Cross-Sensitization Between Immune And Non-Immune Stressors

A Role in the Etiology of Depression?
  • J. H. Tilders
  • E. D. Schmidt
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 461)


Organisms have a tremendous capacity to adapt to environmental conditions. This requires not only immediate responses to acute alterations in the internal or external milieu but also mechanisms that allow experiences to shape the response to later stimuli. Together with its genetic background, it are the specific experiences and their long lasting consequences that model the individual. Aspects of this can be found in almost all cells and organs, and are most prominent in the central nervous system and the immune system. The immune system shows an amazing capacity to store information about pathogens to the extent that a first encounter can prevent the organism from becoming ill by a renewed contact with the pathogen for a lifetime. Information about a wide variety of experiences can be stored in the brain to affect the responses to later events. How this information is stored is still poorly understood, but synaptic plasticity is generally considered to play a crucial role. Not only during early development but also in adulthood single or sporadic exposure to particular environmental stimuli can affect the response to the same stimulus weeks to years later. Such a change in response as a result of a specific earlier experience is often denoted as the “priming” effect of the stimulus. In its most simple form, priming can result in a reduction of the response to a second encounter, a phenomenon called desensitization, habituation or tolerance. Alternatively, priming may lead to exaggerated responses upon renewed exposure, a phenomenon known as sensitization.


Corticotropin Release Hormone Behavioral Sensitization Median Eminence Social Defeat ACTH Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abou-Samra, A. B., Catt, K. J., & Aguilera, G. (1986). Biphasic inhibition of adrenocorticotropin release by corticosterone in cultured anterior pituitary cells. Endocrinology, 118, 972–977.Google Scholar
  2. Aguilera, G. (1994). Regulation of pituitary ACTH secretion during chronic stress. Frontiers in Neuroendocrinology, 15, 321–350.PubMedGoogle Scholar
  3. Akil, H. A. & Inés Morano, M. (1995). Stress. In: F. E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology: The Fourth Generation of Progress (pp. 773–785). New York: Raven Press.Google Scholar
  4. Anisman, H., Kokkinidis, L., Borowski, T., & Merali, Z. (1998). Differential effects of interleukin (IL)-l-beta, IL-2, and IL-6 on responding for rewarding lateral hypothalamic stimulation. Brain Research, 779, 177–187.PubMedGoogle Scholar
  5. Antelman, S. M. & Caggiula A. R. (1996). Oscillation follows drug sensitization: implications. Neurobiology, 10, 101–117.Google Scholar
  6. Antelman, S. M., Eichler, A. J., Black, C, & Kocan, D. (1980). Interchangeability of stress and amphetamine in sensitization. Science, 207, 329–331.PubMedGoogle Scholar
  7. Antelman, S. M., DeGiovanni, L. A., & Kocan D. (1989). A single exposure to cocaine or immobilization stress provides extremely long-lasting, selective protection against sudden cardiac death from tetracaine. Life Sciences, 44, 201–207.PubMedGoogle Scholar
  8. Bartanusz, V., Jezova, D., Bertini, L. T., Tilders, F. J. H., Aubry, M., & Kiss, J. (1993). Stress-induced increase in vasopressin and corticotropin releasing factor expression in hypophysiotropic paraventricular neurons. Endocrinology, 132, 895–902.PubMedGoogle Scholar
