Advertisement

Haemodialysers and Associated Devices

  • Nicholas A. Hoenich
  • Celia Woffindin
  • Claudio Ronco

Abstract

The principle of haemodialysis is simple. Blood and dialysis fluid are circulated on opposite sides of a semipermeable membrane which permits the passage of metabolites elevated as a consequence of renal failure but restricts the transfer of blood proteins and formed elements. The device containing the semi-permeable membrane is the haemodialyser. Removal of water occurs by control of the hydrostatic pressure gradient across the membrane and may be supplemented by increasing the dialysis fluid osmolality by the addition of glucose

Keywords

Ethylene Oxide Blood Flow Rate Artif Organ Nephrol Dial Transplant Dialysis Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 25.
    Fielder RJ, Sorrie GS, Bishop CM, Van Den Heuvel M, Fletcher AP: Formaldehyde, Toxicity Review, Her Majesty’s Stationery Office, London, 1985Google Scholar
  2. 26.
    Hoenich NA, von Hartitzsch B, Samson PJ, Erickson J, Reed B, Kerr DNS: The Dasco SP 400 disposable dialyser. Proc Eur Dial Transplant Assoc 9: 592, 1972PubMedGoogle Scholar
  3. 27.
    Alwall N: A new disposable artificial kidney: Experimental and clinical experience. Proc Eur Dial Transplant Assoc 5: 18, 1968Google Scholar
  4. 28.
    von Hartitzsch B, Hoenich NA, Erickson J, Jolly D, Samson P, Reed BR et al.: The Gambro Lundia — a new disposable multilayer dialyser. Proc Eur Dial Transplant Assoc 9: 601, 1972Google Scholar
  5. 29.
    Hoenich NA, Conceicao S, White T, Ward MK, Kerr DNS: Large surface area dialysers — a question of performance. Proc Eur Soc Artif Organs 3: 185, 1976Google Scholar
  6. 30.
    von Hartitzsch B, Hoenich NA, Johnson J, Brewis RAL, Kerr DNS: The problem of de-aeration — cause, consequence, cure. Proc Eur Dial Transplant Assoc 9: 605, 1972Google Scholar
  7. 31.
    Stewart RD, Baretta ED, Cerny JC, Mahon HI: An artificial kidney made from capillary fibres. Inv Urology 3: 614, 1966Google Scholar
  8. 32.
    Lindsay RM, Burton JA, Edward N, Dargie HJ, Prentice CRM, Kennedy AC: Dialyser blood loss. Clin Nephrol 1: 29, 1973PubMedGoogle Scholar
  9. 33.
    Agishi T, Ota K, Nose Y: Is hollow fibre occlusion due to maldistribution of blood? Proc Eur Dial Transplant Assoc 12: 519, 1975Google Scholar
  10. 34.
    Nakagawa S, Koshikawa S, Ishida Y, Uematsu M, Ishibashi K: Development of a flat type hollow fibre dialyser (NF-01). Achievement of better performance than cylinder type with same membrane area. in Technical Aspects of Renal Dialysis, edited by Frost TH, Tunbridge Wells, Pitman Medical, 1977, p 29Google Scholar
  11. 35.
    Lee KH, Taylor JA: Multi-chambered dialyzers and their efficiencies. Artif Organs 3: 137, 1979PubMedCrossRefGoogle Scholar
  12. 36.
    Sigdell JE: A Mathematical Theory for the Capillary Artificial Kidney, Stuttgart, Hippokrates Verlag, 1974Google Scholar
  13. 37.
    Ronco C, Mantovani F: Criteri generali per la valutazione tecnica e clinica dei dializzatori e delle membrane per emodialisi, Trattato Italiano di Dialisi, Milan, Wichtig Editore, 1992Google Scholar
  14. 38.
    Sigdell JE: New hollow fibre dialyzers. Artif Organs 9: 69, 1985PubMedCrossRefGoogle Scholar
  15. 39.
    Sigdell JE: Operating characteristics of hollow-fiber dialyzers. in Clinical Dialysis, 2nd ed, edited by Nissenson AR, Fine RN, Gentile DE, Connecticut, Appleton Lange, 1990, p 97Google Scholar
  16. 40.
    Sakai K: Technical determination of optimal dimensions of hollow fibre membranes for clinical dialysis. Nephrol Dial Transplant 4(Suppl): 73, 1989Google Scholar
  17. 41.
    Babb AL, Popovich RP, Christopher TG, Scribner BH: The genesis of the square meter-hour hypothesis. Trans Am Soc Artif Intern Organs 17: 81, 1971PubMedGoogle Scholar
  18. 42.
    Kambic HE, Nose Y: Plasmapheresis: Historical perspective, therapeutic applications, and new frontiers. Artif Organs 17: 850, 1993PubMedCrossRefGoogle Scholar
  19. 43.
    Malchesky PS, Wojcicki J, Horinchi T, Lee JM, Nose Y: Membrane Separation Processes for Macromolecule Removal. in Plasmapheresis, edited by Nose Y, Malchesky P, Smith JW, Cleveland, Int Soc Artif Organs Press, 1983, p51Google Scholar
  20. 44.
    Bellhouse BJ, Lewis RWH: A high efficiency membrane separator for donor plasmapheresis. Trans Am Soc Artif Intern Organs 34: 747, 1988Google Scholar
  21. 45.
    Zydney AL, Colton CK: Continuous flow membrane plasmapheresis: Theoretical models for flux and hemolysis prediction. Trans Am Soc Artif Intern Organs 28: 408, 1982PubMedGoogle Scholar
  22. 46.
    Malbrancq JM, Jaffrin MY, Bouveret E, Angleraud R, Vantard G: Factors governing plasma filtration rate in plasmapheresis by plane microporous membranes. Proc Eur Soc Artif Organs 11: 46, 1982Google Scholar
  23. 47.
    Gardiner AOP, Sawyer AN, Donckerwolcke RA, Haycock GB, Murphy A, Ogg CS et al.: Assessment of dialysis requirement for children on regular hemodialysis. Dial Transplant 11: 754, 1982Google Scholar
  24. 48.
    Bosch JP: Continuous Arteriovenous Hemofiltration. in Hemofiltration, edited by Henderson LW, Quellhorst EA, Baldamus CA, Lysaght MJ, Berlin, Heidelberg, Springer-Verlag, 1986, p 234Google Scholar
  25. 49.
    Babb AL, Grimsrud L, Bell RL, Layno SB: Engineering aspects of artificial kidney systems. in Chemical Engineering in Medicine and Biology, edited by Hershey D, New York, Plenum Press, 1967, p 289Google Scholar
  26. 50.
    Fry D, Hoover PL: Single pass dialysate flow for the Seattle pumpless hemodialysis system. Trans Am Soc Artif Intern Organs 10: 98, 1964PubMedGoogle Scholar
  27. 51.
    Sigdell JE, Tersteegen B: Clearance for a dialyzer under varying operating conditions. Artif Organs 10: 219, 1986PubMedGoogle Scholar
  28. 52.
    Charm S, Kurland G: Viscometry of human blood for shear rates 0-100,000 sec-1. Nature 206: 617, 1965PubMedGoogle Scholar
  29. 53.
