Advertisement

Assessing the Progression of Renal Disease

  • Saulo Klahr

Abstract

Chronic renal insufficiency, once established, tends to progress to end-stage renal failure. The underlying mechanisms have been difficult to elucidate, because the glomerulus and the interstitium have a rather limited repertoire of responses to injury, and the kidney, therefore, responds to a variety of insults in a monotonous fashion. Diverse pathogenetic mechanisms, i.e., vascular, metabolic, or immunologic disorders, may lead to sclerosis, a process in which diverse renal structures are replaced by collagen, fibroblasts and mesenchymal matrix, resulting in disruption of normal renal function (1).

Keywords

Glomerular Filtration Rate Diabetic Nephropathy Chronic Renal Failure Chronic Renal Disease Glomerular Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klahr S, Schreiner G, Ichikawa I: The progression of renal disease. N Engl J Med 318: 1657, 1988PubMedCrossRefGoogle Scholar
  2. 2.
    Levey AS, Perrone RD, Madias NE: Serum creatinine and renal function. Ann Rev Med 39: 465, 1988PubMedCrossRefGoogle Scholar
  3. 3.
    Mitch WE, Walser M, Buffington GA, Lemann J: A simple method of estimating progression of chronic renal failure. Lancet 2: 1326, 1976PubMedCrossRefGoogle Scholar
  4. 4.
    Rutherford WE, Blondin J, Miller JP, Greenwalt AS, Vavra JD: Chronic progressive renal disease: rate of change of serum creatinine concentration. Kidney Int 11: 62, 1977PubMedCrossRefGoogle Scholar
  5. 5.
    Mitch WE: The influence of the diet on the progression of renal insufficiency. Ann Rev Med 35: 246, 1984Google Scholar
  6. 6.
    El Nahas AM, Coles GA: Dietary treatment of chronic renal failure: ten unanswered questions. Lancet 1: 597, 1986PubMedCrossRefGoogle Scholar
  7. 7.
    Klahr S: The kidney in hypertension villain and victim. N Engl J Med 320: 731, 1989PubMedCrossRefGoogle Scholar
  8. 8.
    Veterans Administration Cooperative Study Group on Antihypertensive Agents: Effects of treatment on morbidity in hypertension: results in patients with diastolic blood pressures averaging 115 through 129 mmHg. J Am Med Assoc 202: 1028, 1967CrossRefGoogle Scholar
  9. 9.
    Veterans Administration Cooperative Study Group on Antihypertensive Agents: Effects of treatment on morbidity in hypertension: II. Results in patients with diastolic blood pressure averaging 90 through 114 mmHg. J Am Med Assoc 213: 1143, 1970CrossRefGoogle Scholar
  10. 10.
    Mogensen CE: Long-term antihypertensive treatment inhibiting progression of diabetic nephropathy. Br Med J [Clin Res] 285: 685, 1982Google Scholar
  11. 11.
    Parving H-H, Andersen AR, Smidt UM, Svendsen PA: Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet 1: 1175, 1983PubMedCrossRefGoogle Scholar
  12. 12.
    Bjorck S, Nyberg G, Mulec H, Granerus G, Herlitz H, Aurell M: Beneficial effects of angiotensin converting enzyme inhibition on renal function in patients with diabetic nephropathy. Br J Med [Clin Res] 293: 471, 1986CrossRefGoogle Scholar
  13. 13.
    Marre M, Leblanc H, Suarez L, Guyenne T-T, Menard J, Passa A: Converting enzyme inhibition and kidney function in normotensive diabetic patients with persistent microalbuminuria. Br Med J [Clin Res] 294: 1448, 1987CrossRefGoogle Scholar
  14. 14.
    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD, for the Collaborative Study Group: The effect of angiotensin-converting enzyme inhibition on diabetic nephropathy. N Engl J Med 329: 1456, 1993PubMedCrossRefGoogle Scholar
  15. 15.
    Breyer JA, Hunsicker LG, Bain RP, Lewis EJ, the Collaborative Study Group: Angiotensin converting enzyme inhibition in diabetic nephropathy. Kidney Int 45(Suppl 45): S156, 1994Google Scholar
  16. 16.
    Kasiske BL, Kalil RSN, Ma JZ, Liao M, Keane WF: Effect of antihypertensive therapy on the kidney in patients with diabetes: a meta-regression analysis. Ann Intern Med 118: 129, 1993PubMedGoogle Scholar
  17. 17.
    Westlin W, Mullane K: Does captopril attenuate reperfusion-induced myocardial dysfunction by scavenging free radicals? Circulation 77(Suppl 1): 1–30, 1988Google Scholar
  18. 18.
    Williams PS, Fass G, Bone JM: Renal pathology and proteinuria determine progression in untreated mild/moderate chronic renal failure. Q J Med 67: 343, 1988PubMedGoogle Scholar
  19. 19.
    Maschio G, Oldrizzi L, Rugiu C: Role of hypertension on the progression of renal disease in man. Blood Purif 6: 250, 1988PubMedGoogle Scholar
  20. 20.
    Alvestrand A, Gutierrez A, Bucht H, Bergström J: Reduction of blood pressure retards the progression of chronic renal failure in man. Nephrol Dial Transplant 3: 624, 1988PubMedGoogle Scholar
  21. 21.
    Brazy PC, Stead WW, Fitzwilliam JF: Progression of renal insufficiency: role of blood pressure. Kidney Int 35: 670, 1989PubMedCrossRefGoogle Scholar
  22. 22.
    Klahr S: The modification of diet in renal disease study. N Engl J Med 320: 864, 1989PubMedCrossRefGoogle Scholar
  23. 23.
    Bergström J, Alvestrand A, Bucht H, Gutierrez A: Progression of chronic renal failure in man is retarded with more frequent clinical follow-ups and better blood pressure control. Clin Nephrol 25: 1, 1986PubMedGoogle Scholar
  24. 24.
    Kajiwara N: Therapy and prognosis of hypertension in chronic nephritis. Jpn Circ J 39: 779, 1975PubMedGoogle Scholar
  25. 25.
    Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, Striker G, and the Modification of Diet in Renal Disease (MDRD) Study Group: The effects of dietary protein restriction and blood pressure control on the progression of chronic renal disease. N Engl J Med 330: 877, 1994PubMedCrossRefGoogle Scholar
  26. 26.
    Oliver J, McDowell M, Lee YC: Cellular mechanisms of protein metabolism in the nephron I. The structural aspects of proteinuria; tubular absorption, droplet formation, and the disposal of proteins. J Exp Med 99: 589, 1954PubMedCrossRefGoogle Scholar
  27. 27.
    Rosenberg ME, Hostetter TH: Comparative effects of antihypertensives on proteinuria: angiotensin-converting enzyme inhibitor vs α1-antagonist. Am J Kidney Dis 18: 472, 1991PubMedGoogle Scholar
  28. 28.
    Gansevoort RT, de Zeeuw D, de Jong PE: Long-term benefits of the antiproteinuric effect of angiotensin-converting enzyme inhibition in nondiabetic renal disease. Am J Kidney Dis 22: 202, 1993PubMedGoogle Scholar
  29. 29.
    Oldrizzi L, Rugiu C, Valvo E, Lupo A, Loschiavo C, Gammaro L, Tessitore N, Fabris A, Panzetta G, Maschio G: Progression of renal failure in patients with renal disease of diverse etiology on protein-restricted diet. Kidney Int 27: 553, 1985PubMedCrossRefGoogle Scholar
  30. 30.
    el Nahas AM, Masters-Thomas A, Brady SA, Farrington K, Wilkinson V, Hilson AJW, Varghese Z, Moorhead JF: Selective effect of low protein diets in chronic renal diseases. Br Med J [Clin Res] 289: 1337, 1984Google Scholar
  31. 31.
    Rosman JB, Donker AJ, Meijer S, Sluiter WJ, Piers-Becht TP, van der Hem GK: Two years’ experience with protein restriction in chronic renal failure. Contrib Nephrol 53: 109, 1986PubMedGoogle Scholar
  32. 32.
    French JW, Yamanaka BS, Ostwald R: Dietary induced glomerulosclerosis in the guinea pig. Arch Pathol 83: 204, 1967PubMedGoogle Scholar
  33. 33.
    Wellman KF, Volk BW: Renal change in experimental hypercholesterolemia in normal and in subdiabetic rabbits. I. Short term studies. Lab Invest 22: 36, 1970Google Scholar
  34. 34.
    Peric-Golia L, Peric-Golia M: Aortic and renal lesions in hypercholesterolemic adult male, virgin Sprague-Dawley rats. Atherosclerosis 46: 57, 1983PubMedCrossRefGoogle Scholar
  35. 35.
    Al-Shebeb T, Frohlich J, Magil AB: Glomerular disease in hypercholesterolemic guinea pigs: a pathogenetic study. Kidney Int 33: 498, 1988PubMedCrossRefGoogle Scholar
  36. 36.
    Miyata J, Takebayashi S: Effect of hyperlipidemia on glomerular sclerosis in unilateral nephrectomized rats. Acta Pathol Japn 37: 1433, 1987Google Scholar
  37. 37.
    Diamond JR, Karnovsky MJ: Exacerbation of chronic aminonucleoside nephrosis by dietary cholesterol supplementation. Kidney Int 2: 671, 1987CrossRefGoogle Scholar
  38. 38.
    Imai Y, Matsumura H, Miyajima H, Oka K: Serum and tissue lipids and glomerulonephritis in the spontaneously hypercholesterolemic (SHC) rat, with a note on the effects of gonadectomy. Atherosclerosis 27: 165, 1977PubMedCrossRefGoogle Scholar
  39. 39.
    Kasiske BL, O’Donnell MP, Garvis WJ, Keane WF: Pharmacologic treatment of hyperlipidemia reduces glomerular injury in rat 5/6 nephrectomy model of chronic renal failure. Circ Res 62: 367, 1988PubMedGoogle Scholar
  40. 40.
    Kasiske BI, Cleary MP, O’Donnell MP, Keane WF: Effects of genetic obesity on renal structure and function in the Zucker rat. J Lab Clin Med 106: 598, 1985PubMedGoogle Scholar
  41. 41.
    O’Donnell MP, Kasiske BL, Cleary MP, Keane WF: Effects of genetic obesity on renal structure and function in the Zucker rat. II. Micropuncture studies. J Lab Clin Med 106: 605, 1985PubMedGoogle Scholar
  42. 42.
    Kolefsky S: Pathologic findings and laboratory data in a new strain of obese hypertensive rats. Am J Pathol 80: 129, 1975Google Scholar
  43. 43.
    Brobeck JR, Tepperman J, Long CNH: Experimental hypothalamic hyperphagia in albino rats. Yale J Biol Med 15: 831, 1943Google Scholar
  44. 44.
    Kasiske BL, O’Donnell MP, Keane WF: The obese Zucker rat model of glomerular injury in type II diabetes. J Diabetic Compl 1: 26, 1987CrossRefGoogle Scholar
  45. 45.
    Bray GA: The Zucker fatty rat: a review. Fed Proc 36: 148, 1977PubMedGoogle Scholar
  46. 46.
    Schirandin H, Bach A, Schaeffer A, Bauer M, Weryha A: Biological parameters of the blood in the genetically obese Zucker rat. Arch Int Physiol Biochim 87: 275, 1979CrossRefGoogle Scholar
  47. 47.
    Kasiske BL, O’Donnell MP, Cleary MP, Keane WF: Treatment of hyperlipidemia reduces glomerular injury in obese Zucker rats. Kidney Int 33: 667, 1988PubMedCrossRefGoogle Scholar
  48. 48.
    Hanchak NA, Karnovsky MJ, Diamond JR: Cholestyramine resin lowers acute and recurrent proteinuria in chronic puromycin aminonucleoside nephrosis. (Abstract) Kidney Int 33: 376A, 1988Google Scholar
  49. 49.
    Harris KPG, Purkerson ML, Yates J, Klahr S: Lovastatin ameliorates the development of glomerulosclerosis and uremia in experimental nephrotic syndrome. Am J Kidney Dis 15: 16, 1990PubMedGoogle Scholar
  50. 50.
    Hunsicker LG: Studies of therapy of progressive renal failure in humans. Semin Nephrol 9: 380, 1989PubMedGoogle Scholar
  51. 51.
    Rosman JB, ter Wee PM, Meijer S, Piers-Becht TPM, Sluiter WJ, Donker AJM: Prospective randomised trial of early dietary protein restriction in chronic renal failure. Lancet 2: 1291, 1984PubMedCrossRefGoogle Scholar
  52. 52.
    Ihle BU, Becker GJ, Whitworth JA, Charlwood RA, Kincaid-Smith PS: The effect of protein restriction on the progression of renal insufficiency. N Engl J Med 321: 1773, 1989PubMedCrossRefGoogle Scholar
  53. 53.
    Zeller K, Whittaker E, Sullivan L, Raskin P, Jacobson H: Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med 324: 78, 1991PubMedCrossRefGoogle Scholar
  54. 54.
    Gimenez LF, Solez K, Walker WG: Relation between renal calcium content and renal impairment in 246 human renal biopsies. Kidney Int 31: 93, 1987PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Saulo Klahr
    • 1
  1. 1.Department of MedicineThe Jewish Hospital of St. LouisSt. LouisUSA

Personalised recommendations