  9. Beekman, A. T. F., Kriegsman, D. M. W., Deeg, D. H. J., & Van Tilburg, W. (1995a). The association of physical health and depressive symptoms in the older population. Age and sex differences. Society of Psychiatry and Psychiatric Epidemiology, 30, 32–49.Google Scholar
  10. Beekman, A. T. F., Deeg, D. H. J., Smit, J. H., & Van Tilburg, W. (1995b). Predicting the course of depression in an older population. Results from a community based study in the Netherlands. Journal of Affective Disorders, 34, 41–49.PubMedGoogle Scholar
  11. Berkenbosch, F., Van Oers, J. W. A. M., Del Rey, A., Tilders, F. J. H., & Besedovsky, H. A. (1987). Corticotropin releasing factor producing neurons in the rat activated by interleukin-1. Science, 238, 524–525.PubMedGoogle Scholar
  12. Besedovsky, H. O. & Del Rey, A. (1996). Immune-neuro-endocrine interactions: facts and hypotheses. Endocrine Reviews, 17, 64–102.PubMedGoogle Scholar
  13. Buttini, M. & Boddeke H (1995). Peripheral lipopolysaccharide stimulation induces interleukin-lbeta messenger RNA in rat brain microglial cells. Neuroscience, 65, 523–530.PubMedGoogle Scholar
  14. Buwalda, B., De Boer, S. F., Schmidt, E. D., Sgoifo, A., Van Der Vegt, B. J, Tilders, F. J. H., Bohus, B., & Koolhaas, J. M. Long-lasting deficient dexamethasone suppression of HPA activation following peripheral CRH challenge in socially defeated rats. J Neuroendocrinology (in press).Google Scholar
  15. Chalmers, D. T., Lovenberg, T. W., Grigoriadis, D. E., Behan, D. P., & De Souza, E. B. (1996). Corticotropin-releasing factor receptors: from molecular biology to drug design. Trends in Pharmacological Sciences, 17, 166–172.PubMedGoogle Scholar
  16. Chowdrey, H. S., Larsen, P. I, Harbuz, M. S., Jessop, D. S., Aguilera, G., Eckland, D. J. A., & Lightman, S. L. (1995). Evidence for arginine vasopressin as the primary activator of the HPA axis during adjuvant-induced arthritis. British Journal of Pharmacology, 116, 2417–2424.PubMedGoogle Scholar
  17. De Goeij, D. C. E., Binnekade, R., & Tilders, F. J. H. (1992a). Chronic stress enhances vasopressin but not corticotropin releasing factor secretion during hypoglycemia. American Journal of Physiology, 263, E394–E399.PubMedGoogle Scholar
  18. De Goeij, D. C. E., Dijkstra, H., & Tilders, F. J. H. (1992b). Chronic psychosocial stress enhances vasopressin but not corticotropin releasing factor in the external zone of the median eminence of male rats: relationship to subordinate status. Endocrinology, 131, 847–853.PubMedGoogle Scholar
  19. De Kloet, E. R. & Joéls, M. (1996). Corticosteroid hormones in neuroprotection and brain damage. Current Opinion in Endocrinology, 3, 184–192.Google Scholar
  20. De Kloet, E. R., Vreugdenhil, E., Oitzl M. S., & Joëls M. (1997). Glucocorticoid feedback resistance. Trends in Endocrinology and Metabolism, 8, 26–33.Google Scholar
  21. Denicoff, K. D., Durkin, T. M., Lotze, M. T., Quinlan, P. E., Davis, C. L., Listwak, S. J., Rosenberg, S. A., & Rubinkow, D. R. (1989). The neuroendocrine effects of interleukin-2 treatment. Journal of Clinical Endocrinology and Metabolism, 69, 402–410.PubMedGoogle Scholar
  22. De Vries, T. J., Schoffelmeer, A. N. M., Binnekade, R., Mulder, A. H., & Vanderschuren, L. J. M. J. (1998). Drug-induced reinstatement of heroin-and cocaine-seeking behavior following long-term extinction is associated with expression of behavioral sensitization. European Journal of Neuroscience, 10, 3565–3571.PubMedGoogle Scholar
  23. Dijkstra, I., Binnekade, R., & Tilders, F. J. H. (1996). Diurnal variation in resting levels of corticosterone is not mediated by variation in adrenal responsiveness to adrenocorticotropin but involves splanchnic nerve integrity. Endocrinology, 137, 540–547.PubMedGoogle Scholar
  24. Ericsson A., Liu C, Hart R. P., & Sawchenko, P. E. (1995). Type 1 interleukin-1 receptor in the rat brain: distribution regulation and relationship to sites of IL-1-induced cellular activation. Journal of Comparative Neurology, 136, 681–698.Google Scholar
  25. Ericsson, A., Arias, C, & Sawchenko, P. E. (1997). Evidence for intramedullary prostaglandin-dependent mechanism in the activation of stress-related neuroendocrine circuitry by intravenous interleukin-1. Journal of Neuroscience, 17, 7166–7179.PubMedGoogle Scholar
  26. Erkut, Z. A., Hofman, M. A., Ravid, R., & Swaab D. F. (1995). Hyperactivity of hypothalamic corticotropin-releasing hormone (CRH) neurons in multiple sclerosis. J Neuroimmunology, 62, 27–33.Google Scholar
  27. Ernst, C. (1997). Epidemiology of depression in late life. Current Opinion in Psychiatry, 10, 107–112.Google Scholar
  28. Fan, L., Young, P. R., Barone, F. G, Feuerstein, G. Z., Smith, D. H., & Mclntosh, T. X. (1995). Experimental brain injury induces expression of interleukin-1 beta mRNA in rat brain. Molecular Brain Research, 30, 125–130.PubMedGoogle Scholar
  29. Gabellec, M. M., Griffais, R., Fillion, G., & Haour, F. (1995). Expression of interleukin-1 alpha, interleukin-1 beta, and interleukin-1 receptor antagonist mRNA in mouse brain: regulation by bacterial Lipopolysacharide treatment. Molecular Brain Research, 31, 122–130.PubMedGoogle Scholar
  30. Gaykema, R. P. A., Dijkstra, I., & Tilders, F. J. H. (1995). Subdiaphragmatic vagotomy suppresses endotoxin-induced activation of hypothalamic corticotropin-releasing hormone neurons and ACTH secretion. Endocrinology, 136, 4714–4720.Google Scholar
  31. Grasser, A., Moller, A., Backmund, H., Yassouridis, A., & Holsboer, F. (1996). Heterogeneity of hypothalamic-pituitary-adrenal system responses to a combined dexamethasone-CRH test in multiple sclerosis. Experimental and Clinical Endocrinology and Diabetes, 104, 31–37.PubMedGoogle Scholar
  32. Hansen, M. K., Taishi, P., Chen, Z., & Krueger, J. M. (1998). Vagotomy blocks the induction of interleukin-1 beta mRNA in the brain of rats in response to systemic interleukin-1 beta. Journal of Neuroscience, 18, 2247–2253.PubMedGoogle Scholar
  33. Harbuz, M. S. & Lightman, S. L.(1992). Stress and the hypothalamo-pituitary-adrenal axis: acute, chronic, and immunological activation. Journal of Endocrinology, 134, 327–339.PubMedGoogle Scholar
  34. Hatzinger, M., Reul, J. M. H. M., Landgraf, R., Holsboer, F., & Neumann, I. (1996). Combined Dexametha-sone/CRH test in rats: Hypothalamo-Pituitary-Adrenocortical system alterations in aging. Neuroendocrinology, 64, 349–356.PubMedGoogle Scholar
  35. Holsboer, F. & Barden, N. (1996). Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocrine Reviews, 17, 187–205.PubMedGoogle Scholar
  36. Holsboer, F., Lauer, C. J., Schreiber, W., & Krieg, J. C. (1995). Altered hypothalamic-pituitary-adrenocortical regulation in healthy subjects at high familial risk for depression. Neuroendocrinology, 62, 340–347.PubMedGoogle Scholar
