Skip to main content

Biophysics of Ultrafiltration and Hemofiltration

  • Chapter

Abstract

Removal of excess body water is an important function of both the artificial kidney and peritoneal dialysis. More recently, solute removal in conjunction with ultrafiltration has been exploited as an alternative to diffusion as a means for cleaning uremic blood. This chapter deals with the practical and theoretical aspects of ultrafiltration and convective mass transfer across the artificial kidney and peritoneal mass transfer barriers

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spiegler KS, Kadern O: Thermodynamics of hyperfiltration (reverse osmosis): Criteria for efficient membranes. Desalination 1: 311, 1966

    Article  CAS  Google Scholar 

  2. Villarroel F, Klein E, Holland F: Solute flux in hemodialysis and hemofiltration membranes. ASAIO J 23: 225, 1977

    Article  CAS  Google Scholar 

  3. Dedrick RL, Flessner MF, Collins JM, Schultz JS: Commentary: is the peritoneum a membrane? ASAIO J 5: 1, 1982

    Google Scholar 

  4. Fiessner MF, Dedrick RL, Schultz JS: A distributed model of peritoneal-plasma transport: theoretical considerations. Am J Physiol 246: R597, 1984

    Google Scholar 

  5. Leypoldt JK, Parker HR, Frigon RP, Henderson LW: Molecular size dependence of peritoneal transport. J Lab Clin Med 110: 207, 1987

    PubMed  CAS  Google Scholar 

  6. Nolph KD, Mactier R, Khanna R, Twardowski ZJ, Moore H, McGary T: The kinetics of ultrafiltration during peritoneal dialysis: the role of the lymphatics. Kidney Int 32: 219, 1987

    Article  PubMed  CAS  Google Scholar 

  7. Mactier RA, Khanna R, Twardowski Z, Moore H, Nolph KD: Contribution of lymphatic absorption to loss of ultra-filtration and solute clearances in continuous ambulatory peritoneal dialysis. J Clin Invest 80: 1311, 1987

    PubMed  CAS  Google Scholar 

  8. Durand P, Chanliau J, Gamberoni J, Hestin D, Kessler M: Intraperitoneal hydrostatic pressure and ultrafiltration volume in CAPD. Adv Perit Dial 9: 233, 1993

    PubMed  CAS  Google Scholar 

  9. Krediet RT, Imholz ALT, Struijk DG, Koomen GCM, Arisz L: Effects of tracer, volume, osmolality and infection on fluid kinetics during CAPD. Blood Purif 10: 173, 1992

    PubMed  CAS  Google Scholar 

  10. Pust AH, Leypoldt JK, Frigon RP, Henderson LW: Peritoneal dialysate volume measured by indicator dilution measurements. Kidney Int 33: 64, 1988

    Article  PubMed  CAS  Google Scholar 

  11. Leypoldt JK, Pust AH, Frigon RP, Henderson LW: Dialysate volume measurements required for determining peritoneal solute transport. Kidney Int 34: 254, 1988

    Article  PubMed  CAS  Google Scholar 

  12. Pyle WK, Moncrief JW, Popovich RP: Peritoneal transport evaluation in CAPD. in CAPD Update; Continuous Ambulatory Peritoneal Dialysis, edited by Moncrief JW, Popovich RP, New York, Masson Publ USA Inc, 1981

    Google Scholar 

  13. Rippe B, Stelin G, Haraldsson B: Computer simulations of peritoneal fluid transport in CAPD. Kidney Int 40: 315, 1991

    Article  PubMed  CAS  Google Scholar 

  14. Rippe B, Haraldsson B: Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev 74: 163, 1994

    PubMed  CAS  Google Scholar 

  15. Waniewski J, Verynski A, Heimburger O, Lindholm B: A comparative analysis of mass transport in peritoneal dialysis. ASAIO J 37: 65, 1991

    CAS  Google Scholar 

  16. Vonesh EF, Rippe B: Net fluid absorption under membrane transport models of peritoneal dialysis. Blood Purif 10: 209, 1992

    PubMed  CAS  Google Scholar 

  17. Daniels FH, Leonard EF, Cortell S: Glucose and glycerol compared as osmotic agents for peritoneal dialysis. Kidney Int 25: 20, 1984

    Article  PubMed  CAS  Google Scholar 

  18. Henderson LW, Nolph KD: Altered permeability of the peritoneal membrane after using hypertonic peritoneal fluid. J Clin Invest 48: 922, 1969