    Pallone TH, Petersen J: Continuous arteriovenous hemofiltration: an in vitro simulation and mathematical model. Kidney Int 33: 685, 1988PubMedGoogle Scholar
  30. 54.
    Pallone TL, Petersen J: A mathematical model of continuous arteriovenous hemofiltration predicts performance. Trans Am Soc Artif Intern Organs 33: 304, 1987Google Scholar
  31. 55.
    Sheely ML: Glycerol viscosity tables. Industrial and Engineering Chemistry 24: 1060, 1932Google Scholar
  32. 56.
    Takesawa S, Terasawa M, Sakagami M, Kobayashi T, Hidai H, Sakai K: Nondestructive evaluation by X-ray computed tomography of dialysate flow patterns in capillary dialyzers. Trans Am Soc Artif Intern Organs 34: 794, 1988Google Scholar
  33. 57.
    Gunnarsson B: Single photon emission tomographic studies of a capillary dialyzer. ASAIO J 4: 103, 1981Google Scholar
  34. 58.
    Levenspiel O: Chemical Reaction Engineering, 2nd ed. New York, John Wiley, 1972Google Scholar
  35. 59.
    Tello R, March R, Lowrie EG: A model of the reinfusion process at termination of hemodialysis. Dial Transplant 12: 444, 1983Google Scholar
  36. 60.
    Saleh TAM: Investigation into the Washout Characteristics of Flat Plate Rectangular Channels with Supply Systems and Their Application to Haemodialysers, University of Newcastle upon Tyne, 1978Google Scholar
  37. 61.
    Clayton CB, Hoenich NA, Keir MJ: The measurement of dialyser washout characteristics. in Technical Aspects of Renal Dialysis, edited by Frost TH, Tunbridge Wells, Pitman Medical, 1977, p 65Google Scholar
  38. 62.
    Pijl AJ, Solen KA, Mohammad SF, Monson R, Yu LS, van Griensven J et al.: Loss of anticoagulant effect of heparin during circulation of human blood in vitro. Artif Organs 14: 125, 1990PubMedCrossRefGoogle Scholar
  39. 63.
    Holland FF, Gidden HE, Mason RG, Klein E: Thrombogenecity of heparin bound DEAE cellulose hemodialysis membranes. ASAIO J 1: 24, 1978Google Scholar
  40. 64.
    Lane DA: Heparin binding and neutralising proteins. Heparin: Chemical and Biological Properties, Clinical Applications, edited by Lane DA, Lindahl U, London, Edward Arnold, 1989, p 363Google Scholar
  41. 65.
    Kitamoto Y, Fukui H, Matsushita K, Sato T, Soejima H, Noguchi Y et al.: Supression of thrombin formation during hemodialysis with triglyceride. ASAIO J 39: M581, 1993PubMedGoogle Scholar
  42. 66.
    Lins LE, Boberg U, Jacobson SH, Kjellstrand C, Ljunberg B, Skroder, R: The influence of dialyzer geometry on blood coagulation and biocompatibility. Clin Nephrol 40: 281, 1993PubMedGoogle Scholar
  43. 67.
    Verbeelen D, Jochmans K, Herman AG, van der Niepen P, Sennesael J, de Waele M: Evaluation of platelets and haemostasis during hemodialysis with six different membranes. Nephron 59: 567, 1991PubMedGoogle Scholar
  44. 68.
    Leitienne Ph, Trzeciak MC, Adeleine P, Ville D, Dechavanne M, Traeger J et al.: Comparison of hemostasis with two high flux hemocompatible dialysis membranes. Int J Artif Organs 14: 227, 1991PubMedGoogle Scholar
  45. 69.
    Arakawa M, Aoike I, Sizuki Y, Gejyo F, Terada R, Sugaya H et al.: Antithrombogenecity of polyacrylonitrilepolyethyleneoxide hollow fiber membrane developed for designing an antithrombogenic continuous ultrafiltration system. Artif Organs 16: 146, 1992PubMedCrossRefGoogle Scholar
  46. 70.
    Bowry SK: Dialyser redness: its measurement and meaning. Eur Dial Transplant Assoc-Eur Renal Care Assoc J 18:43, 1992Google Scholar
  47. 71.
    Colton CK: Analysis of membrane processes for blood purification. Blood Purif 5: 202, 1987PubMedGoogle Scholar
  48. 72.
    Sigdell JE: Calculation of combined diffusive and convective mass transfer. Int J Artif Organs 5: 361, 1982PubMedGoogle Scholar
  49. 73.
    Hoenich NA, Frost TH: Influence of design and operating variables on conventional haemodialysis. in Renal Dialysis, edited by Whelpton D, London, Sector Publishing, 1974, p 85Google Scholar
  50. 74.
    Babb AL, Maurer CJ, Fry DL, Popovich RP, McKee RE: The determination of membrane permeabilities and solute diffusivities with applications to hemodialysis. Chemical Engineering Symposium Series 64: 59, 1968Google Scholar
  51. 75.
    Gotch FA: Models to predict recirculation and its effect on treatment time in single-needle dialysis. in First International Symposium on Single-Needle Dialysis, edited by Ringoir S, Vanholder R, Ivanovich P, Cleveland, Int Soc Artif Organs Press, 1984, p 47Google Scholar
  52. 76.
    Morcos AWB, Nissenson AR: Erythropoietin and high-efficiency dialysis. in Contemporary Issues in Nephrology 27 Hemodialysis High-Efficiency Treatments, edited by Bosch JP, New York, Churchill Livingstone, 1993, p 151Google Scholar
  53. 77.
    Shinaberger JH, Miller JH, Gardner PW: Erythropoietin alert: risks of high hematocrit hemodialysis. Trans Am Soc Artif Intern Organs 34: 179, 1988Google Scholar
  54. 78.
    Spiegler KS, Kedem O: Thermodynamics of hyperfiltration (reverse osmosis): Criteria for efficient membranes. Desalination 1: 311, 1966Google Scholar
  55. 79.
    Lysaght MJ, Ford CA, Colton CK, Stone RA, Henderson LW: Mass transfer in clinical blood ultrafiltration devices — a review. in Technical Aspects of Renal Dialysis, edited by Frost TH, Tunbridge Wells, Pitman Medical, 1978, p 81Google Scholar
  56. 80.
    Gupta BB, Jaffrin MY: In vitro study of the combined convection-diffusion mass transfer in hemodialysers. Int J Artif Organs 7: 263, 1984PubMedGoogle Scholar
  57. 81.
    Jaffrin MY, Ding L, Laurent JM: Simultaneous convective and diffusive mass transfers in a hemodialyser. Trans ASME Journal of Biomechanical Engineering 112: 212, 1990Google Scholar
  58. 82.
    Ghezzi PM, Sanz-Moreno C, Gervasio R, Nigrelli S, Botella J: Technical requirements for rapid high-efficiency therapy in uremic patients. Paired filtration-dialysis (PFD) with a two-chamber technique. Trans Am Soc Artif Intern Organs 33: 546, 1987Google Scholar
  59. 83.
    Vincent HH, van Ittersun FJ, Akcahuseyin E, Vos MC, van Duyl WA, Schalekamp MADH: Solute transport in continuous arteriovenous hemodiafiltration. A new mathematical model applied to clinical data. Blood Purif 8: 159, 1990Google Scholar
  60. 84.
    Leonard EF, Bluemle LW Jr: Factors influencing the permeability in extracorporeal hemodialysis. Trans Am Soc Artif Intern Organs 4: 4, 1958Google Scholar
  61. 85.
    Michaels AS: Operating parameters and performance criteria for hemodialyzers and other membrane separation devices. Trans Am Soc Artif Intern Organs 12: 387, 1966PubMedGoogle Scholar
  62. 86.
    Campistol JM, Skinner M: β2-microglobulin amyloidosis: an overview. Semin Dial 6: 117, 1993Google Scholar
  63. 87.
    Zaoui PH, Stone WJ, Hakim RM: Effects of dialysis membranes on β2 microglobulin production and cellular expression. Kidney Int 38: 962, 1990PubMedGoogle Scholar
  64. 88.
    Jahn B, Betz M, Deppisch R, Janssen O, Hansch GM, Ritz E: Stimulation of β2 microglobulin synthesis in lymphocytes after exposure to Cuprophan dialyzer membranes. Kidney Int 40: 285, 1991PubMedGoogle Scholar
  65. 89.
    Zingraff J, Druecke T: Can the nephrologist prevent dialysis related amyloidosis? Am J Kidney Dis 18: 1, 1991PubMedGoogle Scholar
  66. 90.
    David S, Canino F, Ferrari ME, Cambi V: The role of adsorption in β2 microglobulin removal. Nephrol Dial Transplant (Suppl 2): 64, 1991Google Scholar
  67. 91.
    Klinke B, Rockel A, Abdelhamid S, Fiegel P, Walb D: Transmembranous transport and adsorption of β2 microglobulin during hemodilyais using polysulfone, polyacrylonitrile, polymethyl methacrylate and cuprammonium rayon membranes. Int J Artif Organs 12: 697, 1989PubMedGoogle Scholar
  68. 92.
    Lian JD, Cheng CH, Chang YL, Hsiong CH, Lee CJ: Clinical experience and model analysis on β2-microglobulin kinetics in high-flux hemodialysis. Artif Organs 17: 758, 1993PubMedCrossRefGoogle Scholar
  69. 93.
    Di Raimondo CR, Pollack VE: β2 microglobulin kinetics in maintenance haemodialysis. A comparison of conventional and high flux dialyzers and the effects of dialyser reuse. Am J Kidney Dis 13: 390, 1989Google Scholar
  70. 94.
    Skroeder NR, Jacobson SH, Holmquist B, Kjellstrand P, Kjellstrand CM: β2 microglobulin generation and removal in long slow and short fast hemodiaylsis. Am J Kidney Dis 21: 519, 1993PubMedGoogle Scholar
  71. 95.
    Floege J, Wilks M, Shaldon S, Koch KM, Smeby LC: β2 microglobulin kinetics during haemofiltration. Nephrol Dial Transplant 3: 784, 1988PubMedGoogle Scholar
  72. 96.
    Kaiser JP, Hagemann J, von Herrath D, Schaefer K: Different handling of β2-microglobulin during hemodialysis and hemofiltration. Nephron 48: 132, 1988PubMedGoogle Scholar
  73. 97.
    Floege J, Granolleras C, Deschodt G, Heck M, Baudin G, Branger B et al.: High flux synthetic versus cellulosic membranes for β2 microglobulin removal during hemodialysis, hemodiafiltration and hemofiltration. Nephrol Dial Transplant 4: 653, 1989PubMedGoogle Scholar
  74. 98.
    Ward RA, Schaefer RM, Falkenhagen D, Joshua MS, Heidland A, Klinkmann H et al.: Biocompatibility of a new high-permeability modified cellulose membrane for haemodialysis. Nephrol Dial Transplant 8: 47, 1993PubMedGoogle Scholar
  75. 99.
    Sigdell JE, Tersteegen B: Clearance of a dialyser under varying operating conditions. Artif Organs 10: 219, 1986PubMedCrossRefGoogle Scholar
  76. 100.
    Tyagi VP, Abbas M: An exact analysis for solute transport, due to simultaneous dialysis and ultrafiltration in a hollow-fibre artificial kidney. Bull Math Biol 49: 697, 1987PubMedGoogle Scholar
  77. 101.
    Waniewski J, Lucjanek P, Werynski A: Alternative descriptions of combined diffusive and convective mass transport in hemodialyzer. Artif Organs 17: 3, 1993PubMedCrossRefGoogle Scholar
  78. 102.
    Hootkins R, Bourgeois B: The effect of ultrafiltration on dialysance. Mathematical theory and experimental verification. Trans Am Soc Artif Intern Organs 37: M375, 1991Google Scholar
  79. 103.
    Waniewski J, Werynski A, Abrenholz P, Lucjanek P, Judycki W, Esther G: Theoretical basis and experimental verification of the impact of ultrafiltration on dialyser clearance. Artif Organs 15: 70, 1991PubMedCrossRefGoogle Scholar
  80. 104.
    Morcos AWB, Nissenson AR: Erythropoietin and high efficiency dialysis. in Hemodialysis — High Efficiency Treatments, edited by Bosch JP, Stein JH, New York, Churchill Livingstone, 1993, p 151Google Scholar
  81. 105.
    Collins A, Keshaviah P, Berkseth R, Opsahl J, Abraham P: Impact of erythropoietin (EPO) therapy (RX) on rapid high efficiency hemodialysis (RHED). (Abstract). Kidney Int 35: 243, 1989Google Scholar
  82. 106.
    Descombes E, Perriard F, Fellay G: Diffusion kinetics of urea, creatinine and uric acid in blood during hemodialysis. Clinical Implications. Clin Nephrol 40: 286, 1993PubMedGoogle Scholar
  83. 107.
    Strathmann H, Gohl H: Membranes for blood purification. State of the art and new developments. in Terminal Renal Failure, Therapeutic Problems, Possibilities and Potentials. Contributions to Nephrology, edited by Klinkmann H, Smeby LC, Basel, Karger, 1990, p 119Google Scholar
  84. 108.
    Suzuki Y, Kanamori T, Sakai K: Zeta potential of hollow fiber dialysis membranes and its effects on hydrogen phosphate ion permeability. ASA1O J 39: M301, 1993Google Scholar
  85. 109.
    Okada M, Watanabe T, Irnamura K, Tsurumi T, Suma Y, Sakai K: Ionic strength affects diffusive permeability to an inorganic phosphate ion of negatively charged dialysis membranes. Trans Am Soc Artif Intern Organs 36: M324, 1990Google Scholar
  86. 110.
    Higa M, Kira A, Tanioka A, Miyasaka K: New hemodialysis method using positively charged membrane dialyzer and/or polycation dialysate. Ind Eng Chem Res 32: 917, 1993Google Scholar
  87. 111.
    Gohl H, Konstantin P: Membranes and filters for hemofiltration. in Hemofiltration, edited by Henderson LW, Quellhorst EA, Baldamus CA, Lysaght MJ, Berlin, Springer-Verlag, 1986, p 42Google Scholar
  88. 112.
    Ofsthun NJ, Jensen JC, Kay M: Effect of high haematocrit and high blood flow rates on transmembrane pressure and ultrafiltration rate in hemodialysis. Blood Purif 9: 169, 1991PubMedGoogle Scholar
  89. 113.
    Petersen J, Hyver SW, Cajias J: Backfiltration during dialysis. A critical assessment. Semin Dial 5: 13, 1992Google Scholar
  90. 114.
    Ronco C: Back filtration in clinical dialysis: nature of the phenomenon, mechanisms and possible solutions. Int J Artif Organs 13: 11, 1990PubMedGoogle Scholar
  91. 115.
    Soltys PJ, Ofsthun N, Leypoldt JK: Critical analysis of formulas for estimating back filtration in hemodialysis. Blood Purif 10: 326, 1992Google Scholar
  92. 116.
    Ronco C: Back filtration. A controversial issue in modern dialysis. Int J Artif Organs 11: 69, 1988PubMedGoogle Scholar
  93. 117.
    Baurmeister U, Vienken J, Daum V: High flux dialysis membranes: Endotoxin transfer by back filtration can be a problem. Nephrol Dial Transplant 4(Suppl): 89, 1989Google Scholar
  94. 118.
    Laude Sharp M, Caroff M, Simard L, Pusiheri C, Kazatchkine MD, Haeffner Cavailion N: Induction of IL-1 during hemodialysis. Transmembrane passage of intact endotoxins (LPS). Kidney Int 38: 1089, 1990PubMedGoogle Scholar
  95. 119.
    Kumano K, Vokota S, Nanbu M, Sakai T: Do cytokine inducing substances penetrate through dialysis membranes and simulate monocytes. Kidney Int 43(Suppl 41): S205, 1993Google Scholar
  96. 120.
    Evans RC, Holmes CJ: In vitro study of the transfer of cytokine inducing substances across selected high flux hemodialysis membranes. Blood Purif 9: 92, 1991PubMedGoogle Scholar
  97. 121.
    Urena P, Herbelin A, Zingraff J, Lair M, Khoa Man N, Deschamps Latscha B et al.: Permeability of cellulose and nono-cellulosic membranes to endotoxin subunits and cytokine production during in vitro haemodialysis. Nephrol Dial Transplant 7: 16, 1992PubMedGoogle Scholar
  98. 122.
    Harding GB, Klein E, Pass T, Wright R, Million C: Endotoxin and bacterial contamination of dialysis center water and dialysate; a cross sectional survey. Int J Artif Organs 13: 39, 1990PubMedGoogle Scholar
  99. 123.
    Oliver JC, Bland LA, Oettinger CW, Arduino MJ, Garrand M, Pegues DA et al.: Bacteria and endotoxin removal from bicarbonate dialysis fluids for use in conventional, high efficiency, and high-flux hemodialysis. Artif Organs 16: 141, 1992PubMedCrossRefGoogle Scholar
  100. 124.
    Gordon SM, Oettinger CW, Bland LA et al.: Permeability of cellulosic and non cellulosic membranes to endotoxin subunits and cytokine production during in vitro haemodialysis. Nephrol Dial Transplant 7: 16, 1992Google Scholar
  101. 125.
    Sato H, Kidaka T: Effect of moisture on and kinetic features of the ultrafiltration rate of dialysis membranes. Artif Organs 5: 286, 1981PubMedGoogle Scholar
  102. 126.
    Takesawa S, Ohmi S, Konno Y, Sekiguchi M, Shitaokoshi S, Takahashi T et al.: Varying methods of sterilisation and their effects on the structure and permeability of dialysis membranes. Nephrol Dial Transplant 1: 254, 1987PubMedGoogle Scholar
  103. 127.
    Potter LJ, Frost TH: The effect of strain and pretensions on the permeability of cellulose membranes and on the performance of flat bed dialysers. in Technical Aspects of Renal Dialysis, edited by Frost TH, Tnbridge Wells, Pitman Press, 1977, p 112Google Scholar
  104. 128.
    Okazaki M, Yoshida F: Ultrafiltration of blood: effect of hematocrit on ultrafiltration rate. Ann Biomed Eng 4: 138, 1976PubMedGoogle Scholar
  105. 129.
    Robertson BC, Curtin C: Effects of EPO therapy on backfiltration of dialysate in high flux dialysis. Trans Am Soc Artif Intern Organs 36: M447, 1990Google Scholar
  106. 130.
    Gupta BB, Jaffrin MY, Ding LH: Modelling of plasma separation through microporous membranes. Int J Artif Organs 12: 51, 1989PubMedGoogle Scholar
  107. 131.
    Ding L, Laurent JM, Jaffrin MY: Dynamic filtration of blood: a new concept for enhancing plasma filtration. Int J Artif Organs 14: 365, 1991PubMedGoogle Scholar
  108. 132.
    Henne W, Dietrich W, Pelger M, von Sengbusch G: Residual ethylene oxide in hollow fiber dialyzers. Artif Organs 8: 306, 1984PubMedCrossRefGoogle Scholar
  109. 133.
    Lemke H-D, Heidland A, Schaefer RM: Hypersensitivity reactions during haemodialysis: role of complement fragments and ethylene oxide antibodies. Nephrol Dial Transplant 5: 264, 1990PubMedGoogle Scholar
  110. 134.
    Szycher M: Sterilization of medical devices. in Blood Compatible Materials and Devices, edited by Sharma CP, Szycher M, Lancaster, Technomic Publishing Co, 1990, p 87Google Scholar
  111. 135.
    Dorman-Smith V: Considerations when using ethylene oxide for the sterilization of medical devices. Med Dev Technol 42, 1991Google Scholar
  112. 136.
    Klimentov AS, Martynenko AI, Fiodorov AL, Ershov BG: Influence of γ-radiation on the molecular-mass distribution of cellulose. Radiochem Radioanal Let 48: 137, 1981Google Scholar
  113. 137.
    Takesawa S, Satoh S, Hidai H, Sekiguchi M, Sakai K: Degradation by gamma irradiation of regenerated cellulose membranes for clinical dialysis. Trans Am Soc Artif Intern Organs 33: 584, 1987Google Scholar
  114. 138.
    Landfield H: Sterilization of medical devices based on polymer selection and stabilization techniques. in Biocompatible Polymers, Metals, and Composites, edited by Szycher M, PA, Technomic Publ Inc, 1983, p 975Google Scholar
  115. 139.
    Shintani H, Nakamura A: Analysis of a carcinogen, 4,4’-methylenedianiline, from thermosetting polyurethane during sterilization. J Anal Toxicol 13: 354, 1989PubMedGoogle Scholar
  116. 140.
    Shintani H, Nakamura A: Analysis of the carcinogen 4,4’-methylenedianiline (MDA) in gamma-ray and in autoclave-sterilised polyurethane. Fresenius Zeitschrift für Analytische Chemie 333: 637, 1989Google Scholar
  117. 141.
    Hoenich NA, Goodship THJ, Ward MK, Ringoir S: Technical aspects of reuse in Europe. in Guide to Reprocessing of Hemodialyzers, edited by Deane N, Wineman RJ, Bemis JA, Boston, Martinus Nijhoff Publishers, 1986, p 107Google Scholar
  118. 142.
    Bland LA, Favero MS, Oxborrow GS, Aguero SM, Searcy BP, Danielson JW: Effect of chemical germicides on the integrity of hemodialyzer membranes. Trans Am Soc Artif Intern Organs 34: 172, 1988Google Scholar
  119. 143.
    Takesawa S, Ohmi S, Konno Y, Sekiguchi M, Shitaokoshi S, Takahashi T et al.: Varying methods of sterilisation and their effects on the structure and permeability of dialysis membranes. Nephrol Dial Transplant 1: 254, 1987PubMedGoogle Scholar
  120. 144.
    Daugirdas JT, Ing TS: First-use reactions during hemodialysis: A definition of subtypes. Kidney Int 33(Suppl 24): S37, 1988Google Scholar
  121. 145.
    Nicholls AJ, Platts MM: Anaphylactoid reactions due to haemodialysis, haemofiltration or membrane plasma separation. Br Med J 285: 1607, 1982Google Scholar
  122. 146.
    Villaroel F, Clarkowski AA: A survey of hypersensitivity reactions in hemodialysis. Artif Organs 9: 231, 1985Google Scholar
  123. 147.
    Alter MJ, Favero MS, Moyer LA, Bland LA. National surveillance of dialysis-associated diseases in the United States, 1989. Trans Am Soc Artif Intern Organs 37: 97, 1991Google Scholar
  124. 148.
    Alomar A, Camarasa JMG, Noguera J, Aspinolea F: Ethylene-oxide dermatitis. Contact Derm 7: 205, 1981PubMedGoogle Scholar
  125. 149.
    Poothullil J, Shimizu A, Day RP, Dolovich J: Anaphylaxis from the product(s) of ethylene oxide gas. Ann Intern Med 82: 58, 1975PubMedGoogle Scholar
  126. 150.
    Grammer LC, Patterson R: IgE against ethylene oxide altered human serum albumin (ETO-HSA) as an etological agent in allergic reactions of hemodialysis patients. Artif Organs 11:97, 1987PubMedGoogle Scholar
  127. 151.
    Dolovich J, Marshall CP, Smith EKM, Shimizu A, Pearson FC, Sugona MA et al.: Allergy to ethylene oxide in chronic hemodialysis patients. Artif Organs 8: 334, 1984PubMedCrossRefGoogle Scholar
  128. 152.
    Ing TS, Daugirdas JT: Extractable ethylene oxide from cuprammonium cellulose plate dialyzers: Importance of potting compound. Trans Am Soc Artif Intern Organs 32: 108, 1986Google Scholar
  129. 153.
    Ansorge W, Pelger M, Dietrich M, Baurmeister U: Ethylene oxide in dialyser rinsing fluid: effect of rinsing technique, dialyser storage time and potting compound. Artif Organs 11: 118, 1987PubMedGoogle Scholar
  130. 154.
    Neergaard J, Nielsen B, Faurby V, Christensen DH, Nielsen OF: On the exudation of plasticizers from PVC haemodialysis tubings. Nephron 14: 263, 1975PubMedGoogle Scholar
  131. 155.
    Flaminio LM, de Angelis L, Ferazza M, Mannovich M, Galli G, Galli CL: Leachability of a new plasticiser tri(2-ethyl-hexyl) trimellitate from haemodialysis tubing. Int J Artif Organs 11:435, 1988PubMedGoogle Scholar
  132. 156.
    Blass CR, Jones C, Courtney JM: Biomaterials for blood tubing: the application of plasticised poly (vinyl chloride). Int J Artif Organs 15: 200, 1992PubMedGoogle Scholar
  133. 157.
    Hoenich NA, Thompson J, Varini E, McCabe EJ, Appleton D: Particle spallation and plasticizer (DEHP) release from extracorporeal circuit tubing materials. Int J Artif Organs 13: 55, 1990PubMedGoogle Scholar
  134. 158.
    Chanard J, Lavaud S, Lavaud F, Toupance O, Kochman S: IgE antibodies to isocyanates in hemodialyzed patients. Trans Am Soc Artif Intern Organs 33: 551, 1987Google Scholar
  135. 159.
    Grammer LC, Harris KE, Shaughnessy MA, Dolovich J, Patterson R, Evans S: Antibodies to toluene di isocyanate in patients with and without dialysis anaphylaxis. Artif Organs 15: 2, 1991PubMedCrossRefGoogle Scholar
  136. 160.
    Oba T, Tsuji K, Nakamura A, Shintani H, Mizumachi S, Kickuchi H et al.: Migration of acetylated hemi cellulose from capillary hemodialyser to blood causing scleritis and/or iritis. Artif Organs 8: 429, 1984PubMedCrossRefGoogle Scholar
  137. 161.
    Hoenich NA, Thompson J, McCabe J, Appleton DR: Particle release from haemodialysers. Int J Artif Organs 13: 803, 1990PubMedGoogle Scholar
  138. 162.
    Inagaki H, Hamazaki T, Kuroda H, Yano S: Foreign particles contaminating hemodialyzers and methods of removing them by rinsing. Nephron 46: 343, 1987PubMedGoogle Scholar
  139. 163.
    Remuzzi A, Boccardo P, Benigni A: In vitro platelet adhesion to dialysis membranes. Nephrol Dial Transplant 6(Suppl 2): 36, 1991PubMedGoogle Scholar
  140. 164.
    Taylor J, McLaren M, Mactier R, Henderson I, Stewart W, Belch J: Effect of dialyser geometry during hemodialysis with cuprophane membranes. Kidney Int 42: 442, 1992PubMedGoogle Scholar
  141. 165.
    Kuwahara T, Markert M, Wauters JP: Proteins adsorbed on hemodialysis membranes modulate neutrophil function. Artif Organs 13: 427, 1989PubMedCrossRefGoogle Scholar
  142. 166.
    Panichi V, Biachi AM, Parrini M, Casarosa L, Cirami C, Grazi G et al.: Biocompatibility evaluation of five dialysis membranes: protein layer and anaphylatoxin generation. Int J Artif Organs 12: 579, 1989Google Scholar
  143. 167.
    Verbeelen D, Jochmans K, Herman AG, van der Niepen P, Sennesael J, de Waele M: Evaluation of platelets and hemostasis during hemodialysis with six different membranes. Nephron 59: 567, 1991PubMedGoogle Scholar
  144. 168.
    Lim F, Cooper SL: The effect of surface hydrophilicity on biomaterial-leukocyte interactions. Trans Am Soc Artif Intern Organs 37: M146, 1991Google Scholar
  145. 169.
    Matsuda T: Biological responses at non physiological interfaces and molecular design of biocompatible surfaces. Nephrol Dial Transplant 4(Suppl 4): 60, 1989Google Scholar
  146. 170.
    Ferreira SH: A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. Br J Pharmacol 24: 163, 1965Google Scholar
  147. 171.
    Erdos EG: Angiotensin-1 converting enzyme and the changes in our concepts through the years. Hypertension 16: 363, 1990PubMedGoogle Scholar
  148. 172.
    Zusman RM: Renin-and non-renin-mediated antihypertensive actions of converting enzyme inhibitors. Kidney Int 25: 969, 1984PubMedGoogle Scholar
  149. 173.
    Tielemanns C, Madhoun P, Lenaers M, Schandene L, Goldman M, Vanherwegem J: Anaphylactoid reactions during hemodialysis on AN69 membranes in patients receiving ACE inhibitors. Kidney Int 38: 982, 1990Google Scholar
  150. 174.
    Verresen L, Waer M, Vanrenterghem Y, Michielsen P: Angiotensin converting enzyme inhibitors and anaphylactoid reactions to high flux membranes. Lancet 336: 1360, 1990PubMedGoogle Scholar
  151. 175.
    Parnes E, Shapiro W: Anaphylactoid reactions in hemodialysis patients treated with AN69 dialysers. Kidney Int 40: 1148, 1991PubMedGoogle Scholar
  152. 176.
    Olbricht C, Schaumann D, Fischer D: Anaphylactoid reactions, LDL apheresis with dextran sulphate and ACE inhibitors. Lancet 340: 908, 1992PubMedGoogle Scholar
  153. 177.
    Lemke H, Fink E: Generation of bradykinin in human plasma using AN69 and PAN17DX membranes in the presence of ACE inhibitor in vitro. Nephrol Dial Transplant 7: 728, 1992Google Scholar
  154. 178.
    Craddock P, Fehr J, Dalmasso A, Brigham K, Jacog H: Hemodialysis leukopenia: pulmonary vascular leukostasis resulting from complement activation by dialyser cellophane membranes. J Clin Invest 59: 879, 1977PubMedGoogle Scholar
  155. 179.
    Woffindin C, Hoenich NA, Matthews JNS: Cellulose based haemodialysis membranes: Biocompatibility and functional performance compared. Nephrol Dial Transplant 7:340, 1992PubMedGoogle Scholar
  156. 180.
    Amadori A, Candi P, Sasdelli M, Massai G, Favilla S, Passaleva A et al.: Hemodialysis leukopenia and complement function with different dialyzers. Kidney Int 24: 775, 1983PubMedGoogle Scholar
  157. 181.
    Bergesio F, Monzani G, Manescalchi F, Boccabianca I, Passaleva A, Frizzi V: Leukocytes, eosinophils and complement function during hemodialysis with polysulphone and polymethylmethacrylate membranes: Comparison with Cuprophan and polyacrylonitrile. Blood Purif 6: 16, 1988PubMedGoogle Scholar
  158. 182.
    Moll S, de Moerloose P, Reber G, Schifferli J, Leski M: Comparison of two hemodialysis membranes, poly-acrylonitrile and cellulose acetate on complement and coagulation systems. Int J Artif Organs 13: 273, 1990PubMedGoogle Scholar
  159. 183.
    Bingel M, Arndt W, Schulze M, Floege J, Shaldon S, Koch KM et al.: Comparative study of C5a plasma levels with different hemodialysis membranes using an enzymelinked immunosorbent assay. Nephron 51: 320, 1989PubMedGoogle Scholar
  160. 184.
    Schaefer RM, Rauterberg EW, Deppisch R, Vienken J: Assembly of terminal SC5b-9 complement complexes: a new index of blood-membrane interaction. Miner Electrolyte Metab 16: 73, 1990PubMedGoogle Scholar
  161. 185.
    Deppisch R, Schmitt V, Bommer J, Hansch G, Ritz E, Rauterberg E: Fluid phase generation of terminal complement complex as a novel index of biocompatibility. Kidney Int 37: 696, 1990PubMedGoogle Scholar
  162. 186.
    Cheung A: Biocompatibility of hemodialysis membranes. J Am Soc Nephrol 1: 150, 1990PubMedGoogle Scholar
  163. 187.
    Kandus A, Ponikvar R, Drinovec J, Kladnik S, Ivanovich P: Anaphylatoxins C3a and C5a adsorption on polyacrylonitrile membrane of hollow fibre and plate dialyser: an in vivo study. Int J Artif Organs 13: 176, 1990PubMedGoogle Scholar
  164. 188.
    Hakim RM, Breillatt HJ, Lazarus JM, Port FK: Complement activation and hypersensitivity reactions to dialysis membranes. N Engl J Med 311: 878, 1984PubMedCrossRefGoogle Scholar
  165. 189.
    Sultan Y, London GM, Goldfarb B, Toulon P, Marchais SJ: Activation of platelets, coagulation and fibrinolysis in patients on long-term haemodialysis: influence of Cuprophan and Polyacrylonitrile membranes. Nephrol Dial Transpl 5: 362, 1990Google Scholar
  166. 190.
    Kaplow LS, Goffinet JA: Profound neutropenia during early phase of hemodialysis. JAMA 203: 133, 1968Google Scholar
  167. 191.
    Arnaout MA, Hakim RM, Todd RF, Dana N, Colten HR: Increased expression of adhesion promoting surface glycoprotein in the granulocytopenia of hemodialysis. N Engl J Med 312: 457, 1985PubMedCrossRefGoogle Scholar
  168. 192.
    Himmelfarb J, Zaoui P, Hakim R: Modulation of granulocyte LAM-1 and MAC-1 during dialysis. A prospective randomised controlled trial. Kidney Int 41: 388, 1992PubMedGoogle Scholar
  169. 193.
    Kolb G, Fischer W, Schoenemann H, Bathke K, Hoffken H, Muller T et al.: Effect of Cuprophan, hamophan and polysulfone membranes on the oxidative metabolism, degranulation reaction, enzyme release and pulmonary sequestration of granulocytes. in Improvements in Dialysis Therapy, Contributions to Nephrology, Vol 74, edited by Baldamus CA, Mion C, Shaldon S, Basel, Karger, 1989, p 10Google Scholar
  170. 194.
    Hakim RM: Clinical implications of hemodialysis membrane biocomptibility. Kidney Int 44: 484, 1993PubMedGoogle Scholar
  171. 195.
    Francos GC, Besarab A, Burke JF Jr, Peters J, Tahamont MV, Gee MH et al.: Dialysis induced hypoxemia: Membrane dependent and membrane independent causes. Am J Kidney Dis 5: 191, 1985PubMedGoogle Scholar
  172. 196.
    Kishimoto T, Tanaka H, Maekawa M, Ivanovich P, Levin N, Bergstrom J et al.: Dialysis-induced hypoxaemia. Nephrol Dial Transplant 8(Suppl 2): 25, 1993PubMedGoogle Scholar
  173. 197.
    Horl WH, Riegel W, Schollmeyer P, Rautenberg W, Neumann S: Different complement and granulocyte activation in patients dialyzed with PMMA dialysers. Clin Nephrol 25: 304, 1986PubMedGoogle Scholar
  174. 198.
    Hoerl W, Schafer R, Heidland A: Effect of different dialysers on proteinases and proteinase inhibitots during hemodialysis. Am J Nephrol 5: 320, 1985Google Scholar
  175. 199.
    Bazzoni G, Nunez AB, Mascellani G. Bianchini P, Dejana E, del Maschio A: Effect of heparin, dermatan sulfate and related oligo derivatives on human polymorphonuclear leukocyte functions. J Lab Clin Med 121: 268, 1993PubMedGoogle Scholar
  176. 200.
    Schaefer RM, Heidland A, Horl WH. Effect of dialyser geometry on granulocyte and complement activation. Am J Nephrol 7: 121, 1987PubMedGoogle Scholar
  177. 201.
    Friedberg M, Joffe P, Nielsen B, Nielsen LP: Eosinophilia in hemodialysis patients. Artif Organs 11: 90, 1987PubMedCrossRefGoogle Scholar
  178. 202.
    Vanherweghem J-L, Goldman M, Tielemans C: Eosinophilia in chronic dialysis. Semin Dial 3: 171, 1990Google Scholar
  179. 203.
    Hertel J, Kimmel PL, Phillips TM, Bosch JP: Eosinophilia and cellular cytokine responsiveness in hemodialysis patients. J Am Soc Nephrol 3: 1244, 1992PubMedGoogle Scholar
  180. 204.
    Haeffner Cavallion N, Jahns G, Poignet J-L, Kazatchkine MD: Induction of Interleukin 1 during hemodialysis. Kidney Int 43(Suppl 39): S139, 1993Google Scholar
  181. 205.
    Kimmel PL, Phillips TM, Phillips E, Bosch JP: Effect of renal replacement therapy on cellular cytokine production in patients with renal disease. Kidney Int 38: 129, 1990PubMedGoogle Scholar
  182. 206.
    Schaefer RM, Paczek L, Heidland A: Cytokine production by monocytes during haemodialysis. Nephrol Dial Transplant 6(Suppl 2): 14, 1991PubMedGoogle Scholar
  183. 207.
    Pereira BJG, King AJ, Poutsiaka DD, Strom JA, Dinarello CA: Comparison of first use and reuse of Cuprophan membranes on Interleukin 1 receptor antagonist and Interleukin 1β production by blood mononuclear cells. Am J Kidney Dis 22: 288, 1993PubMedGoogle Scholar
  184. 208.
    Bommer J, Weinreich T, Lovett DH, Bouillon R, Ritz E, Gemsa D: Particles from dialysis tubing stimulate Interleukin 1 secretion by macrophages. Nephrol Dial Transplant 5: 208, 1990PubMedGoogle Scholar
  185. 209.
    Gault MH, Duffett S, Purchase L, Murphy J: Hemodialysis intravascular hemolysis and kinked blood lines. Nephron 62: 267, 1992PubMedGoogle Scholar
  186. 210.
    Said R, Quintanilla A, Levin N, Ivanovich P: Acute hemolysis due to profound hypo-osmolality. J Dial 1: 447, 1977PubMedGoogle Scholar
  187. 211.
    Pun KK, Yeung CK, Chan TK: Acute intravascular hemolysis due to accidental formalin intoxication during hemodialysis. Clin Nephrol 21: 188, 1984PubMedGoogle Scholar
  188. 212.
    Gordon SM, Bland CA, Alexander SR, Newman HF, Arduino MJ, Jarvis WR: Hemolysis associated with hydrogen peroxide at a pediatric dialysis center. Am J Nephrol 10: 123, 1990PubMedGoogle Scholar
  189. 213.
    Hudson S, Taylor JE, Stewart WK: Undetect excessive ultrafiltration and serious haemolysis during maintenance haemodialysis. Nephrol Dial Transplant 8: 477, 1993PubMedGoogle Scholar
  190. 214.
    Francos GC, Burke JF Jr, Besarab A, Martinez J, Kirk-wood RG, Hummel LA: An unsuspected cause of acute hemolysis during hemodialysis. Trans Am Soc Artif Intern Organs 29: 140, 1983PubMedGoogle Scholar
  191. 215.
    Kessler M, Hoen B, Mayeux D, Hestin D, Fontenaille C: Bacteremia in patients on chronic hemodiaylsis — a multicenter prospective survey. Nephron 64: 95, 1993PubMedGoogle Scholar
  192. 216.
    Komuro T, Nakazawa R: Detection of low molecular size lipopolysaccharide contaminated in dialysates used for hemodialysis therapy with polyacrylonitride gel electrophoresis in the presence of sodium deoycholate. Int J Artif Organs 16: 245, 1993PubMedGoogle Scholar
  193. 217.
    Smollich BP, Falkenhagen D, Schneidewind J, Mitzner S, Klinkmann H: Importance of endotoxins in high flux diaylsis. Nephrol Dial Transplant 6(Suppl 3): 83, 1991PubMedGoogle Scholar
  194. 218.
    Harding GB, Klein E, Pass T, Wright R, Million C: Endotoxin and bacterial contamination of dialysis center and dialysate: a cross sectional survey. Int J Artif Organs 13: 39, 1990PubMedGoogle Scholar
  195. 219.
    Klein E, Pass T, Harding GB, Wright R, Million C: Microbial and endotoxin contamination in water and dialysate in the central United States. Artif Organs 14: 85, 1990PubMedCrossRefGoogle Scholar
  196. 220.
    Oliver JC, Bland LA, Oettinger CW, Arduino MJ, Garrard M, Pegues DA et al.: Bacteria and endotoxin removal from bicarbonate dialysis fluids for use in conventional high-efficiency and high-flux hemodialysis. Artif Organs 16: 141, 1992PubMedCrossRefGoogle Scholar
  197. 221.
    Gault MH, Duffett AL, Murphy JF, Purchase LH: In search of sterile, endotoxin-free dialysate. ASAIO J 38: M431, 1992PubMedGoogle Scholar
  198. 222.
    Di Felice A, Cappelli G, Facchini F, Tetta C, Cornia F, Aimo G et al.: Ultrafiltration and endotoxin removal from dialysis fluids. Kidney Int 43(Suppl 41): S201, 1993Google Scholar
  199. 223.
    Cappelli G, Tetta C, Cornia F, Defelice A, Facchini F, Neri R et al.: Removal of limulus reactivity and cytokineinducing capacity from bicarbonate dialysis fluids by ultrafiltration. Nephrol Dial Transplant 8: 1133, 1993PubMedGoogle Scholar
  200. 224.
    Petersen NJ, Carson LA, Favero MS: Bacterial endotoxin in new and reused hemodialyzers: a potential cause of endotoxemia. Trans Am Soc Artif Intern Organs 27: 155, 1981PubMedGoogle Scholar
  201. 225.
    Gordon SM, Oettinger CW, Bland LA, Oliver JC, Arduino MJ, Aguero SM et al.: Pyrogenic reactions in patients receiving conventional high-efficiency, or highflux hemodialysis treatments with bicarbonate dialysate containing high concentrations of bacteria and endotoxin. J Am Soc Nephrol 2: 1436, 1992PubMedGoogle Scholar
  202. 226.
    Pegues DA, Oettinger CW, Bland LA, Oliver JC, Arduino MJ, Aguero SM et al.: A prospective study of pyrogenic reactions in hemodialysis patients using bicarbonate dialysis fluids filtered to remove bacteria and endotoxin. J Am Soc Nephrol 3: 1002, 1993Google Scholar
  203. 227.
    Schaefer K, von Herrath D, Hufler M, Pauls A: The occurrence of fever during hemodialysis and hemofiltration. A comparative study. Int J Artif Organs 9: 247, 1986PubMedGoogle Scholar
  204. 228.
    Hariprasad MK, Paul PK, Eisinger RB, Gary NE, Timins JE, Miller JW: Extracorporeal dialysis of ascites. Arch Intern Med 141: 1550, 1981PubMedGoogle Scholar
  205. 229.
    Hwang ER, Sherman RA, Mehta S, Walker JA, Goodling KA, Hariprasad MK et al.: Dialytic ascitic ultrafiltration in refractory ascites. Am J Gastroenterol 77: 652, 1982PubMedGoogle Scholar
  206. 230.
    Assadi FK, Gordon D, Kecskes SA, John E: Treatment of refractory ascites by ultrafiltration — reinfusion of ascitic fluid peritoneally. J Paediatrics 106: 943, 1985Google Scholar
  207. 231.
    Landini S, Coli U, Fracasso A, Morachiello P, Righetto F, Scanferia F et al.: Spontaneous ascites filtration and reinfusion (SAFR) in cirrhotic patients. Int J Artif Organs 8: 277, 1985PubMedGoogle Scholar
  208. 232.
    Lai KN, Leung JWC, Loke J, Panesar NS, Swaminathan R, Vallance-Owen J: Ultrafiltration by hemofilter — a new therapeutic measure in intractable ascites. Int J Artif Organs 10: 109, 1987PubMedGoogle Scholar
  209. 233.
    Adler AJ, Feldman J, Friedman EA, Berlyne GM: Use of extracorporeal ascites dialysis in combined hepatic and renal-failure. Nephron 30: 31, 1982PubMedGoogle Scholar
  210. 234.
    Lai KN, Leung JWC, Vallance-Owen J: Dialytic ultrafiltration by hemofilter in treatment of patients with refractory ascites and renal insufficiency. Am J Gastroenterol 82: 665, 1987PubMedGoogle Scholar
  211. 235.
    Yoshiba M, Sekiyama K, Iwamura Y, Sugata F: Development of a reliable artificial liver support (ALS). Plasma exchange in combination with hemodiafiltration using high performance membranes. Dig Dis Sci 38: 469, 1993PubMedGoogle Scholar
  212. 236.
    Rozga J, Williams F, Ro M-S, Neuzil DF, Giorgio TD, Backfisch G et al.: Development of a bioartificial liver: Properties and function of a hollow-fiber module inoculated with liver cells. Hepatology 17: 258, 1993PubMedGoogle Scholar
  213. 237.
    Gille JP, Lautier A, Tousseul B: ECCO2R in respiratory support — artificial lung or kidney — experimental study. Ann de Chir 46: 71, 1992Google Scholar
  214. 238.
    Nolte SH, Jonitz WJ, Grau J, Roth H, Assenbaum ER: Hemodialysis for extracorporeal bicarbonate/CO2 removal (ECBicCC2R) and apneic oxygenation for respiratory failure in the newborn. Trans Am Soc Artif Intern Organs 35: 30, 1989Google Scholar
  215. 239.
    Hernandez E, Praga M, Alcazar JM, Morales JM, Montejo JC, Jimenez MJ et al.: Hemodialysis for treatment of accidental hypothermia. Nephron 63: 214, 1993PubMedGoogle Scholar
  216. 240.
    Splendiani G, Giammaria U, Daniele M, Tancredi M: Dialysis in nonuremia. in Biotechnology in Renal Replacement Therapy, Contributions to Nephrology, Vol 70, edited by Bonomini V, Scolari MP, Stefoni S, Basel, Karger, 1989, p 277Google Scholar
  217. 241.
    Tufte ER: The Visual Display of Quantitative Information, Godalming, Graphics Press, 1983Google Scholar
  218. 242.
    Runge TM, Briceno JC, Scheller ME, Moritz CE, Sloan L, Bohls FO et al.: Hemodialysis: evidence of enhanced molecular clearance and ultrafiltration volume by using pulsatile flow. Int J Artif Organs 16: 645, 1993PubMedGoogle Scholar
  219. 243.
    Catapano G, Wodetzki A, Baurmeister U: Blood flow outside regularly spaced hollow fibres: the future concept of membrane devices. Int J Artif Organs 15: 327, 1992PubMedGoogle Scholar
  220. 244.
    Nakazawa R, Azuma N, Suzuki M, Nakatani M, Nankou T, Furuyoshi S et al.: A new treatment for dialysis-related amyloidosis with β2-microglobulin adsorbent column. Int J Artif Organs 16: 823, 1993PubMedGoogle Scholar
  221. 245.
    Tanaka H: Quality of membrane: High flux membrane and its future. in Evolution of Dialysis Adequacy, Contributions to Nephrology, Vol 103, edited by Bonomini V, Basel, Karger, 1993, p 112Google Scholar
  222. 246.
    Shaldon S, Koch KM: Survival and adequacy in lang term hemodialysis. Nephron 59: 353, 1991PubMedGoogle Scholar
  223. 247.
    Bergamo Collaborative Dialysis Study Group: Acute intradialytic well being. Results of a clinical trial comparing polysulfone with Cuprophan. Kidney Int 40: 714, 1991Google Scholar
  224. 248.
    Chandran PKG, Liggett R, Kirkpatrick B: Patient survival on PAN/AN69 membrane hemodialysis. A ten year analysis. J Am Soc Nephrol 4: 1199, 1993PubMedGoogle Scholar
  225. 249.
    Hakim RM, Wingard RL, Lawrence P, Parker RA, Schulman G: Use of biocompatible membranes improves outcome and recovery from acute renal failure. J Am Soc Nephrol 3: 367 (Abstract), 1992Google Scholar
  226. 250.
    Hall AV, Clark WF, Parbtani A: Heparin-induced thrombocytopenia in renal failure. Clin Nephrol 38: 86, 1992PubMedGoogle Scholar
  227. 251.
    Tong S-D, Hsu L-C: Non-thrombogenic hemofiltration system for acute renal failure treatment. ASAIO J 38: M702, 1992PubMedGoogle Scholar
  228. 252.
    Arakawa M, Suzuki Y, Nagao M, Aoike I, Koda Y, Terada R et al.: Development of a new antithrombogenic continuous ultrafiltration system (ACUS) and its clinical evaluation. Nephrol Dial Transplant 6(Suppl): S249, 1991Google Scholar
  229. 253.
    Arakawa M, Aoike I, Sizuki Y, Geyo F, Terada R, Sugaya H et al.: Antithrombogenecity of polyacrylonitrile-polyethyleneoxide hollow fiber membrane developed for designing an antithromogenic continuous ultrafiltration system. Artif Organs 16: 146, 1992PubMedCrossRefGoogle Scholar
  230. 254.
    Collins AJ: High-efficiency treatments using conventional equipment. in Hemodialysis High-Efficiency Treatments, Contemporary Issues in Nephrology, Vol 27, edited by Bosch JP, New York, Churchill Livingstone, 1993, p 91Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Nicholas A. Hoenich
    • 1
  • Celia Woffindin
    • 2
  • Claudio Ronco
    • 3
  1. 1.Department of Medicine, Medical SchoolUniversity of Newcastle upon TyneNewcastle-upon-TyneEngland
  2. 2.Renal UnitRoyal Victoria InfirmaryNewcastle upon TyneEngland
  3. 3.Department of NephrologySt. Bortolo HospitalVicenzaItaly

Personalised recommendations