  37. Huizenga, N. A., Koper, J. W., DeLang, P., Pols, H. A., Stolk, R. P., De Jong, F. H., & Lamberts, S. W. (1998). Interperson variability but intraperson stability of baseline plasma cortisol concentrations, and its relation to feedback sensitivity of the hypothalamo-pituitary-adrenal axis to a low dose of dexam-ethasone in elderly individuals. Journal of Clinical Endocrinology and Metabolism, 83, 47–54.PubMedGoogle Scholar
  38. Joels, M. (1997). Steroid hormones and excitability in the mammalian brain. Frontiers in Neuroendocrinology, 18, 2–48.PubMedGoogle Scholar
  39. Kalivas, P. W. & Steward, J. (1991). Dopamine transmission in the initiation and expression of drug-and stress-induced sensitization of motor activity. Brain Research Reviews, 16, 223–244.PubMedGoogle Scholar
  40. Kent, S., Bluthé, R. M., Kelly, K. W., & Dantzer R. (1992). Sickness behavior: a new target for drug development. Trends in Pharmacological Sciences, 13, 24–28.PubMedGoogle Scholar
  41. Kluger, M. J. (1991). Fever: Role of pyrogens and cryogens. Physiological Reviews, 71, 93–127.PubMedGoogle Scholar
  42. Kovács, K. J. & Sawchenko, P. E. (1996). Sequence of stress-induced alterations in indices of synaptic and transcriptional activation in parvocellular neurosecretory neurons. Journal of Neuroscience, 16, 262–273.PubMedGoogle Scholar
  43. McEwen, B. S. & Sapolsky R. M. (1995). Stress and cognitive function. Current Opinion in Neurobiology, 5, 205–217.PubMedGoogle Scholar
  44. MacLennan, A. J. & Maier, S. F. (1983). Coping and the stress-induced potentiation of stimulant stereotypy in the rat. Science, 219, 1091–1093.PubMedGoogle Scholar
  45. MacPhee, I. A., Antoni, F., & Mason, D. W. (1989). Spontaneous recovery of rats from experimental allergic encephalomyelitis is dependent on regulation of the immune system by endogenous adrenal corticosteroids. Journal of Experimental Medicine, 169, 431–445.PubMedGoogle Scholar
  46. Maier, S. F., Goehler, L. E., Fleshner, M., & Watkins, L. R. (1998). The role of the vagus nerve in cytokine-to-brain communication. Annals of the New York Academy of Sciences, 840, 289–300.PubMedGoogle Scholar
  47. Meaney, M. J., Diorio, J., Francis, D., Widdowson, J., Laplante, P., Caldji, C, Sharma, S., Seckl, J. R., & Plotsky, P. M. (1996). Early environmental regulation of forebrain glucocorticoid receptor gene expression — implications for adrenocortical responses to stress. Developmental Neuroscience, 18, 49–72.PubMedGoogle Scholar
  48. Meerlo, P., Overkamp, G. J., & Koolhaas, J. M. (1997). Behavioral and physiological consequences of a single social defeat in Roman high-and low-avoidance rats. Psychoneuroendocrinology, 22, 155–68.PubMedGoogle Scholar
  49. Michelson, D., Stone, L., Galliven, E., Magiakou, M. A., Chrousos, G. P., Sternberg, E. M., & Gold, P. W. (1994). Multiple sclerosis is associated with alterations in hypothalamic-pituitary-adrenal axis function. Journal of Clinical Endocrinology and Metabolism, 79, 848–853.PubMedGoogle Scholar
  50. Muglia, L., Jacobson, L., & Mazjoub, J. A. (1996). Production of corticotropin-releasing hormone deficient mice by targeted mutation in embryonic stem cells. Annals of the New York Academy of Sciences, 780, 49–59.PubMedGoogle Scholar
  51. Munck, A., McGuire, P. M., & Holbrook, N. J. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Reviews, 5, 25–44.PubMedGoogle Scholar