    Google Scholar 

  19. Nolph KD, Hano JE, Teschan PE: Peritoneal sodium transport during hypertonic peritoneal dialysis. Ann Intern Med 70: 931, 1969

    PubMed  CAS  Google Scholar 

  20. Brown ST, Ahearn DJ, Nolph KD: Potassium removal with peritoneal dialysis. Kidney Int 4: 67, 1973

    Article  PubMed  CAS  Google Scholar 

  21. Rubin J, Klein E, Bower JD: Investigation of the net sieving coefficient of the peritoneal membrane during peritoneal dialysis. ASAIO J 5: 9, 1982

    Google Scholar 

  22. Henderson LW: The problem of peritoneal membrane area and permeability. Kidney Int 3: 409, 1973

    Article  PubMed  CAS  Google Scholar 

  23. Rubin J, Nolph KD, Popovich RP, Moncrief JW, Prowant B: Drainage volume during continuous ambulatory peritoneal dialysis. ASAIO J 2: 54, 1979

    Google Scholar 

  24. Nolph KD, Miller FN, Pyle WK, Popovich RP, Sorkin MI: An hypothesis to explain the ultrafiltration characteristics of peritoneal dialysis. Kidney Int 20: 543, 1981

    Article  PubMed  CAS  Google Scholar 

  25. Bell JL, Leypoldt JK, Frigon RP, Henderson LW: Hydraulically-induced convective solute transport across the rabbit peritoneum. Kidney Int 38: 19, 1990

    Article  PubMed  CAS  Google Scholar 

  26. Leypoldt JK: Evaluation of peritoneal membrane pore models. Blood Purif 10: 227, 1992

    PubMed  CAS  Google Scholar 

  27. Chen TW, Khanna R, Moore H, Twardowski ZJ, Nolph KD: Sieving and reflection coefficients for sodium salts and glucose during peritoneal dialysis in rats. J Am Soc Nephrol 2: 1092, 1991

    PubMed  CAS  Google Scholar 

  28. Nolph KD, Twardowski ZJ: The peritoneal dialysis system. in Peritoneal Dialysis, 2nd ed, edited by Nolph KD, The Hague, Martinus Nijhoff Publishers, 1985, p 23

    Google Scholar 

  29. Patlak CS, Goldstein DA, Hoffman JF: The flow of solute and solvent across a two-membrane system. J Theor Biol 5: 426, 1963

    Article  PubMed  CAS  Google Scholar 

  30. Leypoldt JK, Chiu AS, Frigon RP, Henderson LW: Dialysate to blood transport of macromolecules during peritoneal dialysis. Am J Physiol 275: H1851, 1989

    Google Scholar 

  31. Leypldt JK, Henderson LW: The effect of convection on bidirectional peritoneal transport: predictions from a distributed model. Ann Biomed Enginr 20: 463, 1992

    Article  Google Scholar 

  32. Green DM, Antwiler GD, Moncrief JW, Decherd JF, Popovich RP: Measurement of the transmittance coefficient spectrum of Cuprophan and RP 69 membranes: Applications to middle molecule removal via ultrafiltration. ASAIO J 22: 627, 1976

    CAS  Google Scholar 

  33. Henderson LW: Redy® or not. ASAIO J 2: 49, 1979

    CAS  Google Scholar 

  34. Nolph KD, Stoltz ML, Carter CB, Fox M, Maher JF: Factors affecting the composition of ultrafiltrate from hemodialysis coils. ASAIO J 16: 495, 1970

    CAS  Google Scholar 

  35. Donnan FG: Theory of membrane equilibria. Chem Reviews 1: 73, 1924–1925

    Article  CAS  Google Scholar 

  36. Ramenofsky JA, Prestidge H, Ford C, Sanfelippo ML, Henderson LW: Novel applications for hemofiltration membranes. ASAIO J 27: 613, 1981

    CAS  Google Scholar 

  37. Floege J, Granolleras C, Deschodt G, Heck M, Baudin G, Branger B, Tournier O, Reinhard B, Eisenbach GM, Smeby LC, Koch KM, Shaldon S: High flux synthetic versus cellulosic membranes for beta-2-microglobulin removal during hemodialysis, hemodiafiltration and hemofiltration. Nephrol Dial Transplant 4: 653, 1989

    PubMed  CAS  Google Scholar 

  38. Lonnemann G, Behme T, Lenzner B, Floege J, Schulze M, Colton CK, Koch KM, Shaldon S: Permeability of dialyzer membranes to TNFα-inducing substances derived from water bacteria. Kidney Int 42: 61, 1992

    Article  PubMed  CAS  Google Scholar 

  39. Schmidt M, Baldamus CA, Schoeppe W: Back filtration in hemodialyzers with highly permeable membranes. Blood Purif 2: 108, 1984

    Google Scholar 

  40. Starling EH, Tubby AH: On absorption from and secretion into the serous cavities. J Physiol 16: 140, 1894

    PubMed  CAS  Google Scholar 

  41. Leypoldt JK, Schmidt B, Gurland HJ: Measurement of backfiltration rates during hemodialysis with high permeability membranes. Blood Purif 9: 74, 1991

    PubMed  CAS  Google Scholar 

  42. Soltys PJ, Ofsthun NJ, Leypoldt JK: Critical analysis of formulas for estimating backfiltration in hemodialysis. Blood Purif 10: 326, 1992

    Google Scholar 

  43. Colton CK, Smith KA, Merrill EW, Friedman S: Diffusion of urea in flowing blood. Am Inst Chem Enginr 117: 800, 1971

    Google Scholar 

  44. Ofsthun NJ, Schockley TR (Eds): Lymphatic and non-lymphatic fluid loss from the peritoneal cavity. Blood Purif 10: 109, 1992

    Google Scholar 

  45. Leypoldt JK, Blindauer KM: Peritoneal solvent drag reflection coefficients are within the physiological range. Blood Purif. In press.

    Google Scholar 

  46. Mactier RA, Khanna R, Twardowski Z, Nolph KD: Role of the peritoneal cavity lymphatic absorption in peritoneal dialysis. Kidney Int 32: 165, 1987

    Article  PubMed  CAS  Google Scholar 

  47. Zink J, Greenway CV: Control of ascites absorption in anesthetized cats: affects of intraperitoneal pressure, protein and furosemide diuresis. Gasteroenterol 73: 1119, 1977

    CAS  Google Scholar 

  48. Okamoto SN, Fox SD, Leypoldt JK, Henderson LW: Abdominal compression reduces fluid absorption during peritoneal dialysis in the rabbit. Kidney Int 35 (Abstract): 274, 1989

    Google Scholar 

  49. Misery CD, Mallick NP, Gokal R: Ultrafiltration with an isosmotic solution during long peritoneal dialysis exchange. Lancet 178, 1987

    Google Scholar 

  50. Nolph KD, Fox M, Maher JF: Factors affecting the ultrafiltration rate from standard dialysis coils. ASAIO J 16: 487, 1970

    CAS  Google Scholar 

  51. Husted FC, Nolph KD, Vitale FC, Maher JF: Detrimental effects of ultrafiltration on diffusion in coils. J Lab Clin Med 87: 435, 1976

    PubMed  CAS  Google Scholar 

  52. Colton CK, Henderson LW, Ford CA, Lysaght MJ: Kinetics of hemodiafiltration I. In vitro transport characteristics of a hollow fiber blood ultrafilter. J Lab Clin Med 85: 355, 1975

    PubMed  CAS  Google Scholar 

  53. Henderson LW, Colton CK, Ford C: Kinetics of hemodiafiltration. II. Clinical characterization of a new blood cleansing modality. J Lab Clin Med 85: 372, 1975

    PubMed  CAS  Google Scholar 

  54. Henderson LW: Peritoneal ultrafiltration dialysis: enhanced urea transfer using hypertonic peritoneal dialysis fluid. J Clin Invest 45: 950, 1966

    PubMed  CAS  Google Scholar 

  55. Babb AL, Johansen PJ, Strand MJ, Tënckhoff H, Scribner BH: Bidirectional permeability of the human peritoneum to middle molecules. Proc Eur Dial Transplant Assoc 10: 247, 1973

    PubMed  CAS  Google Scholar 

  56. Randerson DH, Farrell PC: Mass transfer properties of the human peritoneum. ASAIO J 3: 140, 1980

    Google Scholar 

  57. Andreoli TE, Schafer JA, Troutman SL: Coupling of solute and solvent flows in porous lipid bilayer membranes. J Gen Physiol 57: 479, 1971

    Article  PubMed  CAS  Google Scholar 

  58. Levitt MD, Kneip JM, Overdahl MC: Influence of shaking on peritoneal transfer in rats. Kidney Int 35: 1145, 1989

    Article  PubMed  CAS  Google Scholar 

  59. Leonard E, Bluemle LW Jr: The permeability concept as applied to dialysis. Trans Am Soc Artif Intern Organs 6: 33, 1960

