 30, 283–288.PubMedCrossRefGoogle Scholar
  135. Song, C, Merali, Z., & Anisman, H. (1998). Variations of nucleus accumbens dopamine and serotonin following systemic interleukin-1, interleukin-2 or interleukin-6 treatment. Neuroscience, in press.Google Scholar
  136. Sonti, G., Ilyin, S. E., & Plata-Salaman, C. R. (1996). Anorexia induced by cytokine interactions at patho-physiological concentrations. American Journal of Physiology, 270, R1394–R1402.PubMedGoogle Scholar
  137. Strijbos, P. J. & Rothwell, N. J. (1995). Interleukin-1 beta attenuates excitatory amino acid-induced neurode-generation in vitro: Involvement of nerve growth factor. Journal of Neuroscience, 15, 3468–3478.PubMedGoogle Scholar
  138. Suzuki, E., Shintani, F., Kanba, S., Asai, M., & Nakaki, T. (1997). Immobilization stress increases mRNA levels of interleukin-1 receptor antagonist in various brain regions. Cellular Molecular Neurobiology, 17, 557–562.CrossRefGoogle Scholar
  139. Takao, T., Tojo, C, Nishioka, T, Kurokawa, H., Takemura, T., Hashimoto, K., & De Souza, E. B. (1994). Reciprocal modulation of corticotropin-releasing factor and interleukin-1 receptors following ether-laparotomy stress in the mouse. Brain Research, 660, 170–174PubMedCrossRefGoogle Scholar
  140. Taupin, V., Toulmond, S., Serrano, A., Benavides, J., & Zavala, F. (1993). Increase in IL-6, IL-1, and TNF levels in rat brain following traumatic lesion. Journal of Neuroimmunology, 42, 177–186.PubMedCrossRefGoogle Scholar
  141. Terao, A., Oikawa, M, & Saito, M. (1993). Cytokine-induced change in hypothalamic norepinephrine turnover: involvement of corticotropin-releasing hormone and prostaglandins. Brain Research, 622, 257–261.PubMedCrossRefGoogle Scholar
  142. Tilders, F. J. H., Schmidt, E. D., & De Goeij, D. C. E. (1993). Phenotypic plasticity of CRF neurons during stress. Annals of the New York Academy of Sciences, 697, 39–52.PubMedCrossRefGoogle Scholar
  143. van Dam, A-M., Brouns, M., Louisse, S., & Berkenbosch, F. (1992). Appearance of interleukin-1 in macrophages and in ramified microglia in the brain of endotoxin-treated rats: a pathway for the induction of non-specific symptoms of sickness? Brain Research, 588, 291–296.PubMedCrossRefGoogle Scholar
  144. Watkins, L. R., Maier, S. F., & Goehler, L. E. (1995). Cytokine-to-brain communication: A review & analysis of alternative mechanisms. Life Sciences, 11, 1011–1026.CrossRefGoogle Scholar
  145. Whishaw, I. Q. (1985). Formation of a place learning-set by the rat: a new paradigm for neurobehavioral studies. Physiology & Behavior, 35, 139–143.CrossRefGoogle Scholar
  146. Whitnall, M. H., Perlstein, R. S., Mougey, E. H., & Neta, R. (1992). Effects of interleukin-1 on the stress responsive and nonresponsive subtypes of corticotropin-releasing hormone neurosecretory axons. Endocrinology, 131, 37–44.PubMedCrossRefGoogle Scholar
  147. Wise, R. A. (1985). The anhedonia hypothesis: Mark III. Behavioural Brain Science, 8, 178–186.CrossRefGoogle Scholar
  148. Yabuuchi, K., Sharma, S., Catania, A. P., & Lipton, M. (1996). Induction of interleukin-1β mRNA in the hypothalamus following subcutaneous injections of formalin into the rat hind paws. Neuroscience Letters, 207, 109–112.PubMedCrossRefGoogle Scholar
  149. Yang, Z-J., Koseki, M., Meguid, M. M., Gleason, J. R., & Debonis, D. (1994). Synergistic effect of rhTNF-a and rhIL-la in inducing anorexia in rats. American Journal of Physiology, 36, R1056–R1064.Google Scholar
  150. Yirmiya, R. (1996). Endotoxin produces a depressive-like episode in rats. Brain Research, 711, 163–174.PubMedCrossRefGoogle Scholar
  151. Zacharko, R. M. & Anisman, H. (1991). Stressor-provoked alterations of intracranial self-stimulation in the mesocorticolimbic system: An animal model of depression. In P. Willner & J. Scheel-Kruger (Eds.), The Mesolimbic Dopamine System: From Motivation to Action (pp. 411–442). New York: Wiley.Google Scholar
  152. Zalcman, S., Green-Johnson, J. M., Murray, L., Nance, D. M., Dyck, D., Anisman, H., & Greenberg, A. (1994). Cytokine-specific central monoamine alterations induced by interleukin (IL)-l, IL-2, and IL-6. Brain Research, 643, 40–9.PubMedCrossRefGoogle Scholar
  153. Zhou, D. H., Shanks, N., Riechman, S. E., Liang, R. M., Kusnecov, A. W, & Rabin, B. S. (1996). Interleukin-6 modulates interleukin-1 and stress-induced activation of the hypothalamic-pituitary-adrenal axis in male rats. Neuroendocrinology, 63, 227–236.PubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • Hymie Anisman
    • 1
  • Zul Merali
    • 2
  1. 1.Institute of NeuroscienceCarleton UniversityOttawaCanada
  2. 2.School of Psychology, and Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada

Personalised recommendations