  52. Nemeroff, C. B., Widerlov, E., Bissette, G., Walleus, H., Karlsson, I., Eklund, K., Kilts, C. D., Loosen, P. T., & Vale, W. (1984). Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science, 226, 1342–1344.PubMedGoogle Scholar
  53. Nemeroff, C. B., Krishnan, K. R. R., Reed, D., Leder, R., Beam, C, & Dunnick, R. (1992). Adrenal gland enlargement in major depression. Archives of General Psychiatry, 49, 384–387.PubMedGoogle Scholar
  54. Nguyen, K. T., Deak, T., Owens, S. M., Kohno, T., Fleshner, M., Watkins, L. R., & Maier, S. F. (1998). Exposure to acute stress induces brain interleukin-lβ protein in the rat. Journal of Neuroscience, 18, 2239–2246.PubMedGoogle Scholar
  55. Paulson, P. E., Camp, D. M., & Robinson, T. E. (1991). Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology, 103, 480–492.PubMedGoogle Scholar
  56. Plata-Salamán, C. R. & Ilyin, S. E. (1997). Interleukin-lβ (IL-lβ)-induced modulation of the hypothalamic IL-lβ system, Tumor Necrosis Factor-α, and Transforming Growth Factor-βl mRNAs in Obese (fa/fa) and Lean (Fa/Fa) Zucker rats: implications to IL-lβ feedback systems and cytokine-cytokine interactions. Journal of Neuroscience Research, 49, 541–550.PubMedGoogle Scholar
  57. Post, R. M. & Weiss, S. R. B. (1995). The Neuro biology of treatment-resistant mood disorders. In: F. E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology: The Fourth Generation of Progress (pp. 1155–1170). New York: Raven Press.Google Scholar
  58. Purba, J. S., Raadsheer, F. C, Hofman, M. A., Ravid, R., Polman, C. H., Kamphorst, W, & Swaab, D. F. (1995). Increased number of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of patients with multiple sclerosis. Neuroendocrinology, 62, 62–70.PubMedGoogle Scholar
  59. Raadsheer, F. C, Sluiter, A. A., Rabid R., Tilders, F. J. H., & Swaab, D. F. (1993). Localization of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the human hypothalamus; age-dependent colocalization with vasopressin. Brain Research, 615, 50–62.PubMedGoogle Scholar
  60. Raadsheer, F. C, Oorschot, D. E., Verwer, R. W. H., Tilders, F J. H., & Swaab, D. F (1994a). Age-related increase in the total number of corticotropin-releasing hormone neurons in the human paraventricular nucleus in controls and Alzheimer disease: Comparison of the dissector with an unfolding method. Journal of Comparative Neurology, 339, 447–457.PubMedGoogle Scholar
  61. Raadsheer, F. C, Tilders, F. J. H., & Swaab, D. F. (1994b). Similar age-related increase of vasopressin colocalization in paraventricular corticotropin-releasing hormone neurons in controls and Alzheimer patients. Journal of Neuroendocrinology, 6, 131–133.PubMedGoogle Scholar
  62. Raadsheer, F. C, Hoogendijk, W. J. G., Stam, F. G, Tilders, F. J. H., & Swaab, D. F. (1994c). Increased numbers of corticotropin releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology, 60, 436–444.PubMedGoogle Scholar
  63. Raadsheer, F. C., Van Heerikhuizen, J. J., Lucassen, P. J., Tilders, F. J. H., & Swaab, D. F. (1995). Increased corticotrophin-releasing Hormone (CRH) mRNA in the paraventricular nucleus of patients with Alzheimer’s disease and depression. American Journal of Psychiatry, 152, 1372–1376.PubMedGoogle Scholar
  64. Rivest, S. (1995). Molecular mechanisms and neural pathways mediating the influence of interleukin-1 on the activity of neuroendocrine CRF motor neurons in the rat. International Journal of Develop mental Neuroscience, 13, 135–146.Google Scholar