    PubMed  CAS  Google Scholar 

  60. Wilson EE: A rational design for heat transfer apparatus Trans Am Soc Mech Enginr 37: 47, 1916

    Google Scholar 

  61. Blatt WF, Dravid A, Michaels AS, Nelson L: Solute polarization and cake formation in membrane ultrafiltration: causes, consequences and control techniques, in Membrane Science and Technology, edited by Flinn IE, New York, Plenum Corporation, 1970

    Google Scholar 

  62. Colton CK: Permeability and transport studies in batch and flow dialyzers with application to hemodialysis. PhD Thesis Massachusetts Institute of Technology, Cambridge, MA, 1969

    Google Scholar 

  63. Renkin EM, Gilmore JP: Glomerular filtration, in Handbook of Physiology, edited by Orloff J, Berliner RW, Am Physiological Society, Washington, DC, 1973

    Google Scholar 

  64. Leypoldt JK, Blindauer KM: Convection does not govern plasma to dialysate transport of protein. Kidney Int 42: 1412, 1992

    Article  PubMed  CAS  Google Scholar 

  65. Flessner MF, Parker RJ, Sieber SM: Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Physiol 244: H89, 1983

    PubMed  CAS  Google Scholar 

  66. Rippe B, Stelin G, Ahlem J: Lymph flow from, the peritoneal cavity in CAPD patients, in Frontiers in Peritoneal Dialysis, edited by Maher JF, Winchester JF, New York, Field, Rich and Assoc, 1986

    Google Scholar 

  67. Okazaki M, Yoshida F: Ultrafiltration of blood: effect of hematocrit on ultrafiltration rate. Ann Biomed Enginr 4: 138–150, 1976

    Article  CAS  Google Scholar 

  68. Lysaght MJ, Ford CA, Colton CK, Stone RA, Henderson LW: Mass transfer in clinical blood ultrafiltration devices — a review. in Technical Aspects of Renal Dialysis, edited by Frost TH, Tunbridge Wells, Pitman Medical Publ Co, 1978

    Google Scholar 

  69. Vilker VL, Colton CK, Smith KA: Concentration polarization in protein ultrafiltration. Am Inst Chem Enginr 47: 632, 1981

    Google Scholar 

  70. Vilker VL, Colton CK, Smith KA, Green DL: The osmotic pressure of concentrated protein and lipoprotein solutions and its significance to ultrafiltration. J Memb Sci 20: 63, 1984

    Article  CAS  Google Scholar 

  71. Leypoldt JK, Frigon RP, Alford MF, Uyeji SN, Henderson LW: The effects of plasma protein on sieving properties of hemofilters. in Progress in Artificial Organs — 1983, edited by Atsumi KA, Maekawa M, Ota K, Cleveland, ISAO (presentation) 1984, p 580

    Google Scholar 

  72. Leypoldt JK, Frigon RP, Henderson LW: Dextran sieving coefficients of hemofiltration membranes. Trans Am Soc Artif Intern Organs 29: 678, 1983

    PubMed  CAS  Google Scholar 

  73. Frigon RP, Leypoldt JK, Alford MF, Uyeji SN, Henderson LW: Hemofilter solute sieving is not governed by dynamic polarized protein. Trans Am Soc Artif Intern Organs 30: 486, 1984

    PubMed  CAS  Google Scholar 

  74. Langsdorf LJ, Zydney AL: Diffusive and convective solute transport through hemodialysis membranes: a hydrodynamic analysis. J Biomed Materials Res. In press.

    Google Scholar 

  75. Henderson LW, Leypoldt JK, Frigon RP: The impact of membrane area on solute clearance in continuous arteriovenous hemofiltration. in Proc Int Symp on Continuous Arteriovenous Hemofiltration, edited by La Greca G, Fabris A, Ronco C, Milan, Wichtig Editore, 1986, p 37

    Google Scholar 

  76. Leypoldt JK, Frigon RP, Henderson LW: Macromolecular charge effects hemofilter solute sieving. Trans Am Soc Artif Intern Organs 32: 384, 1986

    CAS  Google Scholar 

  77. Leypoldt JK, Frigon RP, Okamoto S, Henderson LW: Macrosolute charge independent of sign decreases sieving coefficient. Abstract 5th Annual Mtg Int Soc Blood Purification. Blood Purif 5: 268, 1988

    Google Scholar 

  78. Chang RLS, Ueki IF, Troy JL, Deen WM, Robertson CR, Brenner BM: Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran. Biophyics J 15: 887, 1975

    CAS  Google Scholar 

  79. Chang RLS, Deen WM, Robertson CR, Brenner BM: Perselectivity of the glomerular capillary wall. III. Restricted transport of polyanions. Kidney Int 8: 212, 1975

    Article  PubMed  CAS  Google Scholar 

  80. Deen WM, Satvat B, Jamieson JM: Theoretical model for glomerular filtration of charged solutes. Am J Physiol 241: F126, 1980

    Google Scholar 

  81. Tay M, Comper WD, Singh AK: Charge selectivity in kidney ultrafiltration is associated with glomerular uptake of transport probes. Am J Physiol 260: F549, 1991

    PubMed  CAS  Google Scholar 

  82. Comper WD, Tay M, Wells X, Dawes J: Desulphation of dextran sulphate during kidney ultrafiltration. Biochem J 297: 31, 1994

    PubMed  CAS  Google Scholar 

  83. Langsdorf LJ, Zydney AL: Effect of blood contact on the transport properties of the hemodialysis membranes: a two-layer membrane model. Blood Purif. In press

    Google Scholar 

  84. Jenkins RD, Funk JE, Chen B, Golper T: A mathematical model for flow, pressure and ultrafiltration rate in extra-corporeal filtration of blood. Blood Purif 10: 282, 1992

    Article  Google Scholar 

  85. Jenkins RD, Funk JE, Chen B, Golper T: Operational instability in extracorporeal filtration of blood. Blood Purif 10: 292, 1992

    Google Scholar 

  86. Cheung AK, Alford MF, Wilson MM, Leypoldt JK, Henderson LW: Urea movement across erythrocyte membrane during artificial kidney treatment. Kidney Int 23: 866, 1983

    Article  PubMed  CAS  Google Scholar 

  87. Frost TH, Kerr DNS: Kinetics of hemodialysis: A theoretical study of the removal of solutes in chronic renal failure compared to normal health. Kidney Int 12: 41, 1977

    Article  PubMed  CAS  Google Scholar 

  88. Lysaght MJ, Schmidt B, Gurland HJ: Filtration rates and pressure driving forces in AV filtration. Blood Purif 1: 178, 1983

    Article  Google Scholar 

  89. Röckel A, Hertel J, Fiegel P, Abdelhamid S, Panitz N, Walb D: Permeability in secondary membrane formation of a high-flux polysulphone hemofilter. Kidney Int 30: 429, 1986

    Article  PubMed  Google Scholar 

  90. Schneider NS, Geronemus RP: Continuous arteriovenous hemodialysis. Kidney Int 33(Suppl 24): S159, 1988

    Google Scholar 

  91. Leber HW, Wizemann V, Goubeaud G, Rawer P, Schutterle G: Simultaneous hemofiltration/hemodialysis: an effective alternative to hemofiltration and conventional hemodialysis in the treatment of uremic patients. Clin Nephrol 9: 115, 1978

    PubMed  CAS  Google Scholar 

  92. von Albertini B, Miller JH, Gardner PW, Shinaberger JH: High flux hemodiafiltration: Under six hours per week treatment. Trans Am Soc Artif Intern Organs 30: 227, 1984

    Google Scholar 

  93. Miller JH, von Albertini B, Gardner BW, Shinaberger JH: Technical aspects of high flux hemodiafiltration for adequate short [under two hours] treatment. Trans Am Soc Artif Intern Organs 30: 377, 1984

    PubMed  CAS  Google Scholar 

  94. von Albertini B, Garcia-Valdecasa J, Barlee V, Lew SQ, Bosch JP: Solute rebound in highly efficient: Impact on quantification of therapy. J Am Soc Nephrol (Abstract) 4: 393, 1993

    Google Scholar 

  95. Fox SD, Henderson LW: Cardiovascular response during hemodialysis and hemofiltration: Thermal membrane and catecholamine influences. Blood Purif 11: 224, 1993

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. Jacobs C. M. Kjellstrand K. M. Koch J. F. Winchester

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Henderson, L.W. (1996). Biophysics of Ultrafiltration and Hemofiltration. In: Jacobs, C., Kjellstrand, C.M., Koch, K.M., Winchester, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-0-585-36947-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-36947-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3610-5

  • Online ISBN: 978-0-585-36947-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics