Advertisement

Biocompatibility — Clinical Aspects

  • H. -D. Lemke
  • A. Grassmann
  • Jorg Vienken
  • Stanley Shaldon

Abstract

The clinical aspects of biocompatibility require a clear definition as the title could be misleading. We shall discuss the meaning of biocompatibility in its current usage in haemodialysis therapy and the clinical associations claimed to relate in part or toto from bioincompatible events derived from haemodialysis therapy

Keywords

Angiotensin Converting Enzyme Inhibitor Complement Activation Ethylene Oxide Dialysis Membrane Anaphylactoid Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kaplow LS, Geoffinet JA: Profound neutropenia during the early phase of haemodialysis. JAMA 203: 1135, 1968PubMedGoogle Scholar
  2. 2.
    Craddock PR, Fehr J, Dalmasso AP, Brigham KL, Jakob HS: Hemodialysis leukopenia: pulmonary vascular leukostasis resulting from complement activation of dialyzer cellophane membranes. J Clin Invest 59: 979, 1977Google Scholar
  3. 3.
    Foret M, Hachache T, Maftahi H, Milongo R, Kuentz F, Christollet M et al.: The long-term evaluation of the biocompatibility of nine different hemodialysis membranes. Life Support Systems 5: 203, 1987PubMedGoogle Scholar
  4. 4.
    Williams DF, ed: Definitions in Biomaterials. Elsevier, Amsterdam, 1987.Google Scholar
  5. 5.
    Gurland HJ, Davison AM, Bonomini V et al.: Definitions and terminology in biocompatibility. Nephrol Dial Transplant 9(Suppl 2): 4, 1994Google Scholar
  6. 6.
    Frank MM, Fries LF: The role of complement in inflammation and phagocytosis. Immunol Today 12: 322, 1991PubMedGoogle Scholar
  7. 7.
    Hugli TE: Structure and function of the anaphylatoxins. Springer Seminar Immunopathol 7: 193, 1984Google Scholar
  8. 8.
    Jose PJ, Forrest MJ, Williams TJ: Human C5a desarg increases vascular permeability. J Immunol 127: 2376, 1981PubMedGoogle Scholar
  9. 9.
    Stimler-Gerard NP: Role of the complement anaphylatoxins in inflammation and hypersensitivity reactions in the lung. Surv Synth Path Res 4: 423, 1985Google Scholar
  10. 10.
    Marder SR, Chenoweth DE, Goldstein IM et al.: Chemotactic responses of Human Peripheral Blood Monocytes to complement-derived peptides C5a and C5a desarg. J Immunol 134:3325, 1985PubMedGoogle Scholar
  11. 11.
    Haeffner-Cavaillon CN, Cavaillon JM, Laude M, Kazatchkine MD: C3a(C3adesArg) induces production and release of interleukin 1 by cultured human monocytes. J Immunol 139: 794, 1987PubMedGoogle Scholar
  12. 12.
    Okusawa S, Dinarello CA, Yancey KB et al.: C5a induction of human interleukin 1. Synergistic effect with endo-toxin or interferon-gamma. J Immunol 139: 2635, 1987PubMedGoogle Scholar
  13. 13.
    Arend WP, Massoni JR, Niemann MA, Giclas PC: Absence of induction of IL-1 production in human monocytes by complement fragments. J Immunol 142: 173, 1989PubMedGoogle Scholar
  14. 14.
    Schindler R, Gelfand JA, Dinarello CA: Recombinant C5a stimulates transcription rather than translation of IL-1 and TNF; translational signal provided by LPS or IL-1 itself. Blood 76: 1631, 1990PubMedGoogle Scholar
  15. 15.
    Schindler R, Linnenweber S, Schulze M, Oppermann M, Dinarello C, Shaldon S, Koch KM: Gene expression of interleukin-1S during hemodialysis. Kidney Int 43: 712, 1993PubMedGoogle Scholar
  16. 16.
    Schindler R, Lonnemann G, Shaldon S, Koch KM, Dinarello C: Transcription, not synthesis, of interleukin-1 and tumor necrosis factor by complement. Kidney Int 37: 85, 1990PubMedGoogle Scholar
  17. 17.
    Cochrane CG, Griffin JH: The biochemistry and pathophysiology of the contact system of plasma. Adv Immunol 33:241, 1982PubMedGoogle Scholar
  18. 18.
    Matsuda T: Biological responses at non-physiological interfaces and molecular design of biocompatible surfaces. Nephrol Dial Transplant 4(Suppl 2): 60, 1989Google Scholar
  19. 19.
    Bonner G: Kallikrein-Kinin systems in shock, in Handbook of Mediators in Septic Shock, CRC, Boca Raton, 1993Google Scholar
  20. 20.
    Glauser MP, Zanetti G, Baumgartner JD, Cohen J: Septic shock: pathogenesis. Lancet 338: 732, 1991PubMedGoogle Scholar
  21. 21.
    Raetz CRH: Biochemistry of endotoxins. Ann Rev Biochem 59: 129, 1990PubMedGoogle Scholar
  22. 22.
    Lynn WA, Golenbrock DT: Lipopolysaccharide antagonists. Immunol Today 13: 271, 1992PubMedGoogle Scholar
  23. 23.
    Dinarello CA: Modalities for reducing interleukin 1 activity in disease. Immunol Today 14: 260, 1993PubMedGoogle Scholar
  24. 24.
    Dolovich J, Bell B: Allergy to a product(s) of ethylene oxide gas: demonstration of IgE and IgG antibodies and hapten specificity. J Allergy Clin Immunol 62: 30, 1978PubMedGoogle Scholar
  25. 25.
    Lemke HD: Mediation of hypersensitivity reactions during hemodialysis by IgE antibodies against ethylene oxide. Artif Organs 11: 104, 1987PubMedGoogle Scholar
  26. 26.
    Bommer J, Ritz E: Ethylene oxide (ETO) as a major cause of anaphylactoid reactions in dialysis. Artif Organs 11: 111, 1987PubMedGoogle Scholar
  27. 27.
    Rumpf KW, Seubert S, Seubert A et al.: Association of ethylene oxide-induced IgE antibodies with symptoms in dialysis patients. Lancet 2(8469–70): 1385, 1985PubMedGoogle Scholar
  28. 28.
    Grammer LC, Paterson BF, Roxe D et al.: IgE against ethylene oxide-altered human serum albumin in patients with anaphylactic reactions to dialysis. J Allergy Clin Immunol 76: 511, 1985PubMedGoogle Scholar
  29. 29.
    Grammer LC, Harris KE, Shaughnessy A et al.: Antibodies to toluene diisocyanate in patients with and without dialysis anaphylaxis. Art Organs 15: 2, 1991CrossRefGoogle Scholar
  30. 30.
    Hakim RM, Breillatt J, Lazarus M, Port FK: Complement activation and hypersensitivity reactions to dialysis membranes. N Engl J Med 311: 878, 1984PubMedCrossRefGoogle Scholar
  31. 31.
    Hammerschmidt DE, Weaver LJ, Hudson LD, Craddock PR, Jakob HS: Association of complement activation and elevated plasma-C5a with adult respiratory distress syndrome: pathophysiological relevance and possible prognostic value. Lancet i: 947, 1980Google Scholar
  32. 32.
    Weinberg PF, Mathay MA, Webster RO, Roskos KV, Goldstein IM, Murray JF: Biological active products of complement and acute lung injury in patients with the sepsis syndrome. Am Rev Resp Dis 130: 791, 1984PubMedGoogle Scholar
  33. 33.
    Cheung AK, LeWinter M, Chenoweth DE et al.: Cardiopulmonary effects of cuprophan-activated plasma in the swine. Kidney Int 29: 799, 1986PubMedGoogle Scholar
  34. 34.
    Schulman ES, Post TJ, Henson PM, Giclas PC: Differential effects of the complement peptides, C5a and C5a desArg on human basophil and lung mast cell histamine release. J Clin Invest 81: 918, 1988PubMedGoogle Scholar
  35. 35.
    Bousquet J, Michel FB: Allergy to formaldehyde and ethylene oxide. Clin Rev Allergy 9: 357, 1991PubMedGoogle Scholar
  36. 36.
    Lemke HD, Heidland A, Schaefer RM: Hypersensitivity reactions during hemodialysis: role of complement fragments and ethylene oxide antibodies. Nephrol Dial Transplant 5: 264, 1990PubMedGoogle Scholar
  37. 37.
    Rockel A, Klinke B, Hertel J et al.: Allergy to dialysis materials. Nephrol Dial Transplant 4: 646, 1989PubMedGoogle Scholar
  38. 38.
    Siraganian RP, Hook WA: Complement-mediated release of histamine from human basophils. II. Mechanism of the histamine release reaction. J Immunol 116: 639, 1976PubMedGoogle Scholar
  39. 39.
    Grant JA, Settle L, Whorton EB, Dupree E: Complement-mediated release of histamine from human basophils. III. Biochemical characterization of the reattion. J Immunol 117:450, 1977Google Scholar
  40. 40.
    Farnam J, Grant JA, Lett-Brown MA, Hunt C, Thueson DO, Giclas PC: Complement and IgE-mediated release of histamine from basophils in vitro. V. Differential effects of drugs modulating arachidonic acid metabolism. J Immunol 134: 541, 1985PubMedGoogle Scholar
  41. 41.
    Pegues DA, Beck-Sague CM, Woollen SW et al.: Anaphylactoid reactions associated with reuse of hollow-fiber hemodialyzers and ACE-inhibitors. Kidney Int 42: 1232, 1992PubMedGoogle Scholar
  42. 42.