  65. Robinson, T. E. (1984). Behavioral sensitization: Characterization of enduring changes in rotational behavior produced by intermittent injections of amphetamine in male and female rats. Psychopharmacology, 84, 466–475.PubMedGoogle Scholar
  66. Robinson, T. E & Berridge K. C. (1993). The neural basis of drug craving: an incentive sensitization theory of addiction. Brain Research Reviews, 18, 247–291.PubMedGoogle Scholar
  67. Robinson, T. E., Becker, J. B., Young, E. A., Akil, H., & Castaneda, E. (1987). The effects of footshock stress on regional brain dopamine metabolism and pituitary beta-endorphin release in rats previously sensitized to amphetamine. Neuropharmacology, 26, 679–691.PubMedGoogle Scholar
  68. Rothwell, N. J. & Hopkins S. J. (1995). Cytokines and the central nervous system II: Actions and mechanisms of actions. Trends in Pharmacological Sciences, 18, 130–136.Google Scholar
  69. Rubin, R. T., Phillips, J. J., Sadow, T. F, & McCracken, J. T. (1995). Adrenal gland volume in major depression. Archives of General Psychiatry, 52, 213–218.PubMedGoogle Scholar
  70. Sadovnick, A. D., Remick. R. A., Allen, J., Swartz, E., Yee, I. M. L., Eisen, K., Farquhar, R., Hashimoto, S. A., Hooge, J., Kastrukoff, L. F., Morrison, W., Nelson, J., Oger, J., & Paty, D. W. (1996). Depression and multiple sclerosis. Neurology, 46, 628–632.PubMedGoogle Scholar
  71. Sarlis, N. J., Chowdrey, H. S., Stephanou, A., & Lightman S. L. (1992). Chronic activation of the hypothalamopituitary-adrenal axis and loss of circadian rhythm during adjuvant-induced arthritis in the rat. Endocrinology, 130, 1775–1779.PubMedGoogle Scholar
  72. Salta, M. A., Jacobs, R.-A., Kaltsas, G. A., & Grossman, A. B. (1998). Endotoxin induces Interleukin-1β and nitric oxide synthase mRNA in rat hypothalamus and pituitary. Neuroendocrinology, 67, 109–116.Google Scholar
  73. Sawchenko, P. E., Brown, E. R., Chan, R. K. W., Ericsson A., Li H-Y., Roland B. L., & Kovács, K. J. (1996). The paraventricular nucleus of the hypothalamus and the functional neuroanatomy of visceromotor responses to stress. In: G. Holstege, R. Bandler, & C. B. Saper (Eds.), Progress in Brain Research Vol. 107 (pp. 201–222). Elsevier Science: Amsterdam.Google Scholar
  74. Schmidt, E. D., Janszen, A. W. J. W., Wouterlood, F. G., & Tilders, F. J. H. (1995a). Interleukin-1 induced long-lasting changes in hypothalamic corticotropin-releasing hormone (CRH)-neurons and hyperresponsiveness of the hypothalamus-pituitary-adrenal axis. Journal of Neuroscience, 15, 7417–7426.PubMedGoogle Scholar
  75. Schmidt, E. D., Tilders, F. J. H., Janszen, A. W. J. W., Binnekade, R., De Vries, T. J., & Schoffelmeer, A. N. M. (1995b). Intermittent cocaine exposure causes delayed and long-lasting sensitization of cocaine-induced ACTH secretion in rats. European Journal of Pharmacology, 285, 317–321.PubMedGoogle Scholar
  76. Schmidt, E. D., Binnekade, R., Janszen, A. W. J. W., & Tilders, F. J. H. (1996). Short Stressor induced long-lasting increases of vasopressin stores in hypothalamic CRH neurons in adult rats. Journal of Neuroendocrinology 8, 703–712.PubMedGoogle Scholar
  77. Schmidt, E. D., Tilders, F. J. H., Binnekade, R., Schoffelmeer, A. N. M., & De Vries, T. J. Stressor or drug induced hypersecretion of corticosterone is not critically involved in the expression of long-term behavioral sensitization to amphetamine. Neuroscience (in press).Google Scholar
