Chlamydia pneumoniae: Natural history, epidemiology and microbiology

Part of the Developments in Cardiovascular Medicine book series (DICM, volume 218)


Chlamydia pneumoniae is a very common cause of infection in humans. Before reviewing evidence implicating C. pneumoniae in atherogenesis, it is worth considering background details on the organism itself. Of particular relevance are the natural history, epidemiology and microbiology of C. pneumoniae and other chalmydial species, and available anti-chlamydial antibiotic treatments.


Chlamydia Trachomatis Chlamydial Infection Complement Fixation Test Elementary Body Major Outer Membrane Protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cook PJ, Honeybourne D. Chlamydia pneumoniae. J Antimicrob Chemother 1994; 34: 859–73.PubMedCrossRefGoogle Scholar
  2. 2.
    Fukusi H, Hirai K. Chlamydia pecorum — the 4th species of genus Chlamydia. Microbiol Immunol 1993; 27: 515–22.Google Scholar
  3. 3.
    Schachter J, Caldwell HD. Chlamydiae. Ann Rev Microbiol 1980; 34: 285–309.CrossRefGoogle Scholar
  4. 4.
    Thylefors B. Present challenges in the global prevention of blindness. Aust N Z J Ophthalmol 1992; 20: 89–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Witkin SS, Ledger WS. Antibody to Chlamydia trachomatis in sera of women with recurrent spontaneous abortions. Am J Obs Gynecol 1992; 167: 135–9.Google Scholar
  6. 6.
    Schachter J, Lun L, Gooding CA, Ostler B. Pneumonitis following inclusion blennorrhoea. J Pediatr 1975; 87: 779–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Grayston JT, Kuo CC, Wang SP, Altman J. A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med 1986; 315: 161–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Allegra L. History of a new agent of pneumonia. In: Chlamydia pneumoniae Infection (Allegra L, Blasi F, eds). Springer-Verlag, Milan, Italy 1995; pp. 1–2.Google Scholar
  9. 9.
    Saikku P, Wang SP, Kleemola M et al. An epidemic of mild pneumonia due to an unusual strain of Chlamydia psittaci. J Infect Dis 1985; 151: 832–9.PubMedGoogle Scholar
  10. 10.
    Moulder JM. Interaction of chlamydiae and host cells in vitro. Microbiol Rev 1991; 55: 143–9.PubMedGoogle Scholar
  11. 11.
    Nurminen M, Rietschel ET, Brade H. Chemical characterisation of Chlamydia trachomatis lipopolysaccharide. Infect Immun 1985; 54: 568–74.Google Scholar
  12. 12.
    Brade H, Brade L, Nano FE. Chemical and serological investigations on the genus-specific lipopolysaccharide epitope of Chlamydia. Proc Natl Acad Sci USA 1987; 84: 2508–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Su H, Watkins NG, Zhang YX, Caldwell HD. Chlamydia trachomatis-host cell interactions: role of the chlamydial major outer membrane protein as an adhesin. Infect Immun 1990; 58: 1017–25.PubMedGoogle Scholar
  14. 14.
    Brade L, Schramek S, Schade U, Brade H. Chemical, biological and immunochemical properties of Chlamydia psittaci lipopolysaccharide. Infect Immun 1986; 54: 568–74.PubMedGoogle Scholar
  15. 15.
    Ingalls RR, Rice PA, Qureshi N et al. The inflammatory cytokine reponse to Chlamydia trachomatis infection is endotoxin mediated. Infect Immun 1995; 63: 3125–30.PubMedGoogle Scholar
  16. 16.
    Schachter J. Chlamydiae. In: Manual of Clinical Microbiology (Balows A, Hausler W Jr, Herrmann K, Isenberg H, Shadomy J, eds). American Society of Microbiology, Washington DC, USA, 1991; pp. 1045–53.Google Scholar
  17. 17.
    Byrne GI. Host cell relationships. In: Microbiology of Chlamydia (Barron AL, ed.). CRC Press Inc., Florida, 1988; pp. 135–49.Google Scholar
  18. 18.
    Ward M. The immunobiology and immunopathology of Chlamydia infections. APMIS 1995; 103: 769–96.PubMedCrossRefGoogle Scholar
  19. 19.
    Morrison RP. Chlamydial hsp60 and the immunopathogenesis of chlamydial disease. Semin Immunol 1989; 3: 25–33.Google Scholar
  20. 20.
    Grayston JT, Woolridge RL, Wang SP. Trachoma vaccine studies on Taiwan. Ann N Y Acad Sci 1962; 98: 352–67.PubMedCrossRefGoogle Scholar
  21. 21.
    Morrison RP. Chlamydial 57-kilodalton stress response protein is deleterious immune target. In: Microbial Determinants, Virulence and Host Response (Ayoub EM, Cassell G, Branche WC, Henry TJ, eds). Washington DC, USA, American Society of Microbiology, 1990; pp. 243–50.Google Scholar
  22. 22.
    Lindquist S, Craig EA. The heat shock proteins. Ann Rev Genet 1988; 22: 631–77.PubMedCrossRefGoogle Scholar
  23. 23.
    Young D, Lathigra R, Hendrix R, Sweetser R, Young RA. Stress proteins are immune targets in leprosy and tuberculosis. Proc Natl Acad Sci USA 1988; 85: 4267–70.PubMedCrossRefGoogle Scholar
  24. 24.
    Cerrone MC, Ma JJ, Stephens RS. Cloning and sequence of the gene for heat shock protein 60 from Chlamydia trachomatis and immunological reactivity of the protein. Infect Immun 1991; 58: 2098–114.Google Scholar
  25. 25.
    Leinonen M. Pathogenetic mechanisms and epidemiology of Chlamydia pneumoniae. Eur Heart J 1993; 14(Suppl. K): 57–61.PubMedGoogle Scholar
  26. 26.
    Grayston JT, Wang SP, Kuo CC, Campbell LA. Current knowledge on Chlamydia pneumoniae, strain TWAR, an important cause of pneumonia and other acute respiratory diseases. Eur J Clin Microbiol Infect Dis 1989; 8: 191–202.PubMedCrossRefGoogle Scholar
  27. 27.
    Marrie TJ, Grayston JT, Wang SP, Kno CC. Pneumonia associated with the TWAR strain of Chlamydia. Ann Intern Med 1987; 106: 507–11.PubMedGoogle Scholar
  28. 28.
    Kauppinen MT, Herva E, Kujula P et al. The etiology of community-acquired pneumonia among hospitalized patients during a Chlamydia pneumoniae epidemic in Finland. J Infect Dis 1995; 172: 1330–5.PubMedGoogle Scholar
  29. 29.
    Grayston JT, Campbell LA, Kuo CC et al. A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. J Infect Dis 1990; 161: 618–25.PubMedGoogle Scholar
  30. 30.
    Saikku P. The epidemiology and significance of Chlamydia pneumoniae. J Infect 1992; 1: 27–34.CrossRefGoogle Scholar
  31. 31.
    Ekman M-R, Grayston JT, Visakorpi R et al. An epidemic of infections due to Chlamydia pneumoniae in military conscripts. Clin Infect Dis 1993; 17: 420–5.PubMedGoogle Scholar
  32. 32.
    Aldous MB, Grayston JT, Wang SP, Fog HM. Seroepidemiology of Chlamydia pneumoniae TWAR infection in Seattle families, 1966–1979. J Infect Dis 1992; 166: 646–9.PubMedGoogle Scholar
  33. 33.
    Wang SP, Grayston JT. Population prevalence antibody to Chlamydia pneumoniae, strain TWAR. In: Proceedings of the 7th International Symposium on Human Chlamydial Infections (Bowie WR, Caldwell HD, Jones RP et al., eds). 1990; pp. 402–5.Google Scholar
  34. 34.
    Kuo CC, Jackson LA, Campbell LA, Grayston JT. Chlamydia pneumoniae (TWAR). Clin Microbiol Rev 1995; 8: 451–61.PubMedGoogle Scholar
  35. 35.
    Gronhagen-Riska C, Saikku P, Riska H, Froseth B, Grayston JT. Antibodies to TWAR — a novel type of Chlamydia — in sarcoidosis. In: Sarcoidosis and Other Granulomatous Disorders (Grassi C, Rizzato G, Pozzi E, eds). Amsterdam, Netherlands, Elsevier Science Publishers, 1988; pp. 297–301.Google Scholar
  36. 36.
    Braun J, Laitko S, Treharne J et al. Chlamydia pneumoniae — a new causative agent of reactive arthritis and undifferentiated oligoarthritis. Ann Rheum Dis 1994; 53: 100–5.PubMedGoogle Scholar
  37. 37.
    Haidl S, Ivarsson S, Bjerre I, Personn K. Guillain-Barré syndrome after Chlamydia pneumoniae infection. N Engl J Med 1992; 326: 576–7 [letter].PubMedGoogle Scholar
  38. 38.
    Hahn DL, Anttila T, Saikku P. Association of Chlamydia pneumoniae IgA antibodies with recently symptomatic asthma. Epidemiol Infect 1996; 117: 513–7.PubMedGoogle Scholar
  39. 39.
    Beaty CD, Grayston JT, Wang SP et al. Chlamydia pneumoniae, strain TWAR, infection in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 1991; 144: 1408–10.PubMedGoogle Scholar
  40. 40.
    Bone RC. Chlamydia pneumoniae and asthma: a potentially important relationship. JAMA 1991; 266: 225–30.CrossRefGoogle Scholar
  41. 41.
    Patton DL, Taylor HR. The histopathology of experimental trachoma: Ultrastructural changes in the conjunctival epithelium. J Infect Dis 1986; 153: 870–8.PubMedGoogle Scholar
  42. 42.
    Beatty WL, Byrne GI, Morrison RP. Repeated and persistent infection with Chlamydia and the development of chronic inflammation and disease. Trends Microbiol 1994; 2: 94–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Ridgway GL, Taylor-Robinson D. Current problems in microbiology: 1. Chlamydial infections: Which laboratory test? J Clin Pathol 1991; 44: 1–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Schacter J, Moncada J, Dawson CR et al. Nonculture methods for diagnosing chlamydial infection in patients with trachoma: A clue to the pathogenesis of the disease? J Infect Dis 1988; 158: 1347–52.Google Scholar
  45. 45.
    Stephens RS, Wagar EA, Edman U. Developmental regulation of tandem promoters for the major outer membrane protein gene for Chlamydia trachomatis. J Bacteriol 1988; 168: 1277–82.Google Scholar
  46. 46.
    Puolakkainen M, Parker J, Kuo CC, Grayston JT, Campbell LA. Characterisation of a Chlamydia pneumoniae epitope recognised by species-specific monoclonal antibodies. In: Proceedings of 8th International Symposium on Human Chlamydial Infections, (Orfila J, Byrne GI, Chernesky MA et al., eds). Bologna, Italy, Societa Editrice Esculapoi, 1994; pp. 185–8.Google Scholar
  47. 47.
    Wang SP, Grayston JT. Microimmunofluorescence antibody responses in Chlamydia trachomatis infection, a review. In: Chlamydial Infections (Mårdh PA et al., eds). Amsterdam, Netherlands, Elseiver Biomed Press, 1970; pp. 301–16.Google Scholar
  48. 48.
    Grayston JT, Golubjatnikov R, Hagiwara T et al. Serologic tests for Chlamydia pneumoniae. Pediatr Infect Dis J 1993; 12: 790–1.PubMedGoogle Scholar
  49. 49.
    Peeling RW, Wang SP, Grayston JT et al. Chlamydia serology: Inter-laboratory variation in microimmunofluorescence results. Proceedings from the 9th International Symposium on Human Chlamydial Infection, Napa, California USA (June 21–26, 1998).Google Scholar
  50. 50.
    Brade L, Brunnemann H, Ernst M et al. Occurrence of antibodies against chlamydial lipopolysaccharide in human sera as measured by ELISA using an artificial glycoconjugate antigen. FEMS Immunol Med Microbiol 1994; 8: 27–41.PubMedCrossRefGoogle Scholar
  51. 51.
    Verkooyen RP, Van Lent NA, Mousavi SA et al. Diagnosis of Chlamydia pneumoniae in patients with chronic obstructive pulmonary disease by microimmunofluorescence and ELISA. J Med Microbiol 1997; 46: 959–64.PubMedGoogle Scholar
  52. 52.
    Wang SP and Grayston JT. Microimmunofluorescence serological studies with the TWAR organism. In: Chlamydial Infections (Oriel JD, Ridgway G, Schachter J, et al., eds). Cambridge, UK, Cambridge University Press, 1986; pp. 329–32.Google Scholar
  53. 53.
    Thorn DH, Grayston JT, Campbell LA et al. Respiratory infection with Chlamydia pneumoniae in middle-aged and older adult outpatients. Eur J Clin Microbiol Infect Dis 1994; 13: 785–92.CrossRefGoogle Scholar
  54. 54.
    Gaydos CA, Roblin PM, Hammerschlag MR et al. Diagnostic utility of PCR-enzyme immunoassay, culture, and serology for detection of Chlamydia pneumoniae in symptomatic and asymptomatic patients. J Clin Microbiol 1994; 32: 903–5.PubMedGoogle Scholar
  55. 55.
    Soini H, Shurnik M, Liippo K, Tala E, Viljanen MK. Detection and identification of mycobacteria by amplification of a segment of the gene coding for the 32-kilodalton protein. J Clin Microbiol 1992; 30: 2025–8.PubMedGoogle Scholar
  56. 56.
    Williams JD. The new azalide antimicrobials. Curr Opin Infect Dis 1994; 7: 653–7.CrossRefGoogle Scholar
  57. 57.
    Hammerschlag MR, Chirgwin K, Roblin PM et al. Persistent infection with Chlamydia pneumoniae following acute respiratory illness. Clin Infect Dis 1992; 14: 178–82.PubMedGoogle Scholar
  58. 58.
    Bourke SJ, Lightfoot NF. Chlamydia pneumoniae: Defining the clinical spectrum of infection requires precise laboratory diagnosis. Thorax 1995; 50(Suppl 1): S43–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Grayston JT. Antibiotic treatment of Chlamydia pneumoniae for secondary prevention of cardiovascular events. Circulation 1998; 97: 1669–70.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Personalised recommendations