    US Centers for disease control: Update: acute allergic reactions associated with reprocessed hemodialyzers in the United States, 1989–1990. Morbid Mortal Weekly Rep 40: 147, 1991Google Scholar
  43. 43.
    Schmitter L, Sweet S: Anaphylactoid reactions with the addition of hypochlorite to reuse in patiertts maintained on reprocessed polysulfone hemodialyzers and ACE inhibitors. (Abstract) ASAIO Transactions 95, 1993Google Scholar
  44. 44.
    Villaroel F: Incidence of hypersensitivity in hemodialysis. Artif Organs 8: 278, 1984CrossRefGoogle Scholar
  45. 45.
    Daugirdas JT, Potempa LD, Dinh N, Gandhi VC, Ivanovitch PT, Ing TS: Plate, coil, and hollow-fiber cuprammonium cellulose dialyzers: discrepancy between incidence of anaphylactic reactions and degree of complement activation. Artif Organs 11: 140, 1987PubMedGoogle Scholar
  46. 46.
    Schaefer RM, Heidland A, Hörl WH: Effect of dialyzer geometry on granulocyte and complement activation. Am J Nephrol 7: 121, 1987PubMedCrossRefGoogle Scholar
  47. 47.
    Ansorge W, Pelger M, Dietrich W, Baurmeister U: Ethylene oxide residuals in dialyzers after a simulated clinical rinsing procedure. Artif Organs 11: 118, 1987PubMedGoogle Scholar
  48. 48.
    Verresen L, Waer M, Vanrentergem Y, Michielsen P: Angiotensin-converting-enzyme inhibitors and anaphylactoid reactions to high-flux membrane dialysis. Lancet 336: 1360, 1990PubMedGoogle Scholar
  49. 49.
    Tielemans C, Madhoun P, Lenaers M, Schandene L, Goldman M, Vanherweghem JL: Anaphylactoid reactions during hemodialysis on AN69 membranes in patients receiving ACE inhibitors. Kidney Int 38: 982, 1990PubMedGoogle Scholar
  50. 50.
    Verresen L, Fink E, Lemke HD, Vanrenterghem Y: Bradykinin is a mediator of anaphylactoid reactions during hemodialysis with AN69 membranes. Kidney Int 45: 1497, 1994PubMedGoogle Scholar
  51. 51.
    Parnes EL, Shapiro WB: Anaphylactoid reactions in hemodialysis patients treated with the AN69 dialyzer. Kidney Int 40: 1148, 1991PubMedGoogle Scholar
  52. 52.
    Brunet P, Jaber K, Berland Y, Baz M: Anaphylactoid reactions during hemodialysis and hemofiltration: role of associating AN69 membrane and angiotensin I converting enzyme inhibitors. Am J Kidney Diseases 19: 444, 1992Google Scholar
  53. 53.
    Schwarzbeck A, Wittenmeier KW, Hällfritzsch U: Anaphylactoid reactions, angiotensin-converting enzyme inhibitors and extracorporeal hemotherapy. Nephron 65: 499, 1993PubMedGoogle Scholar
  54. 54.
    Jadoul M, Struyven J, Stragier A, van Ypersele de Strihou C: Angiotensin-converting-enzyme inhibitors and anaphylactoid reactions to high-flux membrane dialysis. Lancet 337: 112, 1991Google Scholar
  55. 55.
    Petrie JJB, Campbell Y, Hawley CM, Hogan PG. Anaphylactoid reactions in patients on hemofiltration with AN69 membrane whilst receiving ACE inhibitors. Clin Nephrol 36: 264, 1991PubMedGoogle Scholar
  56. 56.
    Dinarello CA: ACE inhibitors and anaphylactoid reactions to high-flux membrane dialysis. Lancet 337: 370, 1991Google Scholar
  57. 57.
    Bigazzi R, Atti M, Baldari G: High-permeable membranes and hypersensitivity-like reactions: role of dialysis fluid contamination. Blood Purif 8: 190, 1990PubMedCrossRefGoogle Scholar
  58. 58.
    Lacour F, Maheut H: AN69 membrane and conversion enzyme inhibitors: prevention of anaphylactic shock by alkaline rinsing. Nephrol 13: 135, 1992Google Scholar
  59. 59.
    Lemke HD, Fink E: Accumulation of bradykinin formed by the AN69-or PAN DX-membrane is due to the presence of an ACE inhibitor in vitro. (Abstract) J Am Soc Nephrol 3: 376, 1992Google Scholar
  60. 60.
    Krieter DH, Lemke HD, Fink E, Bönner G, Grassmann A, You HM, Eisenhauer T: Hemodialysis related anaphylactoid reactions in sheep pretreated with captopril. Nephrol Dial Transplant 10: 509, 1995PubMedGoogle Scholar
  61. 61.