  78. Schubert, D. S. P. & Foliart, R. H. (1993). Increased depression in multiple sclerosis patients: a meta-analysis. Psychosomatics, 34, 124–130.PubMedGoogle Scholar
  79. Sehic, E. & Blatteis, C. M. (1996). Blockade of lipopolysacharide-induced fever by subdiaphragmatic vagotomy in guinea pigs. Brain Research, 726, 160–166.PubMedGoogle Scholar
  80. Shanks, N., Harbuz, M. S., Jessop D. S., Perks, P., Moore, P. M., & Lightman, S. L. (1998). Inflammatory disease as chronic stress. Annals of the New York Academy of Sciences, 840, 599–607.PubMedGoogle Scholar
  81. Sherman, A. D. & Petty, F. (1982). Specificity of the learned helplessness model of depression. Pharmacology Biochemistry and Behavior, 16, 449–454.Google Scholar
  82. Smith, G. W., Aubry, J. M., Delhi, R, Contarino, A., Bilezikjian, L. M., Gold, L. H., Chen, R., Marchuk, Y., Hauser, G, Bentley, C. A., Sawchenko, P. E., Koob, G. R, Vale, W. W., & Lee, K. F. (1998). Corticotropin releasing factor receptor I-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron, 20, 1093–1102.PubMedGoogle Scholar
  83. Stenzel-Poore, M. P., Heinrichs, S. C, Rivest, S., Koob, G. R, & Vale, W. W. (1994). Overproduction of corticotropin releasing factor in transgenic mouse: a genetic model of anxiogenic behavior. Journal of Neuroscience, 14, 2579–2584.PubMedGoogle Scholar
  84. Stewart, J. & Badiani, A. (1993). Tolerance and sensitization to the behavioral effects of drugs. Behavioral Pharmacology, 4, 289–312.Google Scholar
  85. Swaab, D. F. (1997). Neuro biology and neuropathology of the human hypothalamus. In: F. E. Bloom, A. Björklund, & T. Hökfelt (Eds.), Handbook of Chemical Neuroanatomy Vol 13 (pp. 39–138). Amsterdam: Elsevier Science.Google Scholar
  86. Tilders, F. J. H. & Schmidt, E. D. (1998). Interleukin-1-induced plasticity of hypothalamic CRH neurons and long-term stress hyperresponsiveness. Annals of the New York Academy of Sciences, 840, 65–80.PubMedGoogle Scholar
  87. Tilders, F. J. H., Schmidt, E. D., & De Goeij, D. C. E. (1993). Phenotypic plasticity of CRH neurons during stress. Annals of the New York Academy of Sciences, 697, 39–52.PubMedGoogle Scholar
  88. Tilders, F. J. H., De Rijk, R. H., Van Dam, A. M., Vincent, V. A. M., Schotanus, K., & Persoons, J. H.A. (1994). Activation of the hypothalamus-pituitary-adrenal axis by bacterial endotoxins: Routes and intermediate signals. Psychoneuroendocrinology, 19, 209–232.PubMedGoogle Scholar
  89. Van Dam, A.-M., Bauer, J., Tilders, F. J. H., & Berkenbosch, F. (1995). Endotoxin-induced appearance of immunoreactive interleukin-1β in ramified microglia in rat brain: A light and electron microscopical study. Neuroscience, 3, 815–826.Google Scholar
  90. Van Dam, A-M., De Vries, H. E., Kuiper, J., Zijlstra, F. J., Tilders, F. J. H., & Berkenbosch, F. (1996). Interleukin-1 receptors on rat brain endothelial cells: a role in neuro-immune interaction? FASEB Journal, 10, 351–356.PubMedGoogle Scholar
  91. Van Dijken, H. H. (1992). Once is enough. An animal study on temporal aspects of stress-induced behavioral and neuroendocrine changes. (Doctoral thesis). Monnickendam: Gravo Groep (pp. 1–175).Google Scholar
  92. Van Dijken, H. H., Mos, J., Van der Heijden, J. A. M., & Tilders, F. J. H (1992a). Characterization of stress-induced long-term behavioral changes in rats: evidence in favor of anxiety. Physiology and Behavior, 52, 945–951.PubMedGoogle Scholar
  93. Van Dijken, H. H., Tilders, F. J. H., Olivier, B., & Mos, J. (1992b). Effects of anxiolytic and antidepressant drugs on long-lasting behavioral deficits resulting from one short stress experience in male rats. Psychopharmacology, 109, 395–102.PubMedGoogle Scholar
  94. Van Dijken, H. H., Van der Heijden, J. A. M., Mos, J., & Tilders, F. J. H. (1992c). Inescapable footshocks induce progressive and long-lasting behavioral changes in male rats. Physiology and Behavior, 51, 787–794.PubMedGoogle Scholar
  95. Van Dijken, H. H., De Goeij, D. C. E., Sutanto, W., Mos, J., De Kloet, E. R., & Tilders, F. J. H. (1993). Short inescapable stress produces long lasting changes in the pituitary-adrenal axis of adult male rats. Neuroendocrinology, 58: 57–64.PubMedGoogle Scholar
  96. Van der Meer, M. J. M., Sweep, C. G. J., Pesman, G. J., Tilders, F. J. H., & Hermus, A. R. M. M. (1996). Chronic stimulation of the hypothalamus-pituitary-adrenal axis in rats by interleukin-lβ: central and peripheral mechanisms. Cytokine, 8, 910–919.PubMedGoogle Scholar
  97. Van Oers, J. W. A. M., Hinson, J. P., Binnekade, R., & Tilders, F. J. H. (1992). Physiological role of Corticotropin Releasing Factor in the control of ACTH mediated corticosterone release from the rat adrenal gland. Endocrinology, 130, 282–288.PubMedGoogle Scholar
  98. Von Bardeleben, U., Holsboer, F., Stalla, G. K., & Müller, O. A. (1985). Combined administration of human corticotropin-releasing factor and lysine vasopressin induces cortisol escape form dexamethasone suppression in healthy subjects. Life Sciences, 37, 1613–1618.Google Scholar
  99. Von Bardeleben, U, Stalla, G. K., Müller, O. A., & Holsboer, F. (1988). Blunting of ACTH response to human CRH in depressed patients is avoided by metyrapone pretreatment. Biological Psychiatry, 24, 782–786.Google Scholar
  100. Watanabe, T., Makisuma, M., Tan, R, Nakamori, T., Hakaura, S., & Murakami, N. (1995). Febrile responses induced in adrenalectomized rats by administration of interleukin-1 beta or prostaglandin E2. Journal of Physiology, 484, 161–115.Google Scholar
  101. Watkins, L. R., Wiertelak, E. P., Goehler, L. E., Mooney-Heiberger, K., Martinez, J., Furness, L., Smith, K. P., & Maier, S. F. (1994). Neurocircuitry of illness-induced hyperalgesia. Brain Research, 639, 283–299.PubMedGoogle Scholar
  102. Wei, T. & Lightman, S. L. (1997). The Neuroendocrine axis in patients with multiple sclerosis. Brain, 120, 1067–1076.PubMedGoogle Scholar
  103. Weinstock, M. (1997). Does prenatal stress impair coping and regulation of hypothalamus-pituitary-adrenal axis. Neuroscience and Biohavioral Reviews, 21, 1–10.Google Scholar
  104. Whitnall, M. H. (1993). Regulation of the hypothalamic corticotropin releasing hormone neurosecretory system. Progress in Neurobiology, 40, 573–629.PubMedGoogle Scholar
  105. Wilcox, R. A., Robinson, T. E., & Becker, J. B. (1986). Enduring enhancement in amphetamine-stimulated striatal dopamine release in vitro produced by prior exposure to amphetamine or stress in vivo. European Journal of Pharmacology, 124, 375–376.PubMedGoogle Scholar
  106. Young, E. A., Haskett, R. F., Murphy-Weinburg, V., Watson, S., & Akil, H. (1991). Loss of glucocorticoid fast feedback in depression. Archives of General Psychiatry, 48, 693–699.PubMedGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • J. H. Tilders
    • 1
  • E. D. Schmidt
    • 1
  1. 1.Faculty of Medicine Department of PharmacologyResearch, Institute Neurosciences Vrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations