Organ and Metabolic Complications: Acid-Base

  • Mariano Feriani
  • Claudio Ronco
  • Aldo Fabris
  • Giuseppe La Greca


Since the earliest experiences with hemodialysis, the correction of uremic acidosis has represented a complex problem still not completely resolved


Metabolic Acidosis Bicarbonate Concentration Dialysis Solution Substitution Fluid Acetate Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kolff WJ: Le rein artificiel: un dialyseur a grande surface. Presse Medicale 52: 103, 1944Google Scholar
  2. 2.
    Scribner BH, Caner JEZ, Buri R: The technique of continuous hemodialysis. Trans Am Soc Artif Intern Organs 6: 88, 1960PubMedGoogle Scholar
  3. 3.
    Mion CM, Hegstrom RM, Boen ST, Scribner BH: Substitution of sodium acetate for sodium bicarbonate in the bath fluid for hemodialysis. Trans Am Sac Artif Intern Organs 10: 110, 1964Google Scholar
  4. 4.
    Ledebo I: Bicarbonate in high-efficiency hemodialysis. in Hemodialysis. High-Efficiency Treatments, edited by Bosch JP, New York, Churchill Livingstone, 1993, p 9Google Scholar
  5. 5.
    Schwartz WB, Hall PV, Hays RM, Relman AS: On the mechanism of acidosis in chronic renal disease. J Clin Invest 38: 39, 1959PubMedGoogle Scholar
  6. 6.
    Zucchelli P, Santoro A: Correction of acid balance by dialysis. Kidney Int 43(Suppl 41): 179S, 1993Google Scholar
  7. 7.
    Marsiglia JC, Cingolani HE, Gonzales NC: Relevance of beta receptor blockade to the negative inotropic effect induced by metabolic acidosis. Cardiovasc Res 7: 336, 1973PubMedGoogle Scholar
  8. 8.
    Harrington JT, Cohen JJ: Metabolic acidosis, in Acid/Base, edited by Cohen JJ, Kassirer JP, Boston. Little, Brown and Company, 1982, p 121Google Scholar
  9. 9.
    Lemann J Jr, Litzow JR, Lennon EJ: The effect of chronic acid loads in normal man: further evidence for the partecipation of bone mineral in the defence against chronic metabolic acidosis. J Clin Invest 45: 1608, 1966PubMedGoogle Scholar
  10. 10.
    Massry SG: Divalent ion metabolism and renal osteodystrophy. in Textbook of Nephrology, Vol 2, 1st; Edition, edited by Massry SG, Glassock RJ, Baltimore, Williams &Wilkins, 1983, p 7.104Google Scholar
  11. 11.
    Barzel US, Jowsey J: The effects of chronic acid and alkali administration on bone turnover in adult rat. Clin Sci 36: 517, 1969PubMedGoogle Scholar
  12. 12.
    Arnett TR, Dempster DW: Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology 119: 119. 1986PubMedGoogle Scholar
  13. 13.
    Bichara M, Mercier O, Borensztein P, Paillard M: Acute metabolic acidosis enhances circulating parathyroid hormone, which contributes to renal response against acidosis in the rat. J Clin Invest 86: 430, 1990PubMedGoogle Scholar
  14. 14.
    Gennari FJ: Acid-base balance in dialysis patients. Kidney Int 28: 678, 1985PubMedGoogle Scholar
  15. 15.
    Van Stone JC: Oral base replacement in patients on hemodialysis. Ann Intern Med 101: 199, 1984PubMedGoogle Scholar
  16. 16.
    Lefebvre A, de Verneoul MC, Gueris J, Goldfarb B, Graulet AM, Morieux C: Optimal correction of acidosis changes progression of dialysis osteodystrophy. Kidney Int 36: 1112, 1989PubMedGoogle Scholar
  17. 17.
    May RC, Kelly RA, Mitch WE: Mechanisms for defects in muscle protein metabolism in rats with chronic uremia: the influence of metabolic acidosis. J Clin Invest 79: 1099, 1987PubMedGoogle Scholar
  18. 18.