    Schaefer RM, Fink E, Schaefer L, Barkhausen R, Kulzer P, Heidland A: Role of bradykinin in anaphylactoid reactions during hemodialysis with AN69 membranes. Am J Nephrol 13: 473, 1993PubMedGoogle Scholar
  62. 62.
    Van der Niepen P, Sennesael JS, Verbeelen DL, Van Ingelgem D: Prevention of anaphylactoid reactions to high-flux membrane dialysis and ACE inhibitors by calcium. Nephrol Dial Transplant 9: 87, 1993Google Scholar
  63. 63.
    Kojima S, Harada-Shiba M, Nomura S et al.: Effect of nafamostat mesilate on bradykinin generation during low-density lipoprotein apheresis using a dextran sulfate column. Trans ASAIO 27: 644, 1991Google Scholar
  64. 64.
    Olbricht CJ, Schaumann D, Fischer D: Anaphylactoid reactions, LDL apheresis with dextrane sulfate, and ACE inhibitors. Lancet 340: 908, 1992PubMedGoogle Scholar
  65. 65.
    Tunon-de-Lara J, Villanueva P, Marcos M, Taytard A: ACE inhibitors and anaphylactoid reactions during venom immunotherapy. Lancet 340: 908, 1992PubMedGoogle Scholar
  66. 66.
    Man NK, Cianconi C, Faivre JM et al.: Dialysis-associated adverse reactions with high-flux membranes and microbial contamination of liquid bicarbonate concentrate. Contr Nephrol 62: 24, 1988Google Scholar
  67. 67.
    Bouvier P, Barnouin F, Briat C et al.: Choc anaphylactique en hemodialyse: a propos de deux observations. Nephrol 10: 40, 1990CrossRefGoogle Scholar
  68. 68.
    Montagnac R, Schillinger F, Milcent T et al.: Réaction d’hypersensibilité en cours d’hémodialyse. Roles de la haute perméabilité, de la rétrofiltration et de la contamination bactérienne du dialysat. Nephrol 9: 29, 1988Google Scholar
  69. 69.
    Nicholls AJ, Platts MM: Anaphylactoid reactions due to hemodialysis, haemofiltration, or plasma separation. Br Med J 285: 1607, 1982Google Scholar
  70. 70.
    Tokars JI, Alter MJ, Favero MS, Moyer LA, Bland LA: National surveillance of hemodialysis associated diseases in the United States, 1990. ASAIO J 39: 71, 1993PubMedGoogle Scholar
  71. 71.
    Yamagami S, Adachi T, Sugimura T et al.: Detection of endotoxin antibody in long-term dialysis patients. Int J Artif Organs 13:205, 1990PubMedGoogle Scholar
  72. 72.
    Quellhorst E, Schënemann B: Beta-2 amyloidosis and haemofiltration. in Dialysis Amyloidosis, edited by Geijo F, Brancaccio D, Bardin Y, Wichtig Editore, 1989, p 123Google Scholar
  73. 73.
    Baz M, Durand C, Ragon A, Jaber K, Andrieu D, Merzouk T et al.: Using ultrapure water in hemodialysis delays carpal tunnel syndrome. Int J Artif Organs 14: 681, 1991PubMedGoogle Scholar
  74. 74.
    Shaldon S, Deschodt G, Branger B, Granolleras C, Baldamus C, Koch K, Lysaght M, Dinarello C: Haemodialysis hypotension: the interleukin hypothesis restated. Proc EDTA-ERA 22: 229, 1985Google Scholar
  75. 75.
    Fox S, Henderson LW: Cardiovascular response during hemodialysis and hemofiltration: thermal, membrane and catecholamine influences. Blood Purif 11: 224, 1993PubMedGoogle Scholar
  76. 76.
    Bambauer R, Walther J, Meyer S, Ost S, Schauer M, Jung W, Gohl H, Vienken J: Bacteria and endotoxin-free dialysis fluid for use in chronic hemodialysis. Artif Organs 18: 188, 1994PubMedCrossRefGoogle Scholar
  77. 77.
    Bambauer R, Walther J, Jung W: Ultrafiltration of dialysis fluid to obtain a sterile solution during hemodialysis. Blood Purif 8: 309, 1990PubMedCrossRefGoogle Scholar
  78. 78.
    Erley C, von Herrath D, Hartenstein-Koch K, Kutschera D, Amir-Moazami B, Schaefer K: Easy production of sterile, pyrogen-free dialysate. Trans ASAIO 34: 205, 1988Google Scholar
  79. 79.
    Frinak S, Polaschegg HD, Levin N, Pohlod D, Dumler F, Saravolatz L: Filtration of dialysate using an on-line dialysate filter. Int J Artif Organs 14: 691, 1991PubMedGoogle Scholar
  80. 80.
    Abuelo JG, Shemin D, Chazan JA: Acute symptoms produced by hemodialysis: a review of their causes and associations. Seminars in Dialysis 6: 59, 1993Google Scholar
  81. 81.
    Rosa AA, Fryd DS, Kjellstrand CM: Dialysis symptoms and stabilization in long-term dialysis. Arch Intern Med 140: 804, 1980PubMedGoogle Scholar
  82. 82.
    Dumler F, Zasuwa G, Lewin NW: Effect of dialyzer reprocessing methods on complement activation and hemodialyzer-related symptoms. Artif Organs 11: 128, 1987PubMedGoogle Scholar
  83. 83.
    Bergamo collaborative dialysis study group Acute intradialytic well-being: results of a clinical trial comparing polysulfone with cuprophan. Kidney Int 40: 714, 1991Google Scholar
  84. 84.
    Collins DM, Lambert MB, Tannenbaum JS, Oliverio M, Schwab SJ: Tolerance of hemodialysis: a randomized prospective trial of high-flux versus conventional high-efficiency hemodialysis. J Am Soc Nephrol 4: 148, 1993PubMedGoogle Scholar
  85. 85.
    Skroeder NR, Jacobson SH, Lins LE, Kjellstrand CM: Biocompatibility of dialysis membranes is of no importance for objective or subjective symptoms during or after hemodialysis. Trans ASAIO 36: M637, 1990Google Scholar
  86. 86.
    Garella S, Chang B: Hemodialysis-associated hypoxemia. Am J Nephrol 4: 273, 1984PubMedCrossRefGoogle Scholar
  87. 87.
    Duarte R: Blood pressure, ventilation and lipid imbalance during hemodialysis: effect of dialysate composition. Blood Purif 3: 199, 1985PubMedCrossRefGoogle Scholar
  88. 88.
    De Broe M: Hemodialysis-induced hypoxemia. Nephrol Dial Transplant 9(Suppl 2): 173, 1994PubMedGoogle Scholar
  89. 89.
    Igarashi H, Kioi S, Geijo F, Arakawa A: Physiologic approach to dialysis-induced hypoxemia: effects of dialyser material and dialysate composition. Nephron 41: 62, 1985PubMedGoogle Scholar
  90. 90.
    De Backer W, Verpooten G, Borgonjon D, Vermeire P, Lins R, DeBroe M: Hypoxemia during hemodialysis: effects of different membranes and dialysate composition. Kidney Int 23: 738, 1983PubMedGoogle Scholar
  91. 91.
    Becker W, Schaefer R, Börner W: In vivo viability of 111-In-labelled granulocytes demonstrated in a sham dialysis. Br J Radiol 62: 462, 1989CrossRefGoogle Scholar
  92. 92.
    Dodd N, Gordge M, Tarrant J, Parsons V, Weston M: A demonstration of neutrophil accumulation in the pulmonary vasculature during haemodialysis. Proc EDTA 20: 186, 1983Google Scholar
  93. 93.
    Flaherty K, Cheung A, Marshall E, Munger M: Cardiopulmonary events during hemodialysis using various membranes and dialysate. J Am Soc Nephrol 4: 345, 1993Google Scholar
  94. 94.
    Sherlock J, Ledwith J, Letteri J: Hypoventilation and hypoxemia during hemodialysis: reflex response to removal of CO2 across the dialyzer. Trans ASAIO 23: 406, 1977CrossRefGoogle Scholar
  95. 95.
    Dumler F, Levin N: Leucopenia and hypoxemia, unrelated effects of hemodialysis. Arch Intern Med 139: 1103, 1979PubMedGoogle Scholar
  96. 96.
    Dolan M, Whipp B, Davidsons W, Weitzman R, Wasserman K: Hypnea associated with acetate hemodialysis: carbon dioxide-flow dependent ventilation. New Engl J Med 305: 72, 1981PubMedCrossRefGoogle Scholar
  97. 97.
    Schulman G, Fogo A, Gung A, Badr K, Hakim R: Complement activation retards resolution of ischemic renal failure in the rat. Kidney Int 40: 1069, 1991PubMedGoogle Scholar
  98. 98.
    Hakim RM, Wingard RL, Lawrence P, Parker RA, Schulman G: Use of biocompatible membranes improves outcome and recovery from acute renal failure. (Abstract) J Am Soc Nephrol 3: 367, 1992Google Scholar
  99. 99.
    Hakim RA: Clinical implications of hemodialysis membrane biocompatibility. Kidney Int 44: 484, 1993PubMedGoogle Scholar
  100. 100.
    Kränzlin B, Reuss A, Gretz N, Kirschfink M, Ryan CJ, Mujais S: Recovery of renal function following acute ischemic renal failure. Nephrol Dial Transplant 1995. SubmittedGoogle Scholar
  101. 101.
    Kaplan A: What are the important considerations in the care of critically ill patients with acute renal failure? Seminars in Dialysis 7: 103, 1994Google Scholar
  102. 102.
    Teehan B, Schleifer C, Brown J, Sigler M, Raimondo J: Urea kinetic analysis and clinical outcome on CAPD. A five year longitudinal study. Adv Perit Dial 6: 181, 1991Google Scholar
  103. 103.
    Lowrie E, Lew N: Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis 15: 458, 1990PubMedGoogle Scholar
  104. 104.
    Gutierrez A, Alvestrand A, Wahren J, Bergström J: Effect of in vivo contact between blood and dialysis membranes on protein catabolism in humans. Kidney Int 38: 487, 1990PubMedGoogle Scholar
  105. 105.
    Gutierrez A, Alvestrand A, Bergstrom J: Membrane selection and muscle protein catabolism. Kidney Int 42(Suppl 38): S86, 1992Google Scholar
  106. 106.
    Hoerl WH, Schaefer R, Heidland A: Effect of different dialyzers on proteinases and proteinase inhibitors during hemodialysis. Am J Nephrol 5: 320, 1985Google Scholar
  107. 107.
    Hoerl W, Heidland A: Evidence for the participation of granulocyte proteinases on intradialytic catabolism. Clin Nephrol 21:314, 1984Google Scholar
  108. 108.
    Baracos V, Rodeman H, Dinarello C, Goldberg A: Stimulation of muscle protein degradation and prostlaglandin E2 release by leukocyte pyrogen (interleukin-1). N Engl J Med 308:553, 1983PubMedCrossRefGoogle Scholar
  109. 109.
    Dinarello CA, Wolff SM: Molecular basis of fever in humans. Am J Med 72: 799, 1982PubMedGoogle Scholar
  110. 110.
    Bingel M, Lonnemann G, Koch KM, Dinarello C, Shaldon S: Enhancement of in vitro human interleukin-1 production by sodium acetate. Lancet i: 14, 1987Google Scholar
  111. 111.
    Haeffner-Cavaillon N, Jahns G, Poignet JL, Kazatchkine D: Induction of interleukin-1 during hemodialysis. Kidney Int 43(Suppl 39): 139, 1993Google Scholar
  112. 112.
    Lonnemann G, Bingel M, Floege J, Koch KM, Shaldon S, Dinarello C: Detection of endotoxin-like interleukin-1 inducing activity during in vitro dialysis. Kidney Int 33: 29, 1988PubMedGoogle Scholar
  113. 113.
    Misfeldt M, Legaard P, Howell S, Fornella M, LeGrand R: Induction of interleukin-1 from murine peritoneal macrophages by Pseudomonas aeruginosa Exotoxin A. Infect Immun 58: 978, 1990PubMedGoogle Scholar
  114. 114.
    Goldberg AL, Kettelhut IC, Furuni K, Fagan JM, Baracos V: Activation of protein breakdown and prostaglandin E2 production in rat skeletal muscle in fever is signaled by a macrophage product distinct from interleukin-1 or other known cytokines. J Clin Invest 81: 1378, 1988PubMedGoogle Scholar
  115. 115.
    Miller F, Hammerschmidt D, Anderson G, Moore J: Protein loss induced by complement activation during peritoneal dialysis. Kidney Int 25: 480, 1984PubMedGoogle Scholar
  116. 116.
    Gutierrez A, Bergström J, Alvestrand A: Protein catabolism in sham-hemodialysis: the effect of different membranes. Clin Nephron 38: 20, 1992Google Scholar
  117. 117.
    Gutierrez-Martones A: Protein catabolism and bioincompatibility in hemodialysis. PhD Thesis, Karolihska Institute, Huddinge University Hospital, Stockholm, Sweden, 1993Google Scholar
  118. 118.
    Berkelhammer C, Baker J, Leither L, Uldall P, Whitall R, Salter A, Wolman S: Whole body protein turnover in adult hemodialysis patients as measured by 13C-leucine. Am J Clin Nutr 46: 778, 1987PubMedGoogle Scholar
  119. 119.
    Lim V, Bier D, Flanigan J, Sum-Ping S: The effect of hemodialysis on protein metabolism: a leucine kinetic study. J Clin Invest 91: 2429, 1993PubMedGoogle Scholar
  120. 120.
    Lewis S, Van Epps D, Chenoweth D: Leukocyte C5a receptor modulation during hemodialysis. Kidney Int 31: 112, 1987PubMedGoogle Scholar
  121. 121.
    Lindsay R, Bergström J: Membrane biocompatibility and nutrition in patients on maintenance hemodialysis. Nephrol Dial Transplant 9(Suppl 2): 150, 1994PubMedGoogle Scholar
  122. 122.
    Parfrey P, Harnett J: Cardiac disease in chronic uremia. Pathophysilogy and clinical epidemiology. ASAIO J 40: 121, 1994PubMedGoogle Scholar
  123. 123.
    Ward RA: Phagocytic cell function as an index of biocompatibility. Nephrol Dial Transplant 9(Suppl 2): 46, 1994PubMedGoogle Scholar
  124. 124.
    Vanholder R, Van Bliesen W, Ringoir S: Contributing factors to the inhibition of phagocytosis in hemodialyzed patients. Kidney Int 44: 208, 1993PubMedGoogle Scholar
  125. 125.
    Moran J, Blumenstein M, Gurland HJ: Immunodefiencies in chronic renal failure. Contrib Nephrol 86: 91, 1990PubMedGoogle Scholar
  126. 126.
    Haag-Weber M, Hörl WH: Uremia and infection: mechanisms of impaired cellular host defense. Nephron 63: 125, 1993PubMedCrossRefGoogle Scholar
  127. 127.
    Vanholder R: Biocompatibility issues in hemodialysis. Clinical Materials 10: 87, 1992PubMedGoogle Scholar
  128. 128.
    United States Renal Data System: United States Renal Data System 1991 Annual Report, Bethesda. The National Institute of Diabetes and Digestive and Kidney Diseases 1991Google Scholar
  129. 129.
    Van Ypersele de Strihou Ch, Floege J, Jadoul M, Koch KM: Amyloidosis and its relationship to different dialysers. Nephrol Dial Transplant 9(Suppl 2): 156, 1994PubMedGoogle Scholar
  130. 130.
    Miura Y, Ishiyama T, Inomata A, Takeda T, Senma S, Okuyama K, Suzuki Y: Radiolucent bone cysts and the type of dialysis membrane used in patients undergoing longterm hemodialysis. Nephron 60: 268, 1992PubMedCrossRefGoogle Scholar
  131. 131.
    Van Ypersele de Strihou Ch, Jadoul M, Malghem J, Maldague J, Jamart J: Effect of dialysis membrane and patients age on signs of dialysis-related amyloidosis. Kidney Int 39: 1012, 1991PubMedGoogle Scholar
  132. 132.
    Hauglustaine D, Waer M, Michielson P: Haemodialysis membranes, serum β2-microglobulin, and dialysis amyloidosis. Lancet i: 1211, 1986Google Scholar
  133. 133.
    Bergström J, Wehle B: No change in corrected β2-m concentration after Cuprophan® hemodialysis. Lancet i: 628, 1987Google Scholar
  134. 134.
    Floege J, Bartsch A, Schulze M, Shaldon S, Koch KM, Smeby L: Turnover of 131-β2-microglobulin in hemodialysed patients. J Lab Clin Med 118: 153, 1991PubMedGoogle Scholar
  135. 135.
    Vincent C, Chanard J, Caudwell V, Lavoud S, Wong T, Revillard J: Kinetics of 125I-β2-microglobulin turnover in dialysed patients. Kidney Int 42: 1434, 1992PubMedGoogle Scholar
  136. 136.
    Odell R, Slowiaczek P, Moran J, Schindhelm K: β2-microglubulin kinetics in end stage renal failure. Kidney Int 39: 909, 1991PubMedGoogle Scholar
  137. 137.
    Zaoui P, Stone W, Hakim R: Effects of dialysis membranes on β2-microglobulin production and cellular expression. Kidney Int 38: 962, 1990PubMedGoogle Scholar
  138. 138.
    Schoels M, Jann B, Hug F, Deppisch R, Ritz E, Hänsch G. Stimulation of mononuclear cells by contact with Cuporphan membranes: further increase of β2-microglobulin synthesis by activated late complement components. Am J Kidney Dis 21: 394, 1993PubMedGoogle Scholar
  139. 139.
    Jahn B, Betz M, Deppisch R, Janssen O, Hänsch GM, Ritz E: Stimulation of β2-microglobulin synthesis in lymphocytes after exposure to cuprophan dialyzer membranes. Kidney Int 40: 285, 1991PubMedGoogle Scholar
  140. 140.
    Knudsen P, Leon J, Ng A, Shaldon S, Floege J, Koch KM: Hemodialysis-related induction of β2-m and interleukin1 and release by mononuclear phagocytes. Nephron 53: 188, 1989PubMedGoogle Scholar
  141. 141.
    Campistol J, Molina R, Bernard D, Rodriguez R, Mirapeix E, Munoz-Gomez J, Revert L: Synthesis of β2-m in lymphocyte culture: role of hemodialysis, dialysis membranes, dialysis amyloidosis and lymphokines. Am J Kidney Dis 22: 691, 1993PubMedGoogle Scholar
  142. 142.
    Paczek L, Schäfer R, Heidland A: Dialysis membranes inhibit in vitro release of β2-m from human lymphocytes. Nephron 56: 267, 1990PubMedGoogle Scholar
  143. 143.
    Campistol J, Molina R, Rodriguez R, Mirapeix E, Munoz-Gomez J, Revert L: Dialysis membranes inhibit synthesis and release of β2-m in lymphocyte culture. Nephron 56: 691, 1991Google Scholar
  144. 144.
    Karlsson F, Groth T, Sege K, Wibell L, Peterson P: Turnover in humans of β2-microglobulin: the constant chain of HLA-antigens. EurJ Clin Invest 10: 293, 1980CrossRefGoogle Scholar
  145. 145.
    Levin NW, Dumler F, Zasuwa G, Stalla K: Mortality comparison between conventional and high flux dialysis. J Am Soc Nephrol 1: 365, 1990Google Scholar
  146. 146.
    Levin NW, Zasuwa GA, Dumler F Effect of membrane type on causes of death in hemodialysis patients. J Am Soc Nephrol 1:365, 1990Google Scholar
  147. 147.
    Chanard J, Brunoios JP, Melin JP, Lavaud S, Toupance O: Longterm results of dialysis therapy with a highly permeable membrane. Artif Organs 6: 261, 1982PubMedCrossRefGoogle Scholar
  148. 148.
    Homberger JC, Chernew ME, Petersen J, Garber AM: A multivariate analysis of mortality and hospital admissions with high-flux dialysis. Am Soc Nephrol 3: 1227, 1992Google Scholar
  149. 149.
    Simpson K, Allison MEM: Dialysis and acute renal failure: can mortality be improved? (Abstract) Nephrol Dial Transplant 8: 946, 1993Google Scholar
  150. 150.
    Owen WF, Lew NL, Liu Y, Lowrie EG, Lazarus JM: The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. N Engl J Med 329: 1001, 1993PubMedGoogle Scholar
  151. 151.
    Bergström J, Alvestrand A, Fürst P: Plasma and muscle free amino acids in maintainance hemodialysis patients without protein malnutrition. Kidney Int 38: 108, 1990PubMedGoogle Scholar
  152. 152.
    Kusek JW, Agodoa LY, Dixon NC, coordinators: Mortality and Morbidity in Hemodialysis Study. Presented at the NJH consensus development conference; 1993 Nov 1–3; Bethesda, MarylandGoogle Scholar
  153. 153.
    Diaz RJ, Washburn S, Cauble L, Siskind MS, Van Wyck D: The effect on dialyzer reprocessing on performance and β2-microglobulin removal using polysulfone membranes. Am J Kidney Dis 21: 405, 1993PubMedGoogle Scholar
  154. 154.
    Goldman M, Lagmiche M, Dhaene M, Amraoui Z, Thayse C, Vanherweghem JL: Adsorption of β2t-microglobulin on dialysis membranes: comparison of different dialyzers and effects of reuse procedures. Int J Artif Organs 12: 373, 1989PubMedGoogle Scholar
  155. 155.
    Graeber CW, Halley SE, Lapkin RA, Graeber CA, Kaplan AA: Protein losses with reused dialyzers. J Am Soc Nephrol 4: 349, 1993Google Scholar
  156. 156.
    Parker TF, Hakim RM: Interrelationships of dialysis prescription, protein catabolic rate and morbidity/mortality with dialyzer biocompatibility. Blood Purif 11: 341, 1993Google Scholar
  157. 157.
    Kuwahara T, Markert M, Wauters JP: Biocompatibility aspects of dialyzer reprocessing: a comparison of 3 reuse methods and 3 membranes. Clin Nephrol 32: 139, 1989PubMedGoogle Scholar
  158. 158.
    Charra B, Calemard E, Ruffet M, Chazot C, Terrat JC, Vanel T, Laurent G: Survival as an index of adequacy of dialysis. Kidney Int 41: 1286, 1992PubMedGoogle Scholar
  159. 159.
    Parker TF, Husni L, Huang W, Lew N, Lowrie EG, Dallas Nephrology Associates: Survival of hemodialysis patients in the United States is improved with a greater quantity of dialysis. Am J Kidney Dis 23: 670, 1994PubMedGoogle Scholar
  160. 160.
    Hakim RM, Breyer J, Ismail N, Schulman G: Effects of dose of dialysis on morbidity and mortality. Am J Kidney Dis 23: 661, 1994PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • H. -D. Lemke
    • 1
  • A. Grassmann
    • 2
  • Jorg Vienken
    • 3
  • Stanley Shaldon
    • 4
  1. 1.AKZO NobelObernburgGermany
  2. 2.Business Unit MembranaAKZO Nobel Faser AGWuppertalGermany
  3. 3.Medical DepartmentFresenius AGOberurselGermany
  4. 4.MontpellierFrance

Personalised recommendations