Advertisement

Peritoneal Anatomy and Physiology During Peritoneal Dialysis

  • Raymond T. Krediet

Abstract

The peritoneum is the largest serous membrane in the body. It is a sac that covers the inner side of the abdominal wall, forms the mesentery to which loops of bowel are suspended, and reflects over the contained viscera (Figure 1). In the male the sac is closed, in the female the free end of the uterine tubes open into the peritoneal cavity. The part that lines the abdominal wall is named the parietal peritoneum, the part that covers the viscera constitutes the visceral peritoneum. Loosely arranged extraperitoneal connective tissue is present between the parietal peritoneum and the abdominal wall. The visceral peritoneum on the other hand is firmly united to the viscera which it covers. The parietal and visceral layers are in actual contact, but the virtual space between them is named the peritoneal cavity. It consists of a main portion, named the greater sac (cavum peritonei) and a diverticulum from this, termed the lesser sac (omental bursa), situated behind the stomach and adjoining structures. Both sacs are connected by the epiploic foramen. The peritoneal cavity is lined with a layer of flattened mesothelium and lubricated by a small quantity of serous fluid

Keywords

Peritoneal Dialysis Continuous Ambulatory Peritoneal Dialysis Peritoneal Membrane Continuous Ambulatory Peritoneal Dialysis Patient Peritoneal Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davies DV, Davies F: Gray’s Anatomy, 33rd ed, London, Longmans, 1964, p 1421Google Scholar
  2. 2.
    Wegener G: Chirurgische Bemerkungen über die peritoneale Hole, mit besondere Berucksichtigung der Ovariotomie. Arch Klin Chir 20: 51, 1877Google Scholar
  3. 3.
    Putiloff PV: Materials for the study of the laws of growth of the human body in relation to the surface area: the trial on Russian subjects of planigraphic anatomy as a mean of exact anthropometry. Presented at the Siberian branch of the Russian Geographic Society, Omsk, 1886Google Scholar
  4. 4.
    Esperanca MJ, Collins DL: Peritoneal dialysis efficiency in relation to body weight. J Paediatric Surg 1: 162, 1966Google Scholar
  5. 5.
    Rubin JL, Clawson M, Planch A, Jones Q: Measurements of peritoneal surface area in man and rat. Am J Med Sci 245: 453, 1988CrossRefGoogle Scholar
  6. 6.
    Bell JL, Leypoldt JK, Frigon RP, Henderson LW: Hydraulically-induced convective solute transport across the rabbit peritoneum. Kidney Int 38: 19, 1990PubMedGoogle Scholar
  7. 7.
    Rubin J, Jones Q, Planch A, Stanek K: Systems of membranes involved in peritoneal dialysis. J Lab Clin Med 110: 448, 1987PubMedGoogle Scholar
  8. 8.
    Fox SD, Leypoldt JK, Henderson LW: Visceral peritoneum is not essential for solute transport during peritoneal dialysis. Kidney Int 40: 612, 1991PubMedGoogle Scholar
  9. 9.
    Alon U, Bar-Maor JA, Bar-Joseph G: Effective peritoneal dialysis in an infant with extensive resection of the small intestine. Am J Nephrol 8: 65, 1988PubMedGoogle Scholar
  10. 10.
    Flessner MF, Dedrick RL: Importance of the liver in peritoneal dialysis (PD). J Am Soc Nephrol 4 (Abstract): 404, 1993Google Scholar
  11. 11.
    Khanna R, Mactier R, Twardowski ZJ, Nolph KD: Peritoneal cavity lymphatics. Perit Dial Bull 6: 113, 1986Google Scholar
  12. 12.
    Raftery AT: Regeneration of parietal and visceral peritoneum: an electron microscopical study. J Anat 115: 375, 1973PubMedGoogle Scholar
  13. 13.
    Bolen JW, Hammer SP, McNutt MA: Serosal tissue: reactive tissue as a model for understanding mesotheliomas. Ultrastruct Pathol 11: 251, 1987PubMedGoogle Scholar
  14. 14.
    Dobbie JW: New concepts in molecular biology and ultrastructural pathology of the peritoneum: their significance for peritoneal dialysis. Am J Kidney Dis 15: 97, 1990PubMedGoogle Scholar
  15. 15.
    Odor L: Observations of the rat mesothelium with the electron and phase microscopes. Am J Anat 95: 433, 1954PubMedGoogle Scholar
  16. 16.
    Dobbie JW, Zaki M, Wilson L: Ultrastructural studies on the peritoneum with special reference to chronic ambulatory peritoneal dialysis. Scott Med J 26: 213, 1981PubMedGoogle Scholar
  17. 17.
    Gotloib L, Digenis GE, Rabinovich S, Medline A, Oreopoulos DG: Ultrastructure of normal rabbit mesentery. Nephron 34: 248, 1983PubMedGoogle Scholar
  18. 18.
    Lloyd JK, Hauch WN, Dobbie JW: Comparative ultrastructural studies on animal peritoneal mesothelium. Adv Perit Dial 4: 27, 1988Google Scholar
  19. 19.
    Simionescu M, Simionescu N: Organization of cell junctions in the peritoneal mesothelium. J Cell Biol 74: 98, 1977PubMedGoogle Scholar
  20. 20.
    Dobbie JW: Morpho-functional correlations in human mesothelium. in Peritoneal Dialysis, edited by La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, Milano, Wichtig Editore, 1991, p 33Google Scholar
  21. 21.
    Dobbie JW: Ultrastructural similarities between mesothelial and type II pneumocytes and their relevance to phospholipid surfactant production by the peritoneum. Adv Perit Dial 4: 32, 1988Google Scholar
  22. 22.
    Pollock CA, Ibels LS, Eckstein RP, Graham JC, Caterson RJ, Makony JF, Sheil AGR: Peritoneal morphology on maintenance dialysis. Am J Nephrol 9: 198, 1989PubMedGoogle Scholar
  23. 23.
    Dobbie JW, Lloyd JK, Gall CA: Categorization of ultrastructural changes in peritoneal mesothelium, stroma and blood vessels in uremia and CAPD patients. Adv Perit Dial 6: 3, 1990PubMedGoogle Scholar
  24. 24.
    Dobbie JW, Anderson JD, Hind C: Long-term effects of peritoneal dialysis on peritoneal morphology. Perit Dial Int 14(Suppl 3): S16, 1994Google Scholar
  25. 25.
    Di Paolo N, Sacchi G, De Mia M, Gaggiotti E, Capotondo L, Rossi P, Bernini M, Pucci AM, Ibba L, Sabatelli P, Alessandrini C: Morphology of the peritoneal membrane during continuous ambulatory peritoneal dialysis. Nephron 44: 204, 1986PubMedGoogle Scholar
  26. 26.
    Gotloib L, Schostack A, Bar-Sella P, Cohen R; Continuous mesothelial injury and regeneration during long term peritoneal dialysis. Perit Dial Bull 7: 148, 1987Google Scholar
  27. 27.
    Dobbie JW: Morphology of the peritoneum in CAPD. Blood Purif 7: 74, 1989PubMedGoogle Scholar
  28. 28.
    Grahame GR, Torchia MG, Dankewich KA, Ferguson IA: Surface-active material in peritoneal effluent of CAPD patients. Perit Dial Bull 5: 109, 1985Google Scholar
  29. 29.
    Dobbie JW, Pavlina T, Lloyd JK, Johnston RC: Phosphatidylcholine synthesis by peritoneal mesothelium: its implications for peritoneal dialysis. Am J Kidney Dis 12: 31, 1988PubMedGoogle Scholar
  30. 30.
    Dobbie JW, Lloyd JK: Mesothelium secretes lamellar bodies in a similar manner to type II pneumocyte secretion of surfactant. Perit Dial Int 9: 215, 1989PubMedGoogle Scholar
  31. 31.
    Williams JD, Beavis JM: Phosphatidylcholine and peritoneal dialysis. Contrib Nephrol 85: 142, 1990PubMedGoogle Scholar
  32. 32.
    Strapans I, Piel CF, Felts JM: Analysis of selected plasma constituents in continuous ambulatory peritoneal dialysis effluent. Am J Kidney Dis 6: 490, 1986Google Scholar
  33. 33.
    Davies M, Stylianou E, Young S, Thomas GJ, Coles GA, Williams JD: Proteoglycans of CAPD-dialysate fluid and mesothelium. Contrib Nephrol 85: 134, 1990PubMedGoogle Scholar
  34. 34.
    Roboz J, Greaves J, Silides D, Chahinian AP, Hollund JF: Hyaluronic acid content of effusions as a diagnostic aid for malignant mesothelioma. Cancer Res 45: 1850, 1985PubMedGoogle Scholar
  35. 35.
    Davies M, Young S, Coles GA: The possible significance of hyaluronan in the peritoneal cavity of CAPD patients. J Am Soc Nephrol 3: 408, 1992Google Scholar
  36. 36.
    Molina R, Fitella X, Bruix J, Mengual P, Bosch J, Calvet X, Jo J, Ballesta AM: Cancer antigen 125 in serum and ascitic fluid of patients with liver diseases. Clin Chem 37: 1379, 1991PubMedGoogle Scholar
  37. 37.
    Koomen GCM, Betjes MGH, Zemel D, Krediet RT, Hoek FJ: Cancer antigen 125 is locally produced in the peritoneal cavity during continuous ambulatory peritoneal dialysis. Perit Dial Int 14: 132, 1994Google Scholar
  38. 38.
    Hermon AG, Claeys M, Moncada S, Vane JR: Biosynthesis of prostacyclin (PGI2) and 12L-hydroxy-5, 8, 10, 14-eicosatraenoic acid (HETE) by pericardium, pleura, peritoneum, and aorta of the rabbit. Prostaglandins 18: 434, 1979Google Scholar
  39. 39.
    Stylianou E, Mackenzie R, Davies M, Coles GA, Williams JD: The interaction of organism, phagocyte and mesothelial cell. Contr Nephrol 85: 30, 1990Google Scholar
  40. 40.
    Stylianou E, Jenner LA, Davies M, Coles GA, Williams JD: Isolation, culture and characterization of human peritoneal mesothelial cells. Kidney Int 37: 1563, 1990PubMedGoogle Scholar
  41. 41.
    Topley N, Mackenzie R, Jörres A, Coles GA, Davies M, Williams JD: Cytokine networks in continuous ambulatory peritoneal dialysis: interactions of resident cells during inflammation in the peritoneal cavity. Perit Dial Int 13(Suppl 2): S282, 1993Google Scholar
  42. 42.
    Rappoport J, Douvdevani A, Conforti A, Zlotnik M, Chaimovitz C: Peritoneal mesothelial cells synthesize IL-1. J Am Soc Nephrol 3: 416, 1992Google Scholar
  43. 43.
    Topley N, Jörres A, Luttmann W, Peterson M, Lang M, Thierausch K, Müller C, Coles G, Davies M, Williams J: Human peritoneal mesothelial cells synthesize IL-6: induction by IL-1β and TNFα. Kidney Int 43: 226, 1993PubMedGoogle Scholar
  44. 44.
    Topley N, Brown Z, Jörres A, Westwick J, Coles G, Davies M, Williams J: Human peritoneal mesothelial cells synthesize IL-8: synergistic induction by interleukin-Iβ and tumor necrosis factor α. Am J Pathol 142: 1876, 1993PubMedGoogle Scholar
  45. 45.
    Topley N, Witowski J, Jörres A, Mackenzie R, Coles GA, Williams JD: Synthesis of IL-6 by human peritoneal mesothelial cells: superinduction by spent dialysate and PMϕ derived cytokines. J Am Soc Nephrol 4: 419, 1993Google Scholar
  46. 46.
    Zemel D, Imholz ALT, de Waart DR, Dinkla C, Struijk DG, Krediet RT: The appearance of tumor necrosis factor α and soluble TNF receptors I and II in peritoneal effluent during stable and infectious CAPD. Kidney Int 46: 1422, 1994PubMedGoogle Scholar
  47. 47.
    Goldman M, Vandenabeele P, Moulart J, Amraoui Z, Abramovicz D, Nortier J, Vanherweghem JL, Fiers W: Intraperitoneal secretion of interleukin-6 during continuous ambulatory peritoneal dialysis. Nephron 56: 277, 1990PubMedGoogle Scholar
  48. 48.
    Zemel D, ten Berge RJM, Struijk DG, Bloemena E, Koomen GCM, Krediet RT: Interleukin-6 in CAPD patients without peritonitis; relationship to the intrinsic permeability of the peritoneal membrane. Clin Nephrol 37: 97, 1992PubMedGoogle Scholar
  49. 49.
    Zemel D, Koomen GCM, Hart AAM, ten Berge RJM, Struijk DG, Krediet RT: Relationship of TNFα, interleukin-6, and prostaglandins to peritoneal permeability for macromolecules during longitudinal follow-up of peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med 122: 686, 1993PubMedGoogle Scholar
  50. 50.
    Lin CY, Lin CC, Huang TP: Serial changes of interleukin-6 and interleukin-8 levels in drain dialysate of uremic patients with continuous ambulatory peritoneal dialysis during peritonitis. Nephron 63: 404, 1993PubMedGoogle Scholar
  51. 51.
    Zemel D, Krediet RT, Koomen GCM, Kortekaas WMR, Geertzen HGM, ten Berge RJM: Interleukin-8 during peritonitis in patients treated with CAPD; an in-vivo model of acute inflammation. Nephrol Dial Transplant 9: 169, 1994PubMedGoogle Scholar
  52. 52.
    Whitaker D, Papadimitrou JM, Wolters M: The mesothelium: its fibrinolytic properties. J Pathol 136: 291, 1982PubMedGoogle Scholar
  53. 53.
    Hinsbergh van VWM, Kooistra T, Scheffer MA, Bockel van JH, Muyen van GNP: Characterization and fibrinolytic properties of human omental tissue mesothelial cells. Comparison with endothelial cells. Blood 75: 1450, 1990Google Scholar
  54. 54.
    Slater ND, Lope GH, Raftery AT: Peritoneal plasminogen activator activity after chronic exposure to dialysis fluid. Perit Dial Int 12: 262, 1992PubMedGoogle Scholar
  55. 55.
    Gries E, Kopp J, Thomal U, Kuhlmann H: Regulation of intraperitoneal and intravascular coagulation and fibrinolysis related antigen in peritoneal dialysis. Thromb Haemostas 63: 356, 1990Google Scholar
  56. 56.
    Laurent TC: II. The ultrastructure and physical-chemical properties of interstitial connective tissue. Pfluegers Arch (Suppl) 336: S21, 1972Google Scholar
  57. 57.
    Gerch I, Catchpole HR: The nature of ground substances of connective tissue. Perspect Biol Med 3: 282, 1960Google Scholar
  58. 58.
    Watson PD, Grodins FS: An analysis of the effects of the interstitial matrix on plasma-lymph transport. Microvasc Res 16: 19, 1978PubMedGoogle Scholar
  59. 59.
    Laurent TC: Interaction between proteins and glycosaminoglycans. Fed Proc 36: 24, 1977PubMedGoogle Scholar
  60. 60.
    Aukland K, Reed RD: Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 73: 1, 1993PubMedGoogle Scholar
  61. 61.
    Joffe P, Jensen CT: Type I and III procollagens in CAPD: markers of peritoneal fibrosis. Adv Perit Dial 7: 158, 1991PubMedGoogle Scholar
  62. 62.
    Jörres A, Ladat K, Lang J, Sander K, Gahl GM, Williams JD, Topley N: Human peritoneal fibroblasts synthesize IL-6 in response to IL-1β and TNFα. Nephrol Dial Transplant 9: 1023, 1993Google Scholar
  63. 63.
    Gotloib L, Shustak A, Bar-Sella P, Eiali V: Fenestrated capillaries in human parietal and rabbit diaphragmatic peritoneum. Nephron 41: 200, 1985PubMedGoogle Scholar
  64. 64.
    Gotloib L, Bar-Sella P, Shostak A: Reduplicated basal lamina of small venules and mesothelium of human parietal peritoneum. Perit Dial Bull 5: 212, 1985Google Scholar
  65. 65.
    Di Paolo N, Sacchi G: Peritoneal vascular charges in continuous ambulatory peritoneal dialysis (CAPD): an in vivo model for the study of diabetic microangiopathy. Perit Dial Int 9: 41, 1989PubMedGoogle Scholar
  66. 66.
    Nolph KD, Miller F, Rubin J, Popovich R: New directions in peritoneal dialysis concepts and applications. Kidney Int 18(Suppl 10): S111, 1980Google Scholar
  67. 67.
    Flessner MF: Peritoneal transport physiology: insights from basic research. J Am Soc Nephrol 2: 122, 1991PubMedGoogle Scholar
  68. 68.
    Nagel W, Kuschinsky W: Study of the permeability of the isolated dog mesentery. Eur J Clin Invest 1: 149, 1970PubMedGoogle Scholar
  69. 69.
    Rasio EA: Metabolic control of permeability in isolated mesentery. Am J Physiol 226: 962, 1974PubMedGoogle Scholar
  70. 70.
    Fox JR, Wayland H: Interstitial diffusion of macromolecules in the rat mesentery. Microvasc Res 18: 255, 1979PubMedGoogle Scholar
  71. 71.
    Grotte G: Passage of dextran molecules across the bloodlymph barrier. Acta Chir Scand 211(Suppl): 1, 1956Google Scholar
  72. 72.
    Rippe B, Haraldsson B: Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev 74: 163, 1994PubMedGoogle Scholar
  73. 73.
    Renkin EM: Relation of capillary morphology to transport of fluid and large molecules: a review. Acta Physiol Scand 463(Suppl): 81, 1979Google Scholar
  74. 74.
    Karnovsky MJ: The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol 35: 213, 1967PubMedGoogle Scholar
  75. 75.
    Rippe B, Haraldsson B: How are macromolecules transported across the capillary wall? News Physiol Sci 2: 135, 1987Google Scholar
  76. 76.
    Simionescu N, Simionescu M, Palade GE: Permeability of muscle capillaries to exogenous myoglobin. J Cell Biol 57: 424, 1973PubMedGoogle Scholar
  77. 77.
    Simionescu N, Simionescu M, Palade GE: Permeability of muscle capillaries to small heme-peptides. J Cell Biol 64: 586, 1975PubMedGoogle Scholar
  78. 78.
    Rippe B, Kamiya A, Folkow B: Transcapillary passage of albumin; effects of tissue cooling and of increases in filtration and plasma colloid osmotic pressure. Acta Physiol Scand 105: 171, 1979PubMedGoogle Scholar
  79. 79.
    Fox J, Galey F, Wayland H: Action of histamine on the mesenteric microvasculature. Microvasc Res 19: 108, 1980PubMedGoogle Scholar
  80. 80.
    Deen WM, Bridges CR, Brenner BM, Myers BD: Heteroporous model of glomerular size selectivity: application to normal and nephrotic humans. Am J Physiol 249: F374, 1985PubMedGoogle Scholar
  81. 81.
    Rippe B, Stelin G: Simulations of peritoneal solute transport during CAPD. Application of two-pore formalism. Kidney Int 35: 1234, 1989PubMedGoogle Scholar
  82. 82.
    Rippe B, Stelin G, Haraldsson B: Computer simulations of peritoneal fluid transport in CAPD. Kidney Int 40: 315, 1991PubMedGoogle Scholar
  83. 83.
    Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP 28 protein. Science, Washington DC 256: 385, 1992Google Scholar
  84. 84.
    Dempster JA, van Hoek AN, van Os CH: The quest for water channels. News Physiol Sci 7: 172, 1992Google Scholar
  85. 85.
    Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, Guggino WB, Nielsen S: Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 265: F463, 1993PubMedGoogle Scholar
  86. 86.
    Chen TW, Khanna R, Moore H, Twardowski ZJ, Nolph KD: Sieving and reflection coefficients for sodium salts and glucose during peritoneal dialysis. J Am Soc Nephrol 2: 1092, 1991PubMedGoogle Scholar
  87. 87.
    Gotloib L, Bar-Sella P, Jaichenko J, Shustack A: Ruthenium-red-stained polyanionic fixed charges in peritoneal microvessels. Nephron 47: 22, 1987PubMedGoogle Scholar
  88. 88.
    Galdi P, Shostak A, Jaichenko J, Fudin R, Gotloib L: Protamine sulfate induces enhanced peritoneal permeability to proteins. Nephron 57: 45, 1991PubMedGoogle Scholar
  89. 89.
    Alavi N, Lianos E, Andres G, Bentzel CJ: Effect of protamine on the permeability and structure of rat peritoneum. Kidney Int 21: 44, 1982PubMedGoogle Scholar
  90. 90.
    Krediet RT, Koomen GCM, Koopman MG, Hoek FJ, Struijk DG, Boeschoten EW, Arisz L: The peritoneal transport of serum proteins and neutral dextran in CAPD patients. Kidney Int 35: 1064, 1989PubMedGoogle Scholar
  91. 91.
    Leypoldt JK, Henderson LW: Molecular charge influences transperitoneal macromolecule transport. Kidney Int 43: 837, 1993PubMedGoogle Scholar
  92. 92.
    Krediet RT, Struijk DG, Koomen GCM, Zemel D, Boeschoten EW, Hoek FJ, Arisz L: Peritoneal transport of macromolecules in patients on CAPD. Contrib Nephrol 89: 161, 1991PubMedGoogle Scholar
  93. 93.
    Buis B, Koomen GCM, Imholz ALT, Struijk DG, Arisz L, Krediet RT: Is the transperitoneal transport of macromolecules charge dependent? Perit Dial Int 14(Suppl 1): S33, 1994Google Scholar
  94. 94.
    Haraldsson B: The peritoneal membrane acts as a negatively charged barrier restricting anionic proteins. J Am Soc Nephrol 4: 407, 1993Google Scholar
  95. 95.
    Gotloib L, Shustuk A, Jaichenko J: Loss of mesothelial electronegative fixed charges during murine septic peritonitis. Nephron 51: 77, 1989PubMedGoogle Scholar
  96. 96.
    Flessner MF, Dedrick RL, Schultz JS: A distributed model of peritoneal plasma transport: theoretical considerations. Am J Physiol 246: R597, 1984PubMedGoogle Scholar
  97. 97.
    Flessner MF, Fenstermacher JK, Dedrick RL, Blasberg RG: A distributed model of peritoneal plasma transport: tissue concentration gradients. Am J Physiol 248: F425, 1985PubMedGoogle Scholar
  98. 98.
    Seasmes EL, Moncrief JW, Popovich RP: A distributed model of fluid and mass transfer in peritoneal dialysis. Am J Physiol 258: 958, 1990Google Scholar
  99. 99.
    Henderson LW: The problem of peritoneal membrane area and permeability. Kidney Int 3: 409, 1973PubMedGoogle Scholar
  100. 100.
    Nolph KD, Ghods A, Brown P, Miller F, Harris P, Pyle K, Popovich R: Effects of nitroprusside on peritoneal mass transfer coefficients and microvascular physiology. Trans Am Soc Artif Intern Organs 23: 210, 1977PubMedGoogle Scholar
  101. 101.
    Granger DN, Ulrich M, Perry MA, Kvietys PR: Peritoneal dialysis solutions and feline splanchnic blood flow. Clin Exp Pharmacol Physiol 11: 473, 1984PubMedGoogle Scholar
  102. 102.
    Pietrzak I, Hirszel P, Shostak A, Welch PG, Lee RE, Maher JF: Splanchnic volume, not flow rate, determines peritoneal permeability. Trans Am Soc Artif Intern Organs 35: 583, 1989Google Scholar
  103. 103.
    Nolph KD, Ghods AJ, van Stone J, Brown PA: The effects of intraperitoneal vasodilators on peritoneal clearances. Trans Am Soc Artif Intern Organs 22: 586, 1976PubMedGoogle Scholar
  104. 104.
    Bradley SE: Variations in hepatic flow in man during health and disease. N Engl J Med 240: 456, 1949PubMedCrossRefGoogle Scholar
  105. 105.
    Aune S: Transperitoneal exchange. Peritoneal blood flow estimated by hydrogen gas clearance. Scand J Gastroent 5: 99, 1970PubMedGoogle Scholar
  106. 106.
    Grzegorzewska AE, Moore HL, Nolph KD, Chen TW: Ultrafiltration and effective peritoneal blood flow during peritoneal dialysis in the rat. Kidney Int 39: 608, 1991PubMedGoogle Scholar
  107. 107.
    Maher JF: Transport kinetics in peritoneal dialysis. Perit Dial Bull (Suppl): S4, 1983Google Scholar
  108. 108.
    Nolph KD, Popovich RP, Ghods AJ, Twardowski ZJ: Determinants of low clearances of small solutes during peritoneal dialysis. Kidney Int 13: 117, 1978PubMedGoogle Scholar
  109. 109.
    Grzegorzewska AE, Antoniewicz K: An indirect estimation of effective peritoneal capillary blood flow in peritoneally dialyzed uremic patients. Perit Dial Int 13(Suppl 2): S39, 1993Google Scholar
  110. 110.
    Ronco C, Brendolan A, Braglantini L, Chiaramonte S, Feriani M, Fabris A, La Greca G: Studies onultrafiltration in peritoneal dialysis: influence of plasma proteins and capillary blood flow. Perit Dial Bull 6: 93, 1986Google Scholar
  111. 111.
    Ronco G, Feriani M, Chiaramonte S, Brendolan A, Bragantini L, Conz P, Dell’Aquilla R, Milan M, La Greca G: Pathophysiology of Ultrafiltration in peritoneal dialysis. Perit Dial Int 10: 119, 1990PubMedGoogle Scholar
  112. 112.
    Crissinger KD, Granger DN. Gastrointestinal blood flow. in Textbook of Gastroenterology, edited by Yamada T, Philadelphia, Lippincott, 1991, p 447Google Scholar
  113. 113.
    Brandt JL, Castleman L, Ruskin HD, Greenwald J, Kelly JJ Jr, Jones A: The effect of oral protein and glucose feeding on splanchnic blood flow and oxygen utilization in normal and cirrhotic subjects. J Clin Invest 34: 1017, 1955PubMedGoogle Scholar
  114. 114.
    Rocha E, Silva M, Rosenberg M: The release of vasopressin in response to haemorrhage and its role in the mechanism of blood pressure regulation. J Physiol. London 202: 535, 1969Google Scholar
  115. 115.
    Suvannapara A, Levens NR: Local control of mesenteric blood flow by the renin-angiotensin system. Am J Physiol 225: G267, 1988Google Scholar
  116. 116.
    Rayford PL, Miller TA, Thompson J: Secretin, cholecystokinin and newer gastrointestinal hormones. N Engl J Med 244: 1093, 1976CrossRefGoogle Scholar
  117. 117.
    Wade OL, Combes B, Childs AW, Wheeles HO, Cournand A, Bradley SE: The effect of exercise on the splanchnic blood flow and splanchnic blood volume in normal man. Clin Sci 15: 457, 1956PubMedGoogle Scholar
  118. 118.
    Henderson LW, Nolph KD: Altered permeability of the peritoneal membrane after using hypertonic peritoneal dialysis fluid. J Clin Invest 48: 992, 1969PubMedGoogle Scholar
  119. 119.
    Rubin J, Klein E, Bower JD: Investigation of the net sieving coefficient of the peritoneal membrane during peritoneal dialysis. ASAIO J 5: 9, 1982Google Scholar
  120. 120.
    Rippe B, Perry MA, Granger DN. Permselectivity of the peritoneal membrane. Microvasc Res 29: 89, 1985PubMedGoogle Scholar
  121. 121.
    Krediet RT, Imholz ALT, Struijk DG, Koomen GCM, Arisz L: Ultrafiltration failure in continuous ambulatory peritoneal dialysis. Perit Dial Int 13(Suppl 2): S59, 1993Google Scholar
  122. 122.
    Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT: Fluid and solute transport in CAPD patients using ultralow sodium dialysate. Kidney Int 46: 333, 1994PubMedGoogle Scholar
  123. 123.
    Leypoldt JK: Interpreting peritoneal osmotic reflection coefficients using a distributed model of peritoneal transport. Adv Perit Dial 9: 3, 1993PubMedGoogle Scholar
  124. 124.
    Twardowski ZJ, Nolph KD, Khanna R, Prowant BF, Ryan CP, Moore HL, Nielsen MP: Peritoneal equilibration test. Perit Dial Bull 7: 138, 1987Google Scholar
  125. 125.
    Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT: Residual volume measurements in CAPD patients with exogenous and endogenous solutes. Adv Perit Dial 8: 33, 1992PubMedGoogle Scholar
  126. 126.
    Davies SJ, Brown B, Bryan J, Russel GI: Clinical evaluation of the peritoneal equilibration test: a populationbased study. Nephrol Dial Transplant 8: 64, 1993PubMedGoogle Scholar
  127. 127.
    Nolph KD: Clinical implications of membrane transport characteristics on the adequacy of fluid and solute removal. Perit Dial Int 14(Suppl 3): S78, 1994Google Scholar
  128. 128.
    Struijk DG, Krediet RT, Koomen GCM, Boeschoten EW, Arisz L: Measurement of peritoneal transport for low molecular weight solutes; which test should be used? Nephrol Dial Transplant 5: 721, 1990Google Scholar
  129. 129.
    Heimbürger O, Waniewski J, Werynski A, Park MS, Lindholm B: Dialysate to plasma solute concentration (D/P) versus peritoneal transport parameters in CAPD. Nephrol Dial Transplant 9:47, 1994PubMedGoogle Scholar
  130. 130.
    Burkart JM, Jordan JR, Rocco MV: Assessment of dialysis dose by measured clearance versus extrapolated data. Perit Dial Int 13: 184, 1993PubMedGoogle Scholar
  131. 131.
    Pyle WK: Mass transfer in peritoneal dialysis. Thesis. University of Texas at Austin, University Microfilms International, Ann Arbor, Michigan, 1982Google Scholar
  132. 132.
    Randersson DH, Farrell P: Mass transfer properties of the human peritoneum. ASAIO J 3: 140, 1980Google Scholar
  133. 133.
    Rubin J, Nolph KD, Arfania D, Brown P, Prowant B: Follow-up of peritoneal clearances in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int 16: 619, 1979PubMedGoogle Scholar
  134. 134.
    Kagan A, Bar-Khayim Y, Shafer Z, Fainara M: Kinetics of peritoneal protein loss during CAPD: I. Different characteristics for low and high molecular weight proteins. Kidney Int 37: 971, 1990PubMedGoogle Scholar
  135. 135.
    Rippe B, Stelin G, Haraldsson B: Understanding the kinetics of peritoneal transport. in Nephrology, edited by Hatano M, Tokyo, Springer, 1991, p 1563Google Scholar
  136. 136.
    Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT:The effect of dialysate osmolarity on the transport of low molecular weight solutes and proteins during CAPD. Kidney Int 43: 1339, 1993PubMedGoogle Scholar
  137. 137.
    Lysaght MJ, Farrell PC: Membrane phenomena and mass transfer kinetics in peritoneal dialysis. J Membr Sci 44: 5, 1984Google Scholar
  138. 138.
    Waniewski J, Werynski A, Heimbürger O, Lindholm B: A comparative analysis of mass transport models in peritoneal dialysis. Trans Am Soc Artif Intern Organs 37: 65. 1991Google Scholar
  139. 139.
    Lindholm B, Werynski A, Bergström J: Kinetics of peritoneal dialysis with glycerol and glucose as osmotic agents. Trans Am Soc Artif Intern Organs 33: 19, 1987Google Scholar
  140. 140.
    Garred LJ, Canaud B, Farrell PC: A simple kinetic model for assessing peritoneal mass transfer in chronic ambulatory peritoneal dialysis. ASAIO J 6: 131, 1983Google Scholar
  141. 141.
    Krediet RT, Boeschoten EW, Zuyderhoudt FMJ, Strackee J, Arisz L: Simple assessment of the efficacy of peritoneal transport in continuous ambulatory peritoneal dialysis patients. Blood Purif 4: 194, 1986PubMedGoogle Scholar
  142. 142.
    Waniewski J, Werynski A, Heimbürger O, Lindholm B: Simple models for description of small solute transport in peritoneal dialysis. Blood Purif 9: 129, 1991PubMedGoogle Scholar
  143. 143.
    Waniewski J, Heimbürger O, Werynski A, Lindholm B: Aqueous solute concentrations and evaluation of mass transport coefficients in peritoneal dialysis. Nephrol Dial Transplant 7: 50, 1992PubMedGoogle Scholar
  144. 144.
    Krediet RT, Imholz ALT, de Waart DR, Langedijk MJ, Schouten M, Pannekeet MM, Struijk DG: Clinical experience with the standard peritoneal permeability analysis (SPA). Nephrol Dial Transplant 9: 1022, 1994Google Scholar
  145. 145.
    Imholz ALT: Peritoneal fluid and solute transport in CAPD patients. Thesis, University of Amsterdam: 44, 1994Google Scholar
  146. 146.
    Krediet RT, Zuyderhoudt FMJ, Boeschoten EW, Arisz L: Alterations in the peritoneal transport of water and solutes during peritonitis in continuous ambulatory peritoneal dialysis patients. EurJ Clin Invest 17: 43, 1987Google Scholar
  147. 147.
    Krediet RT, Boeschoten EW, Struijk DG, Arisz L: Differences in the peritoneal transport of water, solutes and proteins between dialysis with two-and with three-litre exchanges. Nephrol Dial Transplant 2: 198, 1988Google Scholar
  148. 148.
    Lasrich M, Maher JM, Hirszel P, Maher JF: Correlation of peritonea] transport rates with molecular weight: a method for predicting clearances. ASAIO J 2: 107, 1979Google Scholar
  149. 149.
    Nolph KD, Twardowski ZJ, Popovich RP, Rubin J: Equilibration of peritoneal dialysis solutions during long-dwell exchanges. J Lab Clin Med 93: 246, 1979PubMedGoogle Scholar
  150. 150.
    Heimbürger O, Waniewski J, Werynski A, Tranaeus A, Lindholm B: Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int 38: 495, 1990PubMedGoogle Scholar
  151. 151.
    Heimbürger O, Waniewski J, Werynski A, Lindholm B: A quantitative description of solute and fluid transport during peritoneal dialysis. Kidney Int 41: 1320, 1992PubMedGoogle Scholar
  152. 152.
    Nolph KD, Hano JE, Teschan PE: Peritoneal sodium transport during hypertonic peritoneal dialysis. Ann Intern Med 70: 931, 1989Google Scholar
  153. 153.
    Weast RC, Selby SM, Hodgman CD: Handbook of Chemistry and Physics, 64th ed, Ohio, Rubber, 1965, p F–117Google Scholar
  154. 154.
    Stryer L: Biochemistry, 2nd ed, Freeman, San Francisco 1981, p 205Google Scholar
  155. 155.
    Nakayama N, Yokoyama K, Kubo H, Watanabe S, Kawaguchi Y, Sakai O: Effects of ultralow Na concentration dialysate (ULNaD) for overhydrated patients undergoing CAPD. Perit Dial Int 12(Suppl 1): S143, 1992Google Scholar
  156. 156.
    Nakayama N, Kawaguchi Y, Kubo H, Miura Y, Sakai O: Clinical effect of low Na concentration dialysate (120 mEq/l) for CAPD patients. Perit Dial Int 13(Suppl 1): S76, 1993Google Scholar
  157. 157.
    Brown ST, Aheam J, Nolph KD: Potassium removal with peritoneal dialysis. Kidney Int 4: 67, 1973PubMedGoogle Scholar
  158. 158.
    Waniewski J, Werynski A, Heimbürger O, Park MS, Lindholm B: Effect of alternative osmotic agents on peritoneal transport. Blood Purif 11: 248, 1993PubMedGoogle Scholar
  159. 159.
    Krediet RT, Zuyderhoudt FMJ, Boeschoten EW, Arisz L: Peritoneal permeability to proteins in diabetic and non-diabetic continuous ambulatory peritoneal dialysis patients. Nephron 42: 133, 1986PubMedGoogle Scholar
  160. 160.
    Bonomini V, Zucchelli P, Mioli V: Selective and unselective protein loss in peritoneal dialysis. Proc Eur Dial Transplant Assoc 4: 146, 1967Google Scholar
  161. 161.
    Taylor AE, Granger DN: Exchange of macromolecules across the microcirculation, in Handbook of Physiology. Sec 2. The Cardiovascular System, edited by Renkin EM, Michell CC, American Physiological Society, 1984, p 465Google Scholar
  162. 162.
    Rippe B, Haraldsson B: Fluid and protein fluxes across small and large pores in the microvasculature. Applications of two-pore equations. Acta Physiol Scand 131: 411, 1987PubMedGoogle Scholar
  163. 163.
    Nolph KD, Miller FN, Py le WK, Popovich RP, Sorkin MI: An hypothesis to explain the ultrafiltration characteristics of peritoneal dialysis. Kidney Int 20: 543, 1981PubMedGoogle Scholar
  164. 164.
    Leypoldt JK, Blindauer KM: Convection does not govern plasma to dialysate transport of protein. Kidney Int 42: 1412, 1992PubMedGoogle Scholar
  165. 165.
    Schaeffer RC jr, Bitrick MS, Holberg WC III, Katz MA: Macromolecular transport across endothelial monolayers. Int J Microcirc Clin Exp 11: 181, 1992PubMedGoogle Scholar
  166. 166.
    Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT: Effect of an increased intraperitoneal pressure on fluid and solute transport during CAPD. Kidney Int 44: 1078, 1993PubMedGoogle Scholar
  167. 167.
    Leypoldt JK, Frigon RP, De Vore KW, Henderson LW: A rapid renal clearance methodology for dextran, Kidney Int 31: 855, 1987PubMedGoogle Scholar
  168. 168.
    Granath KA, Kvist BE: Molecular weight distribution analysis by gel chromatography on sephadex. J Chromatogr 28: 69, 1967PubMedGoogle Scholar
  169. 169.
    Krediet RT, Struijk DG, Zemel D, Koomen GCM, Arisz L: The transport of macromolecules across the human peritoneum during CAPD. in Peritoneal Dialysis, edited by La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, Milano, Wichtig Editore, 1991, p 61Google Scholar
  170. 170.
    Zemel D, Krediet RT, Koomen GCM, Struijk DG, Arisz L: Day-to-day variability of protein transport used as a method for analyzing peritoneal permeability in CAPD. Perit Dial Int 11:217, 1991PubMedGoogle Scholar
  171. 171.
    Krediet RT, Zemel D, Struijk DG, Koomen GCM, Arisz L: Individual characterization of the peritoneal restriction barrier to the transport of serum proteins. in Current Concepts in Peritoneal Dialysis, edited by Ota K, Maher JF, Winchester JF et al., Amsterdam, Excerpta Medica 1992, p 49Google Scholar
  172. 172.
    Krediet RT, Zemel D, Struijk DG, Koomen GCM, Arisz L: Individual characterization of the peritoneal restriction barrier to macromolecules. Adv Perit Dial 7: 15, 1991PubMedGoogle Scholar
  173. 173.
    Zonosi S, Winchester JF, Kloberdanz N, Preuss H, Fox S, Cocker C, Sanders K, Barnard W, Fox L: Upright position and exercise lower peritoneal transport rates. Kidney Int 23: 165, 1983Google Scholar
  174. 174.
    Caratola G, Zoccali C, Crucitti S, Pastorino D, Siclari F, Cuzzucri A, Maggiore Q: Effect of posture on peritoneal clearance in CAPD patients. Perit Dial Int 8: 58, 1988Google Scholar
  175. 175.
    Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT: Fluid and solute transport during CAPD in upright and recumbent position. Nephrol Dial Transplant 9: 1021, 1994Google Scholar
  176. 176.
    Erbe RW, Greene JA Jr, Weller JM: Peritoneal dialysis during hemorrhagic shock. J Appl Physiol 22: 131, 1967PubMedGoogle Scholar
  177. 177.
    Selgas R, Munoz IM, Conesa J, Madero R, Gancedo PG, Carmona AR, Martinez ME, Huarte E, Fontan MP, Sicilia L: Endogenous sympathetic activity in CAPD patients: its relationship to peritoneal diffusion capacity. Perit Dial Bull 6: 205, 1986Google Scholar
  178. 178.
    Ratge D, Augustin R, Wisser H: Plasma catecholamines and α-and β-adrenoceptors in circulating blood cells in patients on continuous ambulatory peritoneal dialysis. Clin Nephrol 28: 15, 1987PubMedGoogle Scholar
  179. 179.
    Zabetakis PM, Kumar DN, Gleim GW, Gavdenswartz MH, Agrawal M, Robinson AG, Michelis MF: Increased levels of plasma renin, aldosterone, catecholamines and vasopressin in chronic ambulatory peritoneal dialysis (CAPD) patients. Clin Nephrol 28: 147, 1987PubMedGoogle Scholar
  180. 180.
    Plum J, Ziyail M, Kemmer FW, Passlick-Deetjen J, Grabensee B: Intraindividual comparison of ANP, cGMP and plasma catecholamines between HD and CAPD. Adv Perit Dial 6: 211, 1990PubMedGoogle Scholar
  181. 181.
    Steinhauer HB, Günter B, Schollmeyer P. Stimulation of peritoneal synthesis of vasoactive prostaglahdins during peritonitis in patients on continuous ambulatory peritoneal dialysis. Eur J Clin Invest 15: 1, 1985PubMedGoogle Scholar
  182. 182.
    Steinhauer HB, Günter B, Schollmeyer P: Enhanced peritoneal generation of vasoactive prostaglandins during peritonitis in patients undergoing CAPD. in Frontiers in Peritoneal Dialysis, edited by Maher JF, Winchester JF, New York, Field, Rich 1986, p 604Google Scholar
  183. 183.
    Steinhauer HB, Schollmeyer P: Prostaglandin-mediated loss of proteins during peritonitis in continuous ambulatory peritoneal dialysis. Kidney Int 29: 584, 1986PubMedGoogle Scholar
  184. 184.
    Hain H, Jörres A, Gahl M, Pastelnik A, Müller C, Köttgen E: Peritoneal permeability for proteins in uninfected CAPD patients: a kinetic study, in Current Concepts in Peritoneal Dialysis, edited by Oka K, Winchester JF, Hirszel P et al., Amsterdam, Excerpta Medica, 1992, p 59Google Scholar
  185. 185.
    Shaldon S, Koch KM, Quelhorst E, Dinarello CA: Hazards of CAPD: interleukin-1 production, in Frontiers in Peritoneal Dialysis, edited by Maher JF, Winchester JF, New York, Field, Rich 1986, p 630Google Scholar
  186. 186.
    Shaldon S, Dinarello CA, Wyler DJ: Induction of interleukin-1 during CAPD. Contrib Nephrol 57: 207, 1987PubMedGoogle Scholar
  187. 187.
    Miller FN: Effects of peritoneal dialysis on rat microcirculation and peritoneal clearances in man. Dial Transplant 7: 818, 1978Google Scholar
  188. 188.
    Miller FN, Nolph KD, Joshua IG, Wiegman DL, Harris PD, Anderson DB: Hyperosmolality, acetate, and lactate: dilatory factors during peritoneal dialysis. Kidney Int 20: 347, 1981Google Scholar
  189. 189.
    Miller FN, Nolph KD, Joshua IG: The osmolality component of peritoneal dialysis solutions. in Continuous Ambulatory Peritoneal Dialysis, edited by Legrain M, Amsterdam, Excerpta Medica 1980, p 12Google Scholar
  190. 190.
    Heaton A, Ward MK, Johnston DG, Nicholson DV, Alberti KGMM, Kerr DNS: Short-term studies on the use of glycerol as an osmotic agent in continuous ambulatory peritoneal dialysis (CAPD). Clin Sci 67: 121, 1984PubMedGoogle Scholar
  191. 191.
    Goodship THJ, Lloyd S, McKenzie PW, Earnshaw M, Smeaton I, Bartlett K, Ward MK, Wilkinson R: Shortterm studies on the use of aminoacids as an osmotic agent in continuous ambulatory peritoneal dialysis. Clin Sci 73: 471, 1987PubMedGoogle Scholar
  192. 192.
    Lindholm B, Werynski A, Bergström J: Peritoneal dialysis with aminoacid solutions: fluid and solute transport kinetics. Artif Organs 12: 2, 1988PubMedCrossRefGoogle Scholar
  193. 193.
    Young GA, Dibble JB, Taylor AE, Kendall S, Brownjohn AM: A longitudinal study on the effects of amino-acid-based CAPD fluid on aminoacid retention and protein losses. Nephrol Dial Transplant 4: 900, 1989PubMedGoogle Scholar
  194. 194.
    Steinhauer HB, Lubrick-Birkner I, Klutte R, Baumann G, Schollmeyer P: Effect of aminoacid based dialysis solution on peritoneal permeability and prostanoid generation in patients undergoing continuous ambulatory peritoneal dialysis. Am J Nephrol 12: 61, 1992PubMedGoogle Scholar
  195. 195.
    Mistry CD, O’Donoghue DN, Nelson S, Gokal R, Ballardi FW: Kinetic and clinical studies of β2-microglobulin in continuous ambulatory peritoneal dialysis: influence of renal and enhanced peritoneal clearances using glucose polymer. Nephrol Dial Transplant 5: 513, 1990PubMedGoogle Scholar
  196. 196.
    Imholz ALT, Brown CB, Koomen GCM, Arisz L, Krediet RT: The effects of glucose polymers on water removal and protein clearances during CAPD. Adv Perit Dial 9: 25, 1993PubMedGoogle Scholar
  197. 197.
    Krediet RT, Brown CB, Imholz ALT, Koomen GCM: Protein clearance and icodextrin. Perit Dial Int 14(Suppl 2): S39, 1994Google Scholar
  198. 198.
    Hirzel P, Lasrich M, Maher JF: Augmentation of peritoneal mass transport by dopamine. J Lab Clin Med 94: 747, 1974Google Scholar
  199. 199.
    Hirszel P, Maher JF, Le Grow W: Increased peritoneal mass transport with glucagon acting at the vascular surface. Trans Am Soc Artif Intern Organs 24: 136, 1978PubMedGoogle Scholar
  200. 200.
    Maher JF, Hirszel P, Lasrich M: Effects of gastrointestinal hormones on transport by peritoneal dialysis. Kidney Int 16: 130, 1979PubMedGoogle Scholar
  201. 201.
    Felt J, Richard C, McCaffrey C, Levy M: Peritoneal clearance of creatinine and inulin during dialysis in dogs: effect of splanchnic vasodilators. Kidney Int 16: 459, 1979PubMedGoogle Scholar
  202. 202.
    Hare HG, Valtin H, Gosselin RE: Effect of drugs on peritoneal dialysis in the dog. J Pharmacol Exp Ther 145: 122, 1964PubMedGoogle Scholar
  203. 203.
    Henderson LW, Kintzel JE: Influence of antidiuretic hormone on peritoneal membrane area and permeability. J Clin Invest 40: 2437, 1971CrossRefGoogle Scholar
  204. 204.
    Miller FN, Joshua IG, Andersson GL: Quantitation of vasodilator-induced macromolecular leakage by in vivo fluorescent microscopy. Microvasc Res 24: 56, 1982PubMedGoogle Scholar
  205. 205.
    Brown EA, Kliger AS, Goffinet J, Finkelstein FO: Effect of hypertonic dialysate and vasodilators on peritoneal dialysis clearances in the rat. Kidney Int 13: 271, 1978PubMedGoogle Scholar
  206. 206.
    Shostak A, Chakrabarti E, Hirszel P, Maher JF: Effects of histamine and its receptor antagonists on peritoneal permeability. Kidney Int 34: 786, 1988PubMedGoogle Scholar
  207. 207.
    Nolph KD, Ghods AJ, Brown PA, Twardowski ZJ: Effects of intraperitoneal nitroprusside on peritoneal clearances in man with variation of dose, frequency of administration and dwell times. Nephron 24: 114, 1979PubMedGoogle Scholar
  208. 208.
    Maher JF, Hirszel P, Lasrich M: Modulation of peritoneal transport rates by prostaglandins. Adv Prostaglandin Thromboxane Res 7: 965, 1980Google Scholar
  209. 209.
    Hirszel P, Lasrich M, Maher JF: Arachidonic acid increases peritoneal clearances. Trans Am Soc Artif Intern Organs 27: 61, 1981PubMedGoogle Scholar
  210. 210.
    Maher JF, Hirszel P, Lasrich M: Prostaglandin effects on peritoneal transport. in Adv Perit Dial, edited by Gahl GM, Kessel M, Nolph KD, Amsterdam, Excerpta Medica, 1981, p 64Google Scholar
  211. 211.
    Zemel D, Koomen GCM, Struijk DG, ten Berge RJM, van Acker BAC, Krediet RT: Inflammatory mediators and peritoneal permeability (P Perm) in CAPD patients given cyclooxygenase inhibition (Cyl) during peritonitis. Perit Dial Int 14(Suppl 1): S31, 1994Google Scholar
  212. 212.
    Krediet RT, Boeschoten EW, Struijk DG, Arisz L: Pharmacokinetics of intraperitoneally administered 5-fluorocytosine in continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 2: 453, 1987Google Scholar
  213. 213.
    Krediet RT, Boeschoten EW, Zuyderhoudt FMJ, Arisz L: The relationship between glucose absorption and body fluid loss by ultrafiltration during continuous ambulatory peritoneal dialysis. Clin Nephrol 27: 51, 1987PubMedGoogle Scholar
  214. 214.
    Williams PF, Marliss EB, Andersson GH, Oren A, Stein AN, Khanna R, Pettit J, Brandes L, Rodella H, Mupas L, Dombros N, Oreopoulos DG: Amino-acid absorption following intraperitoneal administration in CAPD patients. Perit Dial Bull 2: 124, 1982Google Scholar
  215. 215.
    Lukas G, Brindle SD, Greengard P: The route of absorption of intraperitoneally administered compounds. J Pharm Exp Ther 178: 562, 1971Google Scholar
  216. 216.
    Babb AL, Johansen PJ, Strand MJ, Tenckhoff H, Scribner BH: Bi-directional permeability of the human peritoneum to middle molecules. Proc Eur Dial Transplant Assoc 10: 247, 1973PubMedGoogle Scholar
  217. 217.
    Struijk DG, Krediet RT, Koomen GCM, Boeschoten EW, Reijden HJ van der, Arisz L: Indirect measurement of lymphatic absorption with inulin in continuous ambulatory peritoneal dialysis (CAPD) patients. Perit Dial Int 10: 141, 1990PubMedGoogle Scholar
  218. 218.
    Struijk DG, Imholz ALT, Krediet RT, Koomen GCM, Arisz L: The use of the disappearance rate for the measurement of lymphatic absorption during CAPD. Blood Purif 10: 182, 1992PubMedGoogle Scholar
  219. 219.
    Bouchet JL, Albin H, Quentin C, De Barbeyrac B, Vinçon G, Martin-Dupont Ph, Potaux L, Aparicio M: Pharmacokinetics of intravenous and intraperitoneal fosfomycin in continuous ambulatory peritoneal dialysis. Clin Nephrol 29: 35, 1988PubMedGoogle Scholar
  220. 220.
    Janicke DM, Morse GD, Apicella MA, Jusko WJ, Walshe JJ: Pharmacokinetic modelling of bidirectional transfer during peritoneal dialysis. Clin Pharmacol Ther 40: 209, 1986PubMedCrossRefGoogle Scholar
  221. 221.
    Krediet RT, Struijk DG, Boeschoten EW, Hoek FJ, Arisz L: Measurement of intraperitoneal fluid kinetics in CAPD patients by means of autologous hemoglobin. Neth J Med 33:281, 1988PubMedGoogle Scholar
  222. 222.
    Leypoldt JK, Pust AH, Frigon RP, Henderson LW: Dialysate volume measurements are required for determining peritoneal solute transport. Kidney Int 34: 254, 1988PubMedGoogle Scholar
  223. 223.
    Gjessing J: The use of dextran as a dialyzing fluid in peritoneal dialysis. Acta Med Scand 185: 237, 1969PubMedCrossRefGoogle Scholar
  224. 224.
    Daugirdas JT, Ing TS, Ghandi VC, Hano JE, Chen WT, Yuan L: Kinetics of peritoneal fluid absorption in patients with chronic renal failure. J Lab Clin Med 95: 351, 1980PubMedGoogle Scholar
  225. 225.
    Rippe B, Stelin G, Ahlmen J: Lymph flow from the peritoneal cavity in CAPD patients, in Frontiers in Peritoneal Dialysis, edited by Maher JF, Winchester JF, New York, Field, Rich, 1986, p 24Google Scholar
  226. 226.
    Spencer PC, Farrell PC: Solute and water transfer kinetics in CAPD. in Continuous Ambulatory Peritoneal Dialysis, edited by Gokal R, Edinburgh, Churchill Livingstone 1986, p 38Google Scholar
  227. 227.
    De Paepe M, Belpaire F, Schelstraete K, Lameire N: Comparisons of different volume markers in peritoneal dialysis. J Lab Clin Med 111: 421, 1988PubMedGoogle Scholar
  228. 228.
    Lindholm B, Heimbürger O, Waniewski J, Werynski A, Bergström J: Peritoneal ultrafiltration and fluid reabsorption during peritoneal dialysis. Nephrol Dial Transplant 4: 805, 1989PubMedGoogle Scholar
  229. 229.
    Mactier RA, Khanna R, Twardowski ZJ, Moore H, Nolph KD: Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in continuous ambulatory peritoneal dialysis. J Clin Invest 80: 1311, 1987PubMedGoogle Scholar
  230. 230.
    Krediet RT, Struijk DG, Koomen GCM, Arisz L: Peritoneal fluid kinetics during CAPD measured with intraperitoneal dextran 70. Trans Am Soc Artif Intern Organs 37: 662, 1991Google Scholar
  231. 231.
    Struijk DG, Koomen GCM, Krediet RT, Arisz L: Indirect measurement of lymphatic absorption in CAPD patients is not influenced by trapping. Kidney Int 41: 1668, 1992PubMedGoogle Scholar
  232. 232.
    Brouard R, Tozer TN, Baumelou A, Gambertoglio JG: Transfer of autologous haemoglobin from the peritoneal cavity during peritoneal dialysis. Nephrol Dial Transplant 7: 57, 1992PubMedGoogle Scholar
  233. 233.
    Struijk DG, Bakker JC, Krediet RT, Koomeif GCM, Stekkinger P, Arisz L: Effect of intraperitoneaj administration of two different batches of albumin Solutions on peritoneal solute transport in CAPD patients. Nephrol Dial Transplant 6: 198, 1991PubMedGoogle Scholar
  234. 234.
    Flessner MF, Dedrick RL, Schultz JS: Exchange of macromolecules between peritoneal cavity and plasma. Am J Physiol 248: H15, 1985PubMedGoogle Scholar
  235. 235.
    Hirszel P, Shea-Donohue F, Chakrabarti E, Mortcalm E, Maher JF: The role of the capillary wall in restricting diffusion of macromolecules. Nephron 44: 58, 1988Google Scholar
  236. 236.
    Cheek TR, Twardowski ZJ, Moore HL, Nolph KD: Absorption of inulin and high-molecular weight gelatin isocyanate solutions from peritoneal cavity in rats, in Ambulatory Peritoneal Dialysis, edited by Avram MM, Giordano C, New York, Plenum, 1990, p 149Google Scholar
  237. 237.
    Krediet RT, Struijk DG, Koomen GCM, Hoek FJ, Arisz L: The disappearance of macromolecules from the peritoneal cavity during continuous ambulatory peritoneal dialysis (CAPD) is not dependent on molecular size. Perit Dial Int 10: 147, 1990PubMedGoogle Scholar
  238. 238.
    Mactier RA, Khanna R, Twardowski ZJ, Moore H, Nolph KD: Influence of phosphatidylcholine on lymphatic absorption during peritoneal dialysis in the rat. Perit Dial Int 8: 179, 1988Google Scholar
  239. 239.
    Flessner MF, Parker RJ, Sieber SM: Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Physiol 244: H89, 1983PubMedGoogle Scholar
  240. 240.
    Flessner MF, Fenstermacher JD, Blasberg RG, Dedrick RL: Peritoneal absorption of macromolecules studied by quantitative autoradiography. Am J Physiol 248: H26, 1985PubMedGoogle Scholar
  241. 241.
    Nagy JA: Lymphatic and nonlymphatic pathways of peritoneal absorption in mice: physiology versus pathology. Blood Purif 10: 148, 1992PubMedGoogle Scholar
  242. 242.
    Stelin G, Rippe B: A phenomenological interpretation of the variation in dialysate volume with dwell time on CAPD. Kidney Int 38: 465, 1990PubMedGoogle Scholar
  243. 243.
    Rose BD: Clinical Physiology of Acid-base and Electrolyte Disorders, 2nd ed, New York, McGraw-Hill, 1984, p 33Google Scholar
  244. 244.
    Twardowski ZJ, Khanna R, Nolph KD, Scalamogna A, Metzler MH, Schneider TW, Prowant BF, Ryan LP: Intra-abdominal pressures during natural activities in patients treated with continuous ambulatory peritoneal dialysis. Nephron 44: 129, 1986PubMedGoogle Scholar
  245. 245.
    Twardowski ZJ, Prowant BF, Nolph KD, Martinez AJ, Lampton LM: High volume, low frequency continuous ambulatory peritoneal dialysis. Kidney Int 23: 64, 1983PubMedGoogle Scholar
  246. 246.
    Rubin J, Nolph KD, Popovich RP, Moncrieff JW, Prowant B: Drainage volumes during continuous ambulatory peritoneal dialysis. ASAIO J 2: 54, 1979Google Scholar
  247. 247.
    Canaud B, Liendo-Liendo C, Claret C, Mion H, Mion C: Etude ‘in situ’ de la cinetique de l’ultrafiltration en cours de dialyse péritonéale avec périodes de diffusion prolongée. Nephrologie 1: 126, 1980PubMedGoogle Scholar
  248. 248.
    Krediet RT, Imholz ALT, Struijk DG, Koomen GCM, Arisz L: Effects of tracer, volume, osmolarity and infection on fluid kinetics during CAPD. Blood Purif 10: 173, 1992PubMedGoogle Scholar
  249. 249.
    Nolph KD, Mactier RA, Khanna R, Twardowski ZJ, Moore H, McCary T: The kinetics of ultrafiltration during peritoneal dialysis: the role of lymphatics. Kidney Int 32: 219, 1987PubMedGoogle Scholar
  250. 250.
    Kaysen GA, Schoenfeld PY: Albumin homeostasis in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int 25: 107, 1984PubMedGoogle Scholar
  251. 251.
    Abernathy HJ, Clin W, Hay JB, Rodela H, Oreopoulos D, Johnston MG: Lymphatic removal of dialysate from the peritoneal cavity of anesthetized sheep. Kidney Int 40: 174, 1991Google Scholar
  252. 252.
    Johnston MG: Studies on lymphatic drainage of the peritoneal cavity in sheep. Blood Purif 10: 122, 1992PubMedCrossRefGoogle Scholar
  253. 253.
    Tran LP, Rodella H, Abernathy NJ, Yuan Z-Y, Hay JB, Oreopoulos D, Johnston MG: Lymphatic drainage of hypertonic solution from the peritoneal cavity of anesthetized and conscious sheep. J Appl Physiol 74: 859, 1993PubMedGoogle Scholar
  254. 254.
    Tran LP, Rodella H, Hay JB, Oreopoulos DG, Johnston MG: Quantitation of lymphatic drainage of the peritoneal cavity in sheep: comparison of direct cannulation techniques with indirect methods to estimate lymph flow. Perit Dial Int 13: 270, 1993PubMedGoogle Scholar
  255. 255.
    Drake RE, Gabel JC: Diaphragmatic lymph vessel drainage of the peritoneal cavity. Blood Purif 10: 132, 1992PubMedGoogle Scholar
  256. 256.
    Rippe B, El Rashied Z: Peritoneal fluid and albumin kinetics in the rat; effects of increases in intraperitoneal hydrostatic pressure. Perit Dial Int 13(Suppl 1): S74, 1993Google Scholar
  257. 257.
    Shockley TR, Ofsthun NJ: Pathways for fluid loss from the peritoneal cavity. Blood Purif 10: 115, 1992PubMedGoogle Scholar
  258. 258.
    Tsilibary EC, Wissig SL: Lymphatic absorption from the peritoneal cavity: regulation of patency of mesothelial stomata. Microvasc Res 25: 22, 1983PubMedGoogle Scholar
  259. 259.
    Abensur H, Romao JE Jr, Brando de Almeida Prado E, Kakahaski E, Sabbaga E, Marcoudes M: Influence of the hydrostatic intraperitoneal pressure and the cardiac function on the lymphatic absorption rate of the peritoneal cavity in CAPD. Adv Perit Dial 9: 41, 1993PubMedGoogle Scholar
  260. 260.
    Struijk DG, Krediet RT, Koomen GCM, Boeschoten EW, Hoek FJ, Arisz L: A prospective study of peritoneal transport in CAPD patients. Kidney Int 45: 1739, 1994PubMedGoogle Scholar
  261. 261.
    Verger C, Brunshvig O, Le Carpentier Y, Lavergne A, Vantelon J: Structural and ultrastructural peritoneal membrane changes and permeability alterations during continuous ambulatory peritoneal dialysis. Proc Eur Dial Transplant Assoc 18: 199, 1981PubMedGoogle Scholar
  262. 262.
    Slingeneyer A, Canaud B, Mion C: Permanent loss of ultrafiltration capacity of the peritoneum in long-term peritoneal dialysis: an epidemiological study. Nephron 33: 133, 1983PubMedGoogle Scholar
  263. 263.
    Wideröe TE, Smeby LC, Mjåland S, Dahl K, Berg KJ, Aas TW: Long-term changes in transperitoneal water transport during continuous ambulatory peritoneal dialysis. Nephron 38: 238, 1984PubMedGoogle Scholar
  264. 264.
    Faller B, Marichal JF: Loss of ultrafiltration in continuous ambulatory peritoneal dialysis: a role for acetate. Perit Dial Bull 4: 10, 1984Google Scholar
  265. 265.
    Krediet RT, Boeschoten EW, Zuyderhoudt FMJ, Arisz L: Peritoneal transport characteristics of water, low-molecular weight solutes and proteins during long-term continuous ambulatory peritoneal dialysis. Perit Dial Bull 6: 61, 1986Google Scholar
  266. 266.
    Gokal R, Jakubowski C, King J, Hunt L, Bogle S, Baillod R, Marsh F, Ogg C, Oliver D, Ward M, Wilkinson R: Outcome in patients on continuous ambulatory peritoneal dialysis and hemodialysis; 4-year analysis of a prospective multicentre study. Lancet 2: 1105, 1987PubMedGoogle Scholar
  267. 267.
    Pollock CA, Ibels LS, Caterson RJ, Mahoney JF, Waugh DA, Cocksedge B: Continuous ambulatory peritoneal dialysis. Eight years of experience at a single center. Medicine 68: 293, 1989PubMedGoogle Scholar
  268. 268.
    Verger C, Larpent L, Celicout B. Clinical significance of ultrafiltration failure on CAPD. in Peritoneal Dialysis, edited by La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, Milano, Wichtig Editore, 1986, p 91Google Scholar
  269. 269.
    Krediet RT, Struijk DG, Boeschoten EW, Koomen GCM. Stouthard JML, Hoek FJ, Arisz L: The time course of peritoneal transport kinetics in continuous ambulatory peritoneal dialysis patients who develop sclerosing peritonitis. Am J Kidney Dis 13: 299, 1989PubMedGoogle Scholar
  270. 270.
    Verger C, Celicout B: Peritoneal permeability and encapsulating peritonitis. Lancet 1: 986, 1985PubMedGoogle Scholar
  271. 271.
    Mactier RA, Khanna R, Twardowski ZJ, Nolph KD: Ultrafiltration failure in continuous ambulatory peritoneal dialysis due to excessive peritoneal cavity lymphatic absorption. Am J Kidney Dis 10: 461, 1987PubMedGoogle Scholar
  272. 272.
    Dobbie JW, Krediet RT: Twardowski ZJ, Nichols WK: A 39 year old man with loss of ultrafiltration. Perit Dial Int 14: 384, 1994PubMedGoogle Scholar
  273. 273.
    Monquil MCJ, Imholz ALT, Struijk DG, Krediet RT: Does impaired transcellular water transport contribute to net ultrafiltration failure during CAPD? Perit Dial Int 15: 42, 1995PubMedGoogle Scholar
  274. 274.
    Mistry CD, Mallick NP, Gokal R: Ultrafiltration with an isosmotic solution during long peritoneal dialysis exchanges. Lancet 2: 178, 1987PubMedGoogle Scholar
  275. 275.
    Stein A, Peers E, Hattersley J, Harris K, Feehally J, Walls J: MIDAS Study Group. Clinical experience with icodextrin in continuous ambulatory peritoneal dialysis patients. Perit Dial Int 14(Suppl 2): S51, 1994Google Scholar
  276. 276.
    Di Paolo N, Buoncristiani U, Capotondo L, Gaggiotti E, de Mia M, Rossi P, Sansoni E, Bernini M: Phosphatidylcholine and peritoneal transport during peritoneal dialysis. Nephron 44: 365, 1986PubMedGoogle Scholar
  277. 277.
    Di Paolo H, Capotondo L, Ciccoli L, Gaggiotti E, Rossi P. Sansoni E: Phosphatidylcholine: a physiological modulator of the peritoneal membrane. in Ambulatory Peritoneal Dialysis, edited by Avram MM, Giordano CG, New York, Plenum, 1990, p 44Google Scholar
  278. 278.
    Dombros N, Balaskas E, Savidis N, Tourkantonis A. Sombolis K. Phosphatidylcholine increases ultrafiltration in continuous ambulatory peritoneal dialysis. in Ambulatory Peritoneal Dialysis, edited by Avram MM, Giordano GC, New York, Plenum, 1990, p 44Google Scholar
  279. 279.
    Querques M, Procaccini DA, Pappani A, Strippoli P, Passione A: Influence of phosphatidylcholine on ultrafiltration and solute transfer in CAPD patients. Trans Am Soc Artif Intern Organs 30: M581, 1990Google Scholar
  280. 280.
    Krack G, Viglino C, Cavalli PL, Gandolfo CF, Magliano G, Cantaluppi A, Peluso F: Intraperitoneal administration of phosphatidylcholine improves ultrafiltration in continuous ambulatory peritoneal dialysis patients. Perit Dial Int 12:354, 1992Google Scholar
  281. 281.
    Mactier RA, Khanna R, Twardowski ZJ, Moore H, Nolph KD: Influence of phosphatidylcholine on lymphatic absorption during peritoneal dialysis in the rat. Perit Dial Int 8: 179, 1988Google Scholar
  282. 282.
    Struijk DG, van der Reijden HJ, Krediet RT, Koomen GCM, Arisz L: Effect of phosphatidylcholine on peritoneal transport and lymphatic absorption in a CAPD patient with sclerosing peritonitis. Nephron 51: 577, 1989PubMedGoogle Scholar
  283. 283.
    Chan H, Abraham G, Oreopoulos DG: Oral lecithin improves ultrafiltration in patients on peritoneal dialysis. Perit Dial Int 9: 203, 1989PubMedGoogle Scholar
  284. 284.
    De Vecchi A, Calstelnovo C, Guerra L, Scalamogna A: Phosphatidylcholine administration in continuous ambulatory peritoneal dialysis (CAPD) patients with reduced ultrafiltration. Perit Dial Int 9: 207, 1989PubMedGoogle Scholar
  285. 285.
    Chan PCK, Tarn SCF, Robinson JD, Yu L, Ip MSM, Chan CY, Chen IKP: Effect of phosphatidylcholine on ultrafiltration in patients on continuous ambulatory peritoneal dialysis. Nephron 59: 100, 1991PubMedGoogle Scholar
  286. 286.
    Maher JF, Hirszel P, Bennett RR, Chakrabarti E: Amphotericin selectively increases peritoneal ultrafiltration. Am J Kidney Dis 4: 285, 1984PubMedGoogle Scholar
  287. 287.
    Maher JF, Hirszel P, Bennett RR, Chakrabarti E: Augmentation of peritoneal hydraulic permeability by amphotericin B: locus of action. Perit Dial Bull 4: 229, 1984Google Scholar
  288. 288.
    Andreoli TE, Dennis VW, Weigl AM: The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes. J Gen Physiol 53: 133, 1969PubMedGoogle Scholar
  289. 289.
    Maher JF, Hirszel P, Chakrabarti E, Bennett RR: Contrasting effects of amphotericin B and the solvent desoxycholate on peritoneal transport. Nephron 43: 38, 1986PubMedGoogle Scholar
  290. 290.
    Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT: The effect of amphotericin B on fluid kinetics and solute transport in CAPD. Adv Perit Dial 9: 12, 1993PubMedGoogle Scholar
  291. 291.
    Lamperi S, Carozzi S, Nasini MG: Calcium antagonists improve ultrafiltration in patients on continuous ambulatory peritoneal dialysis (CAPD). Trans Am Soc Artif Intern Organs 33: 657, 1987Google Scholar
  292. 292.
    Favazza A, Montanaro D, Mesa P, Antonucci F, Gropuzzo M, Mion G: Peritoneal clearances in hypertensive CAPD patients after oral administration of clonidine, enalapril and nifedipine. Perit Dial Int 12: 287, 1992PubMedGoogle Scholar
  293. 293.
    Gotloib L, Shostack A, Bar-Sella P, Cohen R: Continuous mesothelial injury and regeneration during long term peritoneal dialysis. Perit Dial Bull 7: 148, 1987Google Scholar
  294. 294.
    Suassuna J, Neves F, Glancey G, Cameron JS, Ogg C, Hartley B: Mesothelial and endothelial cell markers of activation in the peritoneal membrane of continuous ambulatory peritoneal dialysis patients. Nephrol Dial Transplant 5: 271, 1990Google Scholar
  295. 295.
    Heale WF, Letch KA, Dawborn JK, Evans SM: Long term complications of peritonitis. in Peritoneal Dialysis, edited by Atkins RC, Thomson NM, Farrell PC, Edinburgh, Churchill Livingstone, 1981, p 284Google Scholar
  296. 296.
    Rubin J, McFarland S, Hellems EW, Bower JD: Peritoneal dialysis during peritonitis. Kidney Int 19: 460, 1981PubMedGoogle Scholar
  297. 297.
    Prowant BF, Nolph KD. Clinical criteria for diagnosis of peritonitis. in Peritoneal Dialysis, edited by Atkins RC, Thomson NM, Farrell PC, Edinburgh, Churchill Livingstone, 1981, p 257Google Scholar
  298. 298.
    Smeby LC, Wideroe TE, Jörstad S: Individual differences in water transport during peritonitis. ASAIO J 4: 17, 1981Google Scholar
  299. 299.
    Raja RM, Kramer MS, Rosenbaum JL, Bolisay C, Krug M: Contrasting changes in solute transport and ultrafiltration with peritonitis in CAPD patients. Trans Am Soc Artif Intern Organs 27: 68, 1981PubMedGoogle Scholar
  300. 300.
    Rubin J, Ray R, Barnes T, Bower J: Peritoneal abnormalities during infectious episodes of continuous ambulatory peritoneal dialysis. Nephron 29: 124, 1981PubMedGoogle Scholar
  301. 301.
    Smeby LC, Wideroe TE, Svartås TM, Jörstad S: Changes in water removal due to peritonitis during continuous ambulatory peritoneal dialysis, in Adv Perit Dial, edited by Gahl GM, Kessel M, Nolph KD, Amsterdam, Excerpta Medica, 1981, p 287Google Scholar
  302. 302.
    Raja RM, Kramer MS, Barber K: Solute transport and ultrafiltration during peritonitis in CAPD patients ASAIO J 7: 8, 1984Google Scholar
  303. 303.
    Gokal R, Mistry CD, Peers EM et al.: Peritonitis occurrence in a multicentre study of icodextrin and gjlucose in CAPD. Perit Dial Int 15: 226, 1995PubMedGoogle Scholar
  304. 304.
    Krediet RT, Arisz L: Fluid and solute transport across the peritoneum during continuous ambulatory peritoneal dialysis (CAPD). Perit Dial Int 9: 15, 1989PubMedGoogle Scholar
  305. 305.
    Blumenkrantz MJ, Gahl GM, Kopple JD, Kamdar AV, Jones MR, Kessel M, Cobum JW: Protein losses during peritoneal dialysis. Kidney Int 19: 593, 1981PubMedGoogle Scholar
  306. 306.
    Katirtzoglou A, Oreopoulos DG, Husdan H, Leung M, Ogilvie R, Dombros N: Reappraisal of protein losses in patients undergoing continuous ambulatory peritoneal dialysis. Nephron 26: 230, 1980PubMedGoogle Scholar
  307. 307.
    Dulaney JT, Hatch JR FE: Peritoneal dialysis and loss of proteins: a review. Kidney Int 26: 253, 1984PubMedGoogle Scholar
  308. 308.
    Miller FN, Hammerschmidt DE, Anderson GL, Moore JN: Protein loss induced by complement activation during peritoneal dialysis. Kidney Int 25: 480, 1984PubMedGoogle Scholar
  309. 309.
    Slingeneyer A, Mion C, Mourad G, Canaud B, Faller B, Béraud JJ: Progressive sclerosing peritonitis: a late and severe complication of maintenance peritoneal dialysis. Trans Am Soc Artif Intern Organs 29: 633, 1983PubMedGoogle Scholar
  310. 310.
    Ing TS, Daugirdas JT, Ghandi VD: Peritoneal sclerosis in peritoneal dialysis patients. Am J Nephrol 4: 173, 1984PubMedGoogle Scholar
  311. 311.
    Novello AC, Port FK: Sclerosing encapsulating peritonitis. Int J Artif Organs 9: 393, 1986PubMedGoogle Scholar
  312. 312.
    Shaldon S, Koch KM, Quellhorst E, Dinarello CA. Pathogenesis of sclerosing peritonitis in CAPD. Trans Am Soc Artif Intern Organs 30: 193, 1984PubMedGoogle Scholar
  313. 313.
    Junor BJR, Briggs JD, Forwell MA, Dobbie JW, Henderson I: Sclerosing peritonitis; the contribution of chlorhexidine in alcohol. Perit Dial Bull 5: 101, 1985Google Scholar
  314. 314.
    Oulès R, Challah S, Brunnes FP: Case-control study to determine the cause of sclerosing peritoneal disease. Nephrol Dial Transplant 3: 66, 1988PubMedGoogle Scholar
  315. 315.
    Mackow RC, Aray WP, Winchester JF et al.: Sclerosing encapsulating peritonitis in rats induced by long-term intrapentoneal administration of antiseptics. J Lab Clin Med 112:363, 1988PubMedGoogle Scholar
  316. 316.
    Grebfberg N, Nilsson P, Andréen T: Sclerosing obstructive peritonitis, beta-blockers and continuous ambulatory peritoneal dialysis. Lancet 2: 733, 1983Google Scholar
  317. 317.
    Narayama R, Bhargava BV, Kabra SA, Saugal BC: Idispathic Sclerosing encapsulating peritonitis. Lancet 2: 127, 1989Google Scholar
  318. 318.
    Dobbie JW: Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int 12: 14, 1992PubMedGoogle Scholar
  319. 319.
    Rottembourg J, Gahl GM, Poignet JL, Mertani E, Strippoli P, Langlois P, Tranbaloc P, Legrain M: Severe abdominal complications in patients undergoing continuous ambulatory peritoneal dialysis. Proc Eur Dial Transplant Assoc 20: 236, 1983PubMedGoogle Scholar
  320. 320.
    Verger C, Celicout B: Peritoneal permeability and encapsulating peritonitis. Lancet 1: 986, 1985PubMedGoogle Scholar
  321. 321.
    Manos J, Postlethwaite RJ, Mallick NP, Gokal R: Sclerosing encapsulating peritonitis and other complications of CAPD peritonitis, in Frontiers in Peritoneal Dialysis, edited by Maher JF, Winchester JF, New York, Field, Rich, 1986, p 634Google Scholar
  322. 322.
    McWhinnie DL, Bradley JA, Bramwell SP, Hamilton DNH, Macpherson SG, Cram LP, Moore IAR, Forwell MA, Smith WGJ, Briggs JD, Junor BJR: Sclerosing peritonitis — a further complication of CAPD. in Frontiers in Peritoneal Dialysis, edited by Maher JF, Winchester JF, New York, Field, Rich, 1986, p 638Google Scholar
  323. 323.
    Rottembourg J, Issad B, Langlois P, de Groc F, Legrain M. Sclerosing encapsulating peritonitis during CAPD. Evaluation of the potential risk factors, in Frontiers in Peritoneal Dialysis, edited by Maher JF, Winchester JF, New York, Field, Rich, 1986, p 643Google Scholar
  324. 324.
    Tanaka Y, Shirai D: Clinical aspects of sclerosing peritonitis. in Current Concepts in Peritoneal Dialysis, edited by Ota K, Maher JF, Winchester JF et al., Amsterdam, Excerpta Medica, 1992, p 112Google Scholar
  325. 325.
    Gandhi VC, Ing TS, Daugirdus JT, Hagen C, Blumenkrantz MJ, Jablokow VR: Failure of peritoneal dialysis due to peritoneal sclerosis. Int J Artif Organs 6: 97, 1983PubMedGoogle Scholar
  326. 326.
    Finkelstein FO, Kliger AS, Basil C, Yap P: Sequential clearance and dialysance measurements in chronic peritoneal dialysis patients. Nephron 18: 342, 1977PubMedCrossRefGoogle Scholar
  327. 327.
    Rubin J, Arfania D, Nolph KD, Prowant B, Fruto L, Brown P, Moore H: Peritoneal clearances after 6–12 months on continuous ambulatory peritoneal dialysis. Trans Am Soc Artif Intern Organs 25: 104, 1979PubMedGoogle Scholar
  328. 328.
    Struijk DG, Krediet RT, Koomen GCM, Hoek FJ, Boeschoten EW, van der Reijden HJ, Arisz L: Functional characteristics of the peritoneal membrane in long-term continuous ambulatory peritoneal dialysis. Nephron 59: 213, 1991PubMedGoogle Scholar
  329. 329.
    Selgas R, Rodrigues-Carmona A, Martinez ME, Perez-Fontan M, Salinas M, Escuin F, Rinon C, Martinez-Ara J, Sanchez-Sicilia L: Peritoneal mass transfer in patients on long-term CAPD. Perit Dial Bull 4: 153, 1984Google Scholar
  330. 330.
    Nikolakakis N, Rodger RSC, Goodship THJ, Fletcher K, Ashcroft R, Wilkinson R, Ward MK: The assessment of peritoneal function using a single hypertonic exchange. Perit Dial Bull 5: 186, 1985Google Scholar
  331. 331.
    Hallet MD, Kush RD, Lysaght MJ, Farrel PC: The stability and kinetics of peritoneal mass transfer. in Peritoneal Dialysis, edited by Noph KD, Dordrecht, Kluwer Academic Publishers, 1989, p 380Google Scholar
  332. 332.
    Park MS, Lee J, Lee MS, Baick SH, Hwang SD, Lee HB: Peritoneal solute clearances after four years of continuous ambulatory peritoneal dialysis (CAPD). Perit Dial Int 9: 75, 1989PubMedGoogle Scholar
  333. 333.
    Passlick-Deetjen J, Chlebowski H, Koch M, Ziegelmayer C, Grabensee B: Evaluation of long-term changes in peritoneal membrane function, in Peritoneal Dialysis, edited by La Graeca G, Ronco C, Feriani M, Chiaramonte S, Cour P, Milano, Wichtig, 1991, p 109Google Scholar
  334. 334.
    Coronel F, Tornero F, Mucia M, Sánchez A, De Oleo P, Naranjo P, Barrientos A: Peritoneal clearances, protein losses and ultrafiltration in diabetic patients after four years on CAPD. Adv Perit Dial 7: 35, 1991PubMedGoogle Scholar
  335. 335.
    Lee HB, Park MS, Chung SH, So IN, Han DC, Lee SK, Hwang SD, Moon C: Peritoneal membrane performance after 5 years on CAPD. in Current Concepts in Peritoneal Dialysis, edited by Ota K, Maher JF, Winchester JF et al., Amsterdam, Excerpta Medica, 1992, p 84Google Scholar
  336. 336.
    Spencer PC, Farrell PC: Solute and water transfer kinetics in CAPD. in Continuous Ambulatory Peritoneal Dialysis, edited by Gokal R, Edinburgh, Churchill Livingstone, 1986, p 38Google Scholar
  337. 337.
    Rubin J, Nolph KD, Arfania D, Brown P, Prowant B: Follow-up of peritoneal clearances in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int 16: 619, 1979PubMedGoogle Scholar
  338. 338.
    Farrell PC, Randerson JH: Membrane permeability changes in long-term CAPD. Trans Am Soc Artif Intern Organs 26: 197, 1980PubMedGoogle Scholar
  339. 339.
    Randerson DH, Farrell PC: Long-term peritoneal clearance in CAPD. in Peritoneal Dialysis, edited by Atkins RC, Thomson NM, Farrell PC, Edinburgh, Churchill Livingstone, 1981, p 21Google Scholar
  340. 340.
    Selgas R, Rodrigues-Carmona A, Martinez ME, Conesa J, Perez-Fontan M, Huarte E, Ortega O, Sanchez-Sicilia L: Follow-up of peritoneal mass transfer properties in long-term CAPD patients, in Frontiers in Peritoneal Dialysis, edited by Maher JF, Winchester JF, New York, Field, Rich, 1986, p 53Google Scholar
  341. 341.
    Selgas R, Muños J, Cigarran S, Ramos P, L-Revuelta K, Escuin F, Miguel JL: Peritoneal functional parameters after five years on continuous ambulatory peritoneal dialysis (CAPD): The effect of late peritonitis. Perit Dial Int 9: 329, 1989PubMedGoogle Scholar
  342. 342.
    Blake PG, Abraham G, Sombolos K, Izatt S, Weissgarten J, Ayiomamitis A, Oreopoulos DG: Changes in peritoneal membrane transport rates in patients on long term CAPD. Adv Perit Dial 5: 3, 1989PubMedGoogle Scholar
  343. 343.
    Kush RD, Hallett MD, Ota K, Yamushita A, Kumano K, Watenabe N, Sakai T, Hidai H, Farrell PC: Long-term continuous ambulatory peritoneal dialysis; mass transfer and nutritional and metabolic stability. Blood Purif 8: 1, 1990PubMedCrossRefGoogle Scholar
  344. 344.
    Bordoni E, Lombardo V, Bibiano L, Carletti P, Francialli E, Gaffi G, Perilli A, Mioli V: Peritoneal clearances, ultrafiltration and diuresis in long-term continuous ambulatory peritoneal dialysis. in Ambulatory Peritoneal Dialysis, edited by Avram MM, Giordano C, New York, Plenum, 1990, p 87Google Scholar
  345. 345.
    Chan PCK, Chan CY, Wu PG, Cheng IKP, Chan MK: Long-term peritoneal clearances in patients on continuous ambulatory peritoneal dialysis. Int J Artif Organs 13: 707, 1990PubMedGoogle Scholar
  346. 346.
    Lameire NH, Vanholder R, Veyt D, Lambert M-C, Ringoir S: A longitudinal, five year survey of urea kinetic parameters in CAPD patients. Kidney Int 42: 426, 1992PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Raymond T. Krediet
    • 1
  1. 1.Renal Unit, F4-215Academic Medical CenterAmsterdamThe Netherlands

Personalised recommendations