    May RC, Kelly RA, Mitch WE: Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism. J Clin Invest 77: 614, 1986PubMedGoogle Scholar
  19. 19.
    Hara Y, May RC, Kelly RA, Mitch WE: Acidosis, not azotemia, stimulates branched-chain amino acid catabolism in uremic rats. Kidney Int 32: 808, 1987PubMedGoogle Scholar
  20. 20.
    Mitch WE, Clark AS: Specificity of the effect of leucine and its metabolites on protein degradation in skeletal muscle. Biochem J 222: 579, 1984PubMedGoogle Scholar
  21. 21.
    Papadoyannakis NJ, Stefanides CJ, McGeown M: The effect of the correction of metabolic acidosis on nitrogen and protein balance of patients with chronic renal failure. Am J Clin Nutr 40: 623, 1984PubMedGoogle Scholar
  22. 22.
    Garibotto G, Russo R, Sala MR et al.: Muscle protein turnover and amino acid metabolism in patients with chronic renal failure. Miner Electrolyte Metab 18: 217, 1992PubMedGoogle Scholar
  23. 23.
    Jenkins D, Burton PR, Bennet SE, Baker F, Walls J: The metabolic consequences of the correction of acidosis in uraemia. Nephrol Dial Transpl 4: 92, 1989Google Scholar
  24. 24.
    Williams B, Hattersley J, Layward E, Walls J: Metabolic acidosis and skeletal muscle adaptation to low protein diets in chronic uremia. Kidney Int 40: 779, 1991PubMedGoogle Scholar
  25. 25.
    Bergstrom J, Alvestrand A, Furst P: Plasma and muscle free amino acids in maintenance hemodialysis patients without protein malnutrition. Kidney Int 38: 108, 1990PubMedGoogle Scholar
  26. 26.
    Lennon EJ, Lemann J Jr, Litzow JR: The effects of diet and stool composition on the net external acid balance of normal subjects. J Clin Invest 45: 1601, 1966PubMedGoogle Scholar
  27. 27.
    Gotch FA, Sargent JA, Keen ML: Hydrogen ion balance in dialysis therapy. Artif Organs 6: 388, 1982PubMedGoogle Scholar
  28. 28.
    Assomull VM, Vreman HJ, Weiner MW: Mass balance of base equivalents during hemodialysis: importance of organic acid anions. Proc Clin Dial Transplant Forum 8: 137, 1978PubMedGoogle Scholar
  29. 29.
    Sargent JA, Gotch FA: Bicarbonate and carbon dioxide transport during hemodialysis. ASAIO J 2: 61, 1979Google Scholar
  30. 30.
    Bosch JP, Glabman S, Moutoussis G, Belledonne M, von Albertini B, Kahn T: Carbon dioxide removal in acetate hemodialysis: effects on acid base balance. Kidney Int 25: 830, 1984PubMedGoogle Scholar
  31. 31.
    Christensen HN: General concepts of neutrality regulation. Am J Surg 103: 286, 1962PubMedGoogle Scholar
  32. 32.
    Wathen RL, Ward RA: Disturbances in fluid, electrolyte, and acid base in the dialysis patient, in Textbook of Nephrology, Vol 2, 1st Edition, Massry SG, Glassok RJ, Baltimore, Williams & Wilkins, 1983, p 7.98Google Scholar
  33. 33.
    Fernandez PC, Cohen RM, Feldman GM: The concept of bicarbonate distribution space: the crucial role of body buffers. Kidney Int 36: 747, 1989PubMedGoogle Scholar
  34. 34.
    Garella S, Dana CL, Chazan JA: Severity of metabolic acidosis as a determinant of bicarbonate requirements. N Eng J Med 289: 121, 1973CrossRefGoogle Scholar
  35. 35.
    Androgué HJ, Brensilver J, Cohen JJ, Madias NE: Influence of steady-state alterations in acid-base equilibrium on the fate of administered bicarbonate in the dog. J Clin Invest 71: 867, 1983Google Scholar
  36. 36.
    Pacitti A, Atti M, Alloatti A et al.: Computer modeled bicarbonate kinetic in acetate free biofiltration. in Blood Purification in Perspective: New Insights and Future Trends, Vol 2, edited by Man NR, Botella J, Zucchelli P, Cleveland, Icaot Press, 1992, p 191Google Scholar
  37. 37.
    Vreman HJ, Assomull VM, Kaiser BA, Blaschke TF, Weiner MW: Acetate metabolism and acid-base homeostasis during hemodialysis: influence of dialyzer efficiency and rate of acetate metabolism. Kidney Int 18(Suppl 10): 62S, 1980Google Scholar
  38. 38.
    Tolchin N, Roberts JL, Hayashi J, Lewis EJ: Metabolic consequences of high mass-transfer hemodialysis. Kidney Int 11: 366, 1977PubMedGoogle Scholar
  39. 39.
    Kishimoto T, Yamamoto T, Yamamoto K et al.: Acetate kinetics during hemodialysis and hemofiltration. Blood Purif 2: 81, 1984Google Scholar
  40. 40.
    La Greca G, Feriani M, Bragantini L, Petrosino L, Santoro A, Altieri P: Effects of acetate and bicarbonate dialysate on vascular stability: a prospective multicentric study. Int J Artif Organs 10: 157, 1987PubMedGoogle Scholar
  41. 41.
    Ward RA, Wathen RL, Williams TE: Effects of longterm bicarbonate hemodialysis (BHD) on acid-base status. Trans Am Soc Artif Intern Organs 28: 295, 1982PubMedGoogle Scholar
  42. 42.
    Bjaeldager PAL, Christiansen E, Jensen HAE, Paulev PEK: Improved effect of hemodialysis on acidemic patients from an acetate concentration of 38 mmol/l. Nephron 27: 142, 1981PubMedGoogle Scholar
  43. 43.
    Mansell MA, Nunan TO, Laker MF, Boon NA, Wing AJ: Incidence and significance of rising blood acetate levels during hemodialysis. Clin Nephrol 12: 22, 1979PubMedGoogle Scholar
  44. 44.
    Richards RH, Vreman HJ, Zager Ph, Feldman C, Blaschke T, Weiner MW: Acetate metabolism in normal human subject. Am J Kidney Dis 11: 47, 1982Google Scholar
  45. 45.
    Lewis EJ, Tolchin N, Roberts JL: Estimation of the metabolic conversion of acetate to bicarbonate during hemodialysis. Kidney Int 18(Suppl 10): 51, 1980Google Scholar
  46. 46.
    Kveim M, Nesbakken R: Utilisation of exogenous acetate during hemodialysis. Trans Am Soc Artif Intern Organs 21: 138, 1975PubMedGoogle Scholar
  47. 47.
    Kaiser BA, Potter DE, Bryant RE, Vreman HJ, Weiner MW: Acid-base changes and acetate metabolism during routine and high efficiency hemodialysis in children. Kidney Int 19: 70, 1981PubMedGoogle Scholar
  48. 48.
    von Albertini B, Miller JH, Gardner PW, Shinaberger JH: High-flux hemodiafiltration: under six hours/week treatment. Trans Am Soc Artif Intern Organs 30: 227, 1984Google Scholar
  49. 49.
    Ward RA, Wathen RL: Utilization of bicarbonate for base repletion in hemodialysis. Artif Organs 6: 369, 1982Google Scholar
  50. 50.
    Feriani M, Bragantini L, Dell’Aquila R et al.: Buffer kinetics in biofiltration. Int J Artif Organs 9(Suppl 3): 1S, 1986Google Scholar
  51. 51.
    Sprenger KBG, Kratz W, Lewis AE, Stadtmüller U: Kinetic modeling of hemodialysis, hemofiltration, and hemodiafiltration. Kidney Int 24: 143, 1983PubMedGoogle Scholar
  52. 52.
    Colton CK, Henderson LW, Ford CA, Lysaght MJ: Kinetic of hemodiafiltration. I. In vitro transport characteristics of a hollow-fiber blood ultrafilter. J Lab Clin Med 85: 355, 1975PubMedGoogle Scholar
  53. 53.
    Henderson LW, Colton CK, Ford CA: Kinetics of hemodiafiltration. II. Clinical characterization of a blood cleansing modality. J Lab Clin Med 85: 372, 1975PubMedGoogle Scholar
  54. 54.
    Graefe U, Milutinovich J, Follette WC, Vizzo JE, Babb AL, Scribner BH: Less dialysis-induced morbidity and vascular instability with bicarbonate in dialysate. Ann Int Med 88:332, 1978PubMedGoogle Scholar
  55. 55.
    Nissenson AR, Kraut JA, Shinaberger JH: Dialysisassociated hypoxemia: pathogenesis and prevention. ASAIO J 7: 1, 1984Google Scholar
  56. 56.
    Wathen RL, Ferris FZ, Nagar D, Keshaviah P: An alternative explanation for dialysis-induced arterial hypoxemia. (Abstract) Kidney Int 14: 689, 1978Google Scholar
  57. 57.
    Hirtzel P, Maher JF, Tempel GE, Mengel CE: Effect of hemodialysis on factors influencing oxygen transport. J Lab Clin Med 85: 978, 1975Google Scholar
  58. 58.
    Bischel MD, Scoles BG, Mohler JG: Evidence for pulmonary microembolization during hemodialysis. Chest 67: 335, 1975PubMedGoogle Scholar
  59. 59.
    Aurigemma NM, Feldman NT, Gottlieb M, Ingram RH, Lazarus JM, Lowrie EG: arterial oxygenation during hemodialysis. N Engl J Med 297: 871, 1977PubMedCrossRefGoogle Scholar
  60. 60.
    Craddock PR, Fehr J, Brigham KL, Kronenberg RS, Jacob HS: Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N Engl J Med 296: 770, 1977CrossRefGoogle Scholar
  61. 61.
    Jacob AI, Gavellas G, Zarco R, Perez G, Bourgoignie JJ: Leucopenia, hypoxia and complement function with different hemodialysis membranes. Kidney Int 18: 105, 1980Google Scholar
  62. 62.
    Brautbar N, Shinaberger JH, Miller JH, Nachman M: Hemodialysis hypoxemia: evaluation of mechanism utilizing sequential ultrafiltration-dialysis. Nephron 26: 96, 1980PubMedGoogle Scholar
  63. 63.
    Sherlock J, Ledwith J, Letteri J: Hypoventilation and hypoxemia during hemodialysis: reflex response to removal of CO2 across the dialyzer. Trans Am Soc Artif Intern Organs 23: 406, 1977PubMedGoogle Scholar
  64. 64.
    Dolan MJ, Whipp BJ, Davidson WD, Weitzman RE, Wasserman K: Hypopnea associated with acetate hemodialysis: carbon dioxide flow-dependent ventilation. N Engt J Med 305: 72, 1981CrossRefGoogle Scholar
  65. 65.
    Bouffard Y, Viale JP, Annat G et al.: Pulmonary gas exchange during hemodialysis. Kidney Int 30: 920, 1986PubMedGoogle Scholar
  66. 66.
    Oh MS, Uribarri J, Del Monte ML, Friedman EA, Carroll HJ: Consumption of CO2 in metabolism of acetate as an explanation for hypoventilation and hypoxemia during hemodialysis. Proc Clin Dial Transplant Forum 9: 226, 1979PubMedGoogle Scholar
  67. 67.
    Raja RM, Kramer MS, Rosenbaum JL, Bolisay CG, Krug MJ: Hemodialysis associated hypoxemia. Role of acetate and pH in etiology. Trans Am Soc Artif Intern Organs 27: 180, 1982Google Scholar
  68. 68.
    Garella S, Chang BS: Hemodialysis-associated hypoxemia. Am J Nephrol 4: 273, 1984PubMedGoogle Scholar
  69. 69.
    Graziani G, Ponticelli C, Di Filippo G, Radaelli B: Acidbase changes in hemodialysis. Br Med J 3: 163, 1970PubMedGoogle Scholar
  70. 70.
    Romaldini H, Stabile C, Faro S, Lopes Dos Santos M, Ramos OL, Ribeiro Ratto O: Pulmonary ventilation during hemodialysis. Nephron 32: 131, 1982PubMedGoogle Scholar
  71. 71.
    Bauer W, Richards JW: A vasodilator action of acetate. J Physiol 66: 371, 1928PubMedGoogle Scholar
  72. 72.
    Frohlich ED: Vascular effects of the Krebs intermediate metabolites. Am J Physiol 208: 149, 1965PubMedGoogle Scholar
  73. 73.
    Kirkendol PL, Devia CJ, Bower JD, Holbert RD: A comparison of the cardiovascular effects of sodium acetate, sodium bicarbonate and other potential sources of fixed base in hemodialysate solutions. Trans Am Soc Artif Intern Organs 23: 399, 1977PubMedGoogle Scholar
  74. 74.
    Aizawa Y, Ohmori T, Imai K, Nara Y, Matsuoka M, Hirakawa Y: Depressant action of acetate upon the human cardiovacsular system. Clin Nephrol 8: 477, 1977PubMedGoogle Scholar
  75. 75.
    Kirkendol PL, Robie NW, Gonzalez FM, Devia CJ: Cardiac and vascular effects of infused sodium acetate in dogs. Trans Am Soc Artif Intern Organs 24: 714, 1978PubMedGoogle Scholar
  76. 76.
    Chen TS, Friedman HS, Del Monte M, Smith AJ: Hemodynamic changes during dialysis. Proc Clin Dial Transplant Forum 9: 66, 1979PubMedGoogle Scholar
  77. 77.
    Liang CS, Lowenstein JM: Metabolic control of the circulation effects of acetate and pyruvate. J Clin Invest 62: 1029, 1978PubMedGoogle Scholar
  78. 78.
    Metha BR, Fischer D, Ahmad M, Dubose TD Jr: Effects of acetate and bicarbonate hemodialysis on cardiac function in chronic dialysis patients. Kidney Int 24: 782, 1983Google Scholar
  79. 79.
    Danielsson A, Freyschuss U, Bergström J: Cardiovascular function and alveolar gas exchange during isovolemic hemodialysis with acetate in healthy man. Blood Purif 5: 41, 1987PubMedGoogle Scholar
  80. 80.
    Kinet JP, Soyeur D, Bailand N, Saint-Remy M, Collignon P, Godon JP: Hemodynamic study of hypotension during hemodialysis. Kidney Int 21: 868, 1982PubMedGoogle Scholar
  81. 81.
    Rorke SJ, Davidson WD, Guo SS, Morin RJ: Metabolic fate of C-Acetate during dialysis. Proc Eur Dial Transpl Assoc 13: 394, 1976Google Scholar
  82. 82.
    Assomull VM, Vreman HJ, Weiner MW: Evidence that acetate in dialysate does not stimulate lipid synthesis. Proc Dial Trasplant Forum 9: 73, 1979Google Scholar
  83. 83.
    Morin RJ, Srikanraiah MV, Woodley Z, Davidton WD: Effect of acetate vs bicarbonate on plasma lipid and lipoprotein levels in uremic patients. J Dial 4: 9, 1980PubMedGoogle Scholar
  84. 84.
    Henderson LW, Koch KM, Dinarello CA, Shaldon S: Hemodialysis hypotension: The interleukin hypothesis. Blood Purif 1: 3, 1983Google Scholar
  85. 85.
    Colton CK: Analysis of membrane process for blood purification. Blood Purif 5: 202, 1987PubMedGoogle Scholar
  86. 86.
    Shaldon S, Deschodt G, Branger B et al.: Hemodialysis hypotension: the interleukin hypotesis restated. Proc Eur Dial Transpl Assoc 22: 229, 1985Google Scholar
  87. 87.
    Dodd NJ, Parson V, Weston MJ: Leukocyte occlusion of cuprophane membrane as a cause of reduced hemodialysis efficiency. Int J Artif Organs 5: 275, 1982PubMedGoogle Scholar
  88. 88.
    Koch KM, Shaldon S, Baldamus CA, Lysaght MJ, Lonnemann G, Bingel M, Dinarello CA: Convective mass transport in dialysis. Proc Eur Dial Transpl Assoc 22: 467, 1985Google Scholar
  89. 89.
    Bingel M, Koch KM, Dinarello CA, Shaldon S: Human interleukin-1 production is enhanced by sodium acetate. Lancet i: 14, 1987Google Scholar
  90. 90.
    Man NK, Fournier G, Thireau P, Gaillard JL, Funk-Brentano JL: Effect of bicarbonate-containing dialysate on chronic hemodialysis patients: A comparative study. Artif Organs 6: 421, 1982PubMedGoogle Scholar
  91. 91.
    Nissenson AR: Prevention of dialysis-induced hypoxemia by bicarbonate dialysis. Trans Am Soc Artif Intern Organs 26: 339, 1980PubMedGoogle Scholar
  92. 92.
    Hakim RM, Pontzer MA, Tilton D, Lazarus JM, Gottlieb MN: Effects of acetate and bicarbonate dialysis in stable chronic dialysis patients. Kidney Int 28: 535, 1085Google Scholar
  93. 93.
    Abu-Hamdan DK, Mahajan SK, Desai S et al.: Hypoxemia during bicarbonate dialysis. (Abstract) Am Soc Nephrol 13: 33, 1980Google Scholar
  94. 94.
    Borges H, Fryd DS, Rosa AA, Kjellstrand CM: Hypotension during acetat and bicarbonate dialysis in patients with acute renal failure. Am J Nephrol i: 24, 1981Google Scholar
  95. 95.
    Eiser AR, Jayammane D, Kokseng C, Che H, Slifkin RF, Neff MS: Contrasting alterations in pulmonary gas exchange during acetate and bicarbonate hemodialysis. Am J Nephrol 2: 123, 1982PubMedGoogle Scholar
  96. 96.
    Iseki K, Onoyama K, Maeda T et al.: Comparison of hemodynamics induced by conventional acetate hemodialysis, bicarbonate hemodialysis and ultrafiltration. Clin Nephrol 14: 294, 1980PubMedGoogle Scholar
  97. 97.
    Mitchell J, Wildenthal K, Johnson R: The effects of acidbase disturbances on cardiovascular and pulmonary function. Kidney Int 1: 375, 1972PubMedGoogle Scholar
  98. 98.
    Ruder MA, Alpert MA, Van Stone J et al.: Comparative effects of acetate and bicarbonate hemodialysis on left ventricular function. Kidney Int 27: 768, 1985PubMedGoogle Scholar
  99. 99.
    Henrich W, Hunt J, Nixon J: Increased ionized calcium and left ventricular contractility during hemodialysis. N Engl J Med 310: 19, 1983CrossRefGoogle Scholar
  100. 100.
    Mansell MA, Morgan SH, Moore R, Kong KH, Laker MF, Wing AJ: Cardiovascular and acid-base effects of acetate and bicarbonate hemodialysis. Nephrol Dial Transpl 1: 229, 1987Google Scholar
  101. 101.
    Velez RL, Woodard TD, Henrich WL: Acetate and bicarbonate hemodialysis in patients with and without autonomic dysfunction. Kidney Int 26: 59, 1984PubMedGoogle Scholar
  102. 102.
    Henrich WL, Woodard TD, Meyer BD, Chappell TR, Rubin LJ: High sodium bicarbonate and acetate hemodialysis: double-blind crossover comparison of hemodynamic and ventilatory effects. Kidney Int 24: 240, 1983PubMedGoogle Scholar
  103. 103.
    Whele B, Asaba H, Casterfors J et al.: The influence of dialysis fluid composition on the blood pressure response during dialysis. Clin Nephrol 10: 62, 1978Google Scholar
  104. 104.
    Chen T, Friedman H, Smith A, Del Monte M: Hemodynamic changes during hemodialysis role of dialysate. Clin Nephrol 20: 190, 1983PubMedGoogle Scholar
  105. 105.
    Hampl H, Wolfquiler M, Pustelruk A, Schiller R, Hanefeld F, Kessel M: Advantage of bicarbonate hemodialysis. Artif Organs 6: 410, 1982PubMedGoogle Scholar
  106. 106.
    Vanholder R, Piron M, Ringoir S: Absence of a beneficial haemodynamic effect of bicarbonate vs acetate haemodialysis. Proc Eur Dial Transpl Assoc 21: 195, 1984Google Scholar
  107. 107.
    Pagel MD, Ahmad S, Vizzo JE, Scribner BH: Acetate and bicarbonate fluctuations and acetate intolerance during dialysis. Kidney Int 21: 513, 1982PubMedGoogle Scholar
  108. 108.
    Feriani M, Biasioli S, Fabris A et al.: Calcium and bicarbonate containing solutions for peritoneal dialysis and hemofiltration. in Progress in Artificial Organs, edited by Nosè Y, Kjellstrand C, Ivanovich P, Cleveland, ISAO Press, 1986, p 277Google Scholar
  109. 109.
    Bosch JP, Lauer A: Acid-base balance in hemofiltration. in Hemofiltration, edited by Henderson LW, Quellhorst EA, Baldamus CA, Lysaght MJ, Berlin, Springer-Verlag, 1986, p 147Google Scholar
  110. 110.
    Schaefer K, Ryzlewicz T, Sandri M, von Bernewitz S, von Herrath D: Effect of hemofiltration on acid-base status and ventilation. Contrib Nephrol 32: 69, 1982PubMedGoogle Scholar
  111. 111.
    Santoro A, Ferrari G, Bolzani R, Spongano M, Zucchelli P: Regulation of base balance in bicarbonate hemofiltration. Int J Artif Organs 17: 27, 1994PubMedGoogle Scholar
  112. 112.
    Leber HW, Wizemann V, Goubeand G, Rawer P, Schütterle G: Simultaneous hemofiltration/hemodialysis: an effective alternative to hemofiltration and conventional hemodialysis in the treatment of uremic patients. Clin Nephrol 9: 115, 1978PubMedGoogle Scholar
  113. 113.
    Scheider H, Liornin E, Streicher E: Haemodinamyc studies of diffusive and convective procedures using a polysulphone membrane. Contrib Nephrol 46: 134, 1985Google Scholar
  114. 114.
    Feriani M, Biasioli S, Bragantini L et al.: Buffer balance in bicarbonate hemodiafiltration. Trans Am Soc Artif Intern Organs 32: 422, 1986Google Scholar
  115. 115.
    Arisi L, Calderini C, David S, Manari A, Mancuso S, Cambi V: Acid base balance in hypertonic hemodiafiltration. in Uremic Acidosis, editd by Petrella E, Milano, Wichtig editore, 1983, p 71Google Scholar
  116. 116.
    Biasioli S, Feriani M, Chiaramonte S et al.: Different buffers for hemodiafiltration: a controlled study. Int J Artif Organs 12: 25, 1989PubMedGoogle Scholar
  117. 117.
    Feriani M, Ronco C, Biasioli S, Bragantini L, La Greca G: Effect of dialysate and substitution fluid buffer on buffer flux in hemodiafiltration. Kidney Int 39: 711, 1990Google Scholar
  118. 118.
    Bene B, Beruard M, Perrone B, Simon P: Simultaneous dialysis and filtration with buffer-free dialysate. (Abstract) Blood Purif 2: 217, 1985Google Scholar
  119. 119.
    Santoro A, Ferrari G, Spongano M, Badiali F, Zucchelli P: Acetate-Free Biofiltration: a viable alternative to bicarbonate hemodialysis. Artif Organs 13: 476, 1989PubMedCrossRefGoogle Scholar
  120. 120.
    Santoro A, Spongano M, Ferrari G et al.: Analysis of the factors influencing bicarbonate balance during acetatefree biofiltration. Kidney Int 43(Suppl 41): 184S, 1993Google Scholar
  121. 121.
    Feriani M, Bragantini L, Milan M et al.: Bicarbonate kinetics in Acetate-Free Biofiltration. in Blood Purification in Perspective: New Insights and Future Trends, Vol 2, edited by Man NR, Botella J, Zucchelli P, Cleveland, Icaot Press, 1992, p 164Google Scholar
  122. 122.
    Ronco C: Continuous renal replacement therapies for the treatment of acute renal failure in intensive care patients. Clin Nephrol 40: 187, 1993PubMedGoogle Scholar
  123. 123.
    Raimondi F, Bianchi T, Emmi V: Use of continuous arteriovenous hemofiltration (CAVH) in lactic acidosis: a case report, in CAVH, edited by La Greca G, Fabris A, Ronco C, Milano, Wichtig Editore, 1986, p 135Google Scholar
  124. 124.
    Fabris A, Biasioli S, Chiaramonte S et al.: Buffer metabolism in CAPD: Relationship with respiratory dynamics. Trans Am Soc Artif Intern Organs 28: 270, 1982PubMedGoogle Scholar
  125. 125.
    Faller B, Marichal JF: Loss of ultrafiltration in CAPD a role for acetate. Perit Dial Bull 4: 10, 1984Google Scholar
  126. 126.
    Slingeneyer A, Mion C, Mourad G, Canaud B, Faller B, Beraud JJ: Progressive sclerosing peritonitis. A late and severe complication of maintenance peritoneal dialysis. Trans Am Soc Artif Intern Organs 29: 633, 1983PubMedGoogle Scholar
  127. 127.
    La Greca G, Biasioli S, Chiaramonte S et al.: Acid-base balance on peritoneal dialysis. Clin Nephrol 16: 1, 1981PubMedGoogle Scholar
  128. 128.
    Pedersen FB, Ryttof N, Deleuran P, Dragsholt C, Kildeberg P: Acetate vs lactate in peritoneal dialysis solutions. Nephron 39: 55, 1985PubMedGoogle Scholar
  129. 129.
    Rubin J, Adair C, Johnson B, Bower JD: Stereospecific lactate absorption during peritoneal dialysis. Nephron 31: 224, 1982PubMedCrossRefGoogle Scholar
  130. 130.
    Feriani M, Biasioli S, Borin D et al.: Bicarbonate buffer for CAPD solution. Trans Am Soc Artif Intern Organs 31: 668, 1985PubMedGoogle Scholar
  131. 131.
    Robson MD, Faivoseviz A, Malmoud H: Physiological transfer of acid base, in Continuous Ambulatory Peritoneal Dialysis, Legrain M, Amsterdam, Excerpta Medica, 1980, p 194Google Scholar
  132. 132.
    Teehan BP, Schleifer CR, Reichard GA, Cupit MC, Siglar MH, Haff AC: Acid-base studies in CAPD. in CAPD Update, edited by Moncrief JW, Popovich RP, New York, Masson Publishing, 1981, p 95Google Scholar
  133. 133.
    Yatzidis H: A new stable bicarbonate dialysis solution for peritoneal dialysis: preliminary report. Perit Dial Int 11: 224, 1991PubMedGoogle Scholar
  134. 134.
    Feriani M, Biasioli S, Barbacini S et al.: Acid base correction in bicarbonate CAPD patients. Adv Perit Dial 5: 191, 1989PubMedGoogle Scholar
  135. 135.
    Feriani M, Dissegna D, La Greca G, Passlick-Deetjen J: Short term clinical study with bicarbonate containing peritoneal dialysis solution. Perit Dial Int 13: 296, 1993PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Mariano Feriani
    • 1
  • Claudio Ronco
    • 1
  • Aldo Fabris
    • 1
  • Giuseppe La Greca
    • 1
  1. 1.Department of NephrologySt. Bortolo HospitalVicenzaItaly

Personalised recommendations