Advertisement

Solutions for Peritoneal Dialysis

  • Mariano Feriani
  • Claudio Ronco
  • Giuseppe La Greca

Abstract

Solute removal in peritoneal dialysis is achieved both by diffusion and convection. The first mechanism takes place because of the concentration gradient between the blood of the peritoneal capillary and the peritoneal dialysis solution infused in the abdomen. The solution infused in the peritoneal cavity tends to equilibrate with plasma water over time and it is removed at the end of one exchange after partial or complete equilibration. The composition of the dialysis solution permits to remove, balance or even infuse solutes from and into the patient. The electrochemical concentration gradient is the driving force that allows such a passive diffusion (1, 2).

Keywords

Continuous Ambulatory Peritoneal Dialysis Nephrol Dial Transplant Amino Acid Solution Osmotic Agent Peritoneal Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boen ST: Peritoneal dialysis. A clinical study of factors governing its effectiveness. MD Thesis 1959, University of Amsterdam, Assen, van Gorcum and Comp NV — Dr HJ Prakke and HMG PrakkeGoogle Scholar
  2. 2.
    Boen ST. Peritoneal Dialysis in Clinical Medicine, American Lecture Series, Springfield, IL, Charles C Thomas, 1964Google Scholar
  3. 3.
    Henderson LW: Peritoneal ultrafiltration dialysis. Enhanced urea transfer using hypertonic peritoneal dialysis fluid. J Clin Invest 45: 950, 1964Google Scholar
  4. 4.
    Henderson LW, Nolph KD: Altered permeability of the peritoneal membrane after using hipertonic peritoneal dialysis fluid. J Clin Invest 48: 992, 1969PubMedGoogle Scholar
  5. 5.
    Nolph KD, Miller FN, Pyle K, Popovich RP, Sorkin MJ: A hypothesis to explain the characteristics of peritoneal ultrafiltration. Kidney Int 20: 543, 1981PubMedGoogle Scholar
  6. 6.
    Ronco C, Feriani M, Chiaramonte S et al.: Pathophysiology of ultrafiltration in peritoneal dialysis. Perit Dial Int 10: 119, 1990PubMedGoogle Scholar
  7. 7.
    Boen ST. History of peritoneal dialysis. in Peritoneal Dialysis, edited by Noph KD, Dordrecht, Kluwer Academic Publishers, 1989, p 1Google Scholar
  8. 8.
    Dobbie JW, Zaki MA, Wilson LS: The morphology of the peritoneum with special reference to peritoneal dialysis. in Renal Failure, Who Cares?, edited by Parsons FM, Ogg CS Lancaster, MPT Press, 1982, p 3Google Scholar
  9. 9.
    Dobbie JW: Pathogenesis of peritoneal fibrosis syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int12: 14, 1992PubMedGoogle Scholar
  10. 10.
    DiPaolo N, Sacchi G, De Mia M: Morphology of the peritoneal membrane during continuous ambulatory peritoneal dialysis. Proc Eur Dial Transplant Assoc 18: 199, 1981Google Scholar
  11. 11.
    Feriani M, Biasioli S, Borin D, Fabris A, Ronco C, La Greca G: Bicarbonate solutions for peritoneal dialysis: a reality. Int J Artif Organs 8: 57, 1985PubMedGoogle Scholar
  12. 12.
    Winchester JF, Stegink LD, Ahmad S et al.: A comparison of glucose polymer and dextrose as osmotic agents in CAPD. in Frontiers in Peritoneal Dialysis, edited by Maher JF, Winchester JF, New York, Field, Rich and Associates Inc, 1986, p 231Google Scholar
  13. 13.
    Jorres A, Gahl GM, Ludat K, Passlick-Deetjen J: CAPD dialysate inhibit cytokine production in PBMC activated with Staph. Epidermidis (S. epi): partial restoration by alternative PD fluids. Perit Dial Int 13(Suppl 1): S56, 1993Google Scholar
  14. 14.
    Hutchison AJ, Gokal R: Towards tailored dialysis fluids in CAPD the role of reduced calcium and magnesium in dialysis solution. Perit Dial Int 12: 199, 1992Google Scholar
  15. 15.
    De Paepe M, Matthijs E, Peluso F et al.: Experience with glycerol as the osmotic agent in peritoneal dialysis in diabetic and non-diabetic patients. in Prevention and Treatment of Diabetic Nephropathy, edited by Keen H, Legrain M, Boston, MTP Press Ltd, 1983, p 299Google Scholar
  16. 16.
    Wu G: Osmotic agents for peritoneal dialysis solutions. Perit Dial Bull 2: 151, 1982Google Scholar
  17. 17.
    Vidt DG: Recommendations on choice of peritoneal dialysis solutions. Ann Intern Med 78: 144, 1973PubMedGoogle Scholar
  18. 18.
    Higgins JT, Gross ML, Somani P: Patient tolerance and dialysis effectiveness of a glucose polymer-containing peritoneal dialysis solution. Perit Dial Bull 4: S131, 1984Google Scholar
  19. 19.
    Feriani M, Biasioli S, Borin D, La Greca G: Bicarbonate buffer for CAPD solution Trans Am Soc Artif Intern Organs 31: 668, 1985PubMedGoogle Scholar
  20. 20.
    Yatzidis H: A new stable bicarbonate dialysis solution for peritoneal dialysis: preliminary report. Perit Dial Int 11: 224, 1991PubMedGoogle Scholar
  21. 21.
    Henderson IS, Couper IA, Lumsden A: The effect of shelf-life of peritoneal dialysis fluid on ultrafiltration in CAPD. in Peritoneal Dialysis, edited by La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, Milan, Wichtig Editore, 1986, p 85Google Scholar
  22. 22.
    Merrill JP, Hampers CL: Uremia. N Engl J Med 282: 953, 1970PubMedCrossRefGoogle Scholar
  23. 23.
    Lowrie EG, Steinberg SM, Galen MA et al.: Factors in the dialysis regimen which contribute to alterations in the abnormalities of uremia. Kidney Int 10: 409, 1976PubMedGoogle Scholar
  24. 24.
    Teschan PE: Electroencephalographic and other neurophysio-logical abnormalities in uremia. Kidney Int 7(Suppl 2): S210, 1975Google Scholar
  25. 25.
    Popovich RP, Moncrief JW, Decherd JB, Bomar JB, Pyle WK: The definition of a novel portable/wereable equilibrium peritoneal dialysis technique. (Abstract) ASAIO J 5: 64, 1976Google Scholar
  26. 26.
    Gokal R, Fryer R, McHugh M, Ward MK, Kerr DNS: Calcium and phosphate control in patients on continuous ambulatory peritoneal dialysis. in Continuous Ambulatory Peritoneal Dialysis, edited by Legrain M, Amsterdam, Excerpta medica, 1980, p 283Google Scholar
  27. 27.
    Popovich RP, Moncrieff JW, Nolph KD, Ghods AJ, Twardowski Z, Pyle WK: Continuous ambulatory peritoneal dialysis. Ann Intern Med 88: 449, 1978PubMedGoogle Scholar
  28. 28.
    Winchester JF: CAPD systems and solutions. in Continuous Ambulatory Peritoneal Dialysis, edited by Gokal R, Edinburgh, Churchill Livingstone, 1986, p 94Google Scholar
  29. 29.
    Miller JH, Gipstein R, Maroules R, Swarz M, Rubini ME: Automated peritoneal dialysis: analysis of several methods of peritoneal dialysis. Trans Am Soc Artif Intern Organs 12: 98, 1966PubMedGoogle Scholar
  30. 30.
    Gokal R: Historical development and clinical use of continuous ambulatory peritoneal dialysis. in Continuous Ambulatory Peritoneal Dialysis, edited by Gokal R, Edinburgh, Churchill Livingstone, 1986, p 1Google Scholar
  31. 31.
    Nolph KD, Parker A: The composition of dialysis solution for continuous ambulatory peritoneal diajysis. in Continuous Ambulatory Peritoneal Dialysis, edited by Legrain M, Amsterdam, Excerpta medica, 1980, 341Google Scholar
  32. 32.
    Nolph KD, Twardowski ZJ, Popovich RP, Rubin J: Equilibration of peritoneal dialysis solutions during long dwell exchanges. J Lab Clin Med 93: 246, 1979PubMedGoogle Scholar
  33. 33.
    Nolph KD, Sorkin MJ, Moore H: Autoregulation of sodium and potassium removal during continuous ambulatory peritoneal dialysis. Trans Am Soc Artif Intern Organs 26: 334, 1980PubMedGoogle Scholar
  34. 34.
    Nolph KD, Hano JE, Teschan PE: Peritoneal sodium transport during hypertonic peritoneal dialysis: physiologic mechanisms and clinical implications. Ann Intern Med 70: 931, 1969PubMedGoogle Scholar
  35. 35.
    Raja RM, Cantor RE, Boreyco C, Bushchri H, Kramer MS, Rosenbaum JL: Sodium transport during ultrafiltration peritoneal dialysis. Trans Am Soc Artif Intern Organs 18: 429, 1972PubMedGoogle Scholar
  36. 36.
    Raja RM, Kramer MS, Rosenbaum JL, Manchanda R, Lazaro N: Evaluation of hypertonic peritoneal dialysis solutions with low sodium. Nephron 11: 342, 1973PubMedGoogle Scholar
  37. 37.
    Aheam DJ, Nolph KD: Controlled sodium removal with peritoneal dialysis. Trans Am Soc Artif Intern Organs 18: 423, 1972Google Scholar
  38. 38.
    Bosch JP: Permeability characteristics of the peritoneal membrane. in Peritoneal Dialysis, edited by La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, Milan, Wichtig Editore, 1985, p 25Google Scholar
  39. 39.
    Colombi A: Fluid and electrolyte balance in CAPD patients. in Peritoneal Dialysis, edited by La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, Milan, Wichtig Editore, 1988, p 65Google Scholar
  40. 40.
    De Vecchi A, Paparella M, Scalamogna A, Guerra L, Castelnovo C: Effetti della variazione delle concentrazioni di sodio nel liquido di dialisi peritoneale. in I liquidi nella dialisi, edited by La Greca G, Petrella E, Cioni A, Milan, Ghedini Editore, 1991, p 93Google Scholar
  41. 41.
    Nakayama M, Yokoyama K, Kawaguchi Y, Sakai O: Effect of ultra low sodium concentration dialysate (ULNaD) in patients with UF loss. Perit Dial Int (Suppl 1): 187 (Abstract), 1991Google Scholar
  42. 42.
    Twardowski ZJ: New approaches to intermittent peritoneal dialysis therapies. in Peritoneal Dialysis, edited by Nolph KD, Dordrecht, Kluwer Academic Publishers, 1989, p 133Google Scholar
  43. 43.
    Gault MH, Ferguson EL, Sidhu JS, Corbin RP: Fluid and electrolyte complications of peritoneal dialysis. Choice of dialysis solutions. Ann Intern Med 75: 253, 1971PubMedGoogle Scholar
  44. 44.
    Shen FH, Sherrard DJ, Scollard D, Merrit A, Curtis FK: Thirst, relative hypernatremia and excessive weight gain in maintenance peritoneal dialysis. Trans Am Soc Artif Intern Organs 24: 142, 1978PubMedGoogle Scholar
  45. 45.
    Twardowski ZJ, Nolph KD, Khanna R, Gluck Z, Prowant BF, Ryan LP: Daily clearances with continuous ambulatory peritoneal dialysis and nightly peritoneal dialysis. Trans Am Soc Artif Intern Organs 32: 575, 1986Google Scholar
  46. 46.
    Nolph KD: Kinetic of ultrafiltration and electrolyte transport during peritoneal dialysis. in Peritoneal Dialysis, edited by La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, Milan, Wichtig Editore, 1985, p 47Google Scholar
  47. 47.
    Brown ST, Ahearn DJ, Nolph KD: Potassium removal with peritoneal dialysis. Kidney Int 4: 67, 1973PubMedGoogle Scholar
  48. 48.
    Gokal R: Continuous ambulatory peritoneal dialysis. in Replacement of Renal Function by Dialysis, edited by Maher JF, Dordrecht, Kluwer Academic Publishers, 1989, p 590Google Scholar
  49. 49.
    Blumenkrantz MJ, Kopple JD, Moran JK, Coburn JW: Metabolic balance studies and dietary protein requirements in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int 21: 849, 1982PubMedGoogle Scholar
  50. 50.
    Sandle GI, Gaiger E, Tapster S, Goodship THJ: Evidence for large intestinal control of potassium homeostasis in uraemic patients undergoing CAPD. Clin Sci 73: 247, 1987PubMedGoogle Scholar
  51. 51.
    Lameire N, Ringoir S: Introductory remarks: an overview of peritonitis and other complications of continuous ambulatory peritoneal dialysis. in Continuous Ambulatory Peritoneal Dialysis, edited by Legrain M, Amsterdam, Excerpta medica, 1980, p 229Google Scholar
  52. 52.
    Oreopoulos DG, Khanna R, Williams P: Continuous ambulatory peritoneal dialysis. Nephron 30: 293, 1982PubMedGoogle Scholar
  53. 53.
    Spital A, Sterns RH: Potassium supplementation via the dialysate in continuous ambulatory peritoneal dialysis. Am J Kidney Dis 6: 173, 1985PubMedGoogle Scholar
  54. 54.
    Lindholm B, Alvestrand A, Hultman F, Bergstrom J: Muscle water and electrolytes in patients undergoing continuous ambulatory peritoneal dialysis. Acta Med Scand 219: 323, 1986PubMedCrossRefGoogle Scholar
  55. 55.
    Heide B, Pierratos A, Khanna R et al.: Nutritional status of patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Bull 3: 138, 1983Google Scholar
  56. 56.
    Rubin J, Kirchner K, Barnes T, Teal N, Ray R, Bower JD: Evaluation of continuous ambulatory peritoneal dialysis. Am J Kidney Dis 3: 199, 1983PubMedGoogle Scholar
  57. 57.
    Schilling H, Wu G, Petit J et al.: Nutritional status of patients on long term CAPD. Perit Dial Bull 5: 12, 1985Google Scholar
  58. 58.
    Randall RE, Cohen MD, Spray CC, Rossmeisl EC: Hypermagnae-semia in renal failure: etiology and toxic manifestation. Ann Intern Med 61: 73, 1964PubMedGoogle Scholar
  59. 59.
    Whang R: Magnesium deficiency: pathogenesis, prevalence and clinical implications. Am J Med 82(Suppl 3 A): 24, 1987PubMedGoogle Scholar
  60. 60.
    Hollifield J: Magnesium depletion, diuretics and arrhythmias. Am J Med 82(Suppl 3A): 30, 1987PubMedGoogle Scholar
  61. 61.
    Selling M: Electrocardiographic patterns of magnesium depletion appearing in alcoholic heart disease. Ann NY Acad Sci 162: 906, 1969Google Scholar
  62. 62.
    Parker A, Nolph KD: Magnesium and calcium mass transfer during continuous ambulatory peritoneal dialysis. Trans Am Soc Artif Intern Organs 26: 194, 1980PubMedGoogle Scholar
  63. 63.
    Kwong MBL, Lee JSK, Chan MK: Transperitoneal calcium and magnesium transfer during an 8-hour dialysis. Perit Dial Bull 7: 85, 1987Google Scholar
  64. 64.
    Nolph KD, Prowant B, Serkes KD et al.: Multicentric evaluation of a new peritoneal dialysis solution with a high lactate and low magnesium concentration. Perit Dial Bull 3: 63, 1983Google Scholar
  65. 65.
    Kohaut EC, Balfe JW, Potter D, Alexandra S, Lum G: Hypermagnesemia and mild hypocarbia in pediatric patients on CAPD. Perit Dial Bull 3: 41, 1983Google Scholar
  66. 66.
    Rahman R, Heaton A, Goodship T et al.: Renal osteodystrophy in patients on CAPD: a five year study. Perit Dial Bull 7: 1, 1987Google Scholar
  67. 67.
    Rubin J: Comments on dialysis solution, antibiotic transport, poisonings and novel uses of peritoneal dialysis. in Peritoneal Dialysis, edited by Nolph KD, Dordrecht, Kluwer Academic Publishers, 1989, p 199Google Scholar
  68. 68.
    Gonella M: Plasma and tissue levels of magnesium in chronically hemodialyzed patients: effects of dialysate magnesium levels. Nephron 34: 141, 1983PubMedGoogle Scholar
  69. 69.
    Meema HE, Oreopoulos DG, Rapoport A: Serum magnesium level and arterial calcification in end-stage renal disease. Kidney Int 32: 388, 1987PubMedGoogle Scholar
  70. 70.
    Hutchison AJ, Freemont AJ, Boulton HF, Gokal R: Low-calcium dialysis fluid and oral calcium carbonate in CAPD. A method of controlling hyperphosphataemia whilst minimizing aluminium exposure and hypercalcaemia. Nephrol Dial Transplant 7: 1219, 1992PubMedGoogle Scholar
  71. 71.
    Hutchison AJ, Gokal R: Improved solutions for peritoneal dialysis: physiological calcium solutions, osmotic agents and buffers. Kidney Int 42(Suppl 38): S153, 1992Google Scholar
  72. 72.
    Breuer J, Moniz C, Baldwin D, Parsons V: The effects of zero magnesium dialysate and magnesium supplements on ionized calcium concentration in patients on regular dialysis treatment. Nephrol Dial Transplant 2: 347, 1987PubMedGoogle Scholar
  73. 73.
    Shan G. Winer R, Cutler R et al.: Effects of a magnesiumfree dialysate on magnesium metabolism during continuous ambulatory peritoneal dialysis. Am J Kidney Dis 10: 268, 1987Google Scholar
  74. 74.
    Delmez JA, Slatopolsky E, Martin KJ, Gearing BN, Harter HR: Minerals, vitamin D, and parathyroid hormone in continuous ambulatory peritoneal dialysis. Kidney Int 21: 862, 1982PubMedGoogle Scholar
  75. 75.
    Digenis G, Khanna R, Pierratos A et al.: Renal osteodystrophy in patients maintained on CAPD for more than three years. Perit Dial Bull 3: 81, 1983Google Scholar
  76. 76.
    Gokal R, Ramos JM, Ellis HA et al.: Histological renal osteodystrophy and 25 hydroxycholecalciferol and aluminum levels in patients on continuous ambulatory peritoneal dialysis. Kidney Int 23: 15, 1983PubMedGoogle Scholar
  77. 77.
    Delmez JA, Fallon M, Bergfeld M, Gearing BN, Dougan C, Teitelbaum S: Continuous ambulatory peritoneal dialysis and bone. Kidney Int 30: 379, 1986PubMedGoogle Scholar
  78. 78.
    Bucciante G, Bianchi M, Valenti G: Progress of renal osteodystrophy during CAPD. Clin Nephrol 6: 279, 1984Google Scholar
  79. 79.
    Lindholm B, Bergstrom J: Nutritional aspects of CAPD. in Continuous Ambulatory Peritoneal Dialysis, edited by Edinburgh, Churchill Livingstone, 1986, p 228Google Scholar
  80. 80.
    Sheikh MS, Maguire JA, Emmett M et al.: Reduction of dietary phosphorus absorption by phosphorus binders. A theoretical, in vitro, and in vivo study. J Clin Invest 83: 66, 1989PubMedGoogle Scholar
  81. 81.
    Ramirez JA, Emmett M, White MG et al.: The absorption of dietary phosphorus and calcium in hemodialysis patients. Kidney Int 30: 753, 1986PubMedGoogle Scholar
  82. 82.
    Davenport A, Goel S, MacKenzie JC: Audit of the use of calcium carbonate as phosphate binder in 100 patients treated with continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 7: 632, 1992PubMedGoogle Scholar
  83. 83.
    Joffe P, Olsen F, Heaf J, Gammelgaard B, Pondephant J: Aluminium concentrations in serum, dialysate, urine and bone among patients undergoing continuous ambulatory peritoneal dialysis. Clin Nephrol 32: 133, 1989PubMedGoogle Scholar
  84. 84.
    Andreoli S, Briggs J, Junior B: Aluminium intoxication from aluminium containing phosphate binders in children with azotemia not undergoing dialysis. N Engl J Med 310: 1074, 1984CrossRefGoogle Scholar
  85. 85.
    Ackrill P, Day J, Ahmed R: Aluminium and iron overload in chronic dialysis. Kidney Int 33(Suppl 24): S163, 1988Google Scholar
  86. 86.
    Altmannn P, Dhanesha U, Hamon C, Cunningham J, Blair J, Marsch F: Disturbance of cerebral function by aluminium in hemodialy sis patients without overt aluminium toxicity. Lancet ii: 7, 1989Google Scholar
  87. 87.
    Martis L, Serkes KD, Nolph KD: Calcium as a phosphate binder: is there a need to adjust peritoneal dialysate calcium concentration for patients using CaCO3. Perit Dial Int 9: 325, 1989PubMedGoogle Scholar
  88. 88.
    Weinreich T, Passlick-Deetjen J, Ziegelmayer C, Ritz E: Experience with low D-Calcium concentration in CAPD (LCa 1 mM) — randomized controlled multicenter trial. Perit Dial Int 13(Suppl 1): S38, 1993Google Scholar
  89. 89.
    Cunningham J, Beer J, Coldwell RD, Noonan K, Sawyer N, Makin HLJ: Dialysate calcium reduction in CAPD patients treated with calcium carbonate and alfacalcidol. Nephrol Dial Transplant 7: 63, 1992PubMedGoogle Scholar
  90. 90.
    Ritz E, Weinreich T, Matthias S: Is it necessary to readjust dialysis calcium concentration. J Nephrol 5: 70, 1992Google Scholar
  91. 91.
    Brown CB, Hamdy NAT, Boletis J, Kanis JA: Rationale for the use of low calcium solution in CAP. in Peritoneal Dialysis, edited by La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, Milan, Wichtig Editore, 1991, p 125Google Scholar
  92. 92.
    Piraino B, Perlmutter JA, Holley JL, Johnston JR, Bernardini J: The use of dialysate containing 2.5 mEq/1 calcium in peritoneal dialysis patients. Perit Dial Int 12: 75, 1992PubMedGoogle Scholar
  93. 93.
    Beer J, Tailor D, Noonan K, Cunningham J: Rapid exacerbation of hyperparathyroidism in patients converted to low calcium dialysate without adequate calcium supplementation. Perit Dial Int 13(Suppl 1): S30, 1993Google Scholar
  94. 94.
    Andersen KEH: Calcium transfer during intermittent peritoneal dialysis. Nephron 29: 63, 1981PubMedGoogle Scholar
  95. 95.
    Schmitt H, Ittel TH, Schafer L, Sieberth HG: Effect of a low calcium dialysis solution on serum parathyroid hormone in automated peritoneal dialysis. Perit Dial Int 13(Suppl 1): S59, 1993Google Scholar
  96. 96.
    Putman J: The living peritoneum as a dialysis membrane. Am J Physiol 63: 548, 1923Google Scholar
  97. 97.
    Cunningham RS: Studies on absorption from serious cavities. III. The effect of dextrose upon the peritoneal mesothelium. Am J Physiol 53: 458, 1920Google Scholar
  98. 98.
    Palmer RA, Quinton WE, Gray JF et al.: Prolonged peritoneal dialysis for chronic renal failure. Lancet i: 700, 1964Google Scholar
  99. 99.
    Rubin J, Nolph KD, Popovich RP, Moncrief JW: Drainage volumes during continuous ambulatory peritoneal dialysis. ASAIO J 2: 54, 1979Google Scholar
  100. 100.
    Gokal R, Mistry CD: Glucose polymer as osmotic agent in CAPD. in Peritoneal Dialysis, edited by La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, Milan, Wichtig Editore, 1991, p 119Google Scholar
  101. 101.
    Twardowski ZJ, Khanna R, Nolph KD: Osmotic agents and ultrafiltration in peritoneal dialysis. Nephron 42: 93, 1986PubMedCrossRefGoogle Scholar
  102. 102.
    Mistry CD, Mallick NP, Gokal R: Ultrafiltration with an isosmotic solution during long peritoneal dialysis exchanges. Lancet ii: 178, 1987Google Scholar
  103. 103.
    Mistry CD, Gokal R: New osmotic agents for peritoneal dialysis: where we are and where we’re going. Semin Dial 4: 9, 1991Google Scholar
  104. 104.
    Pyle WK, Moncrief JW, Popovich RP: Peritoneal transport evaluation in CAPD. in CAPD Update, edited by Moncrief JW, Popovich RP, New York, Masson Publishing USA Inc, 1981. p 35Google Scholar
  105. 105.
    Maher JF, Bennett RR, Hirszel P, Chakrabarti E: The mechanism of dextrose-enhanced transport ratals. Kidney Int 28: 16, 1985PubMedGoogle Scholar
  106. 106.
    Krediet RT, Boeschoten EW, Zuyderhoudt FMJ, Arisz L: The relationship between peritoneal glucose absorption and body fluid loss by ultrafiltration during continuous ambulatory peritoneal dialysis. Clin Nephrol 27: 51, 1987PubMedGoogle Scholar
  107. 107.
    Maher JF: Peritoneal transport rate: mechanisms, limitation and methods for augmentation. Kidney Int 18: S117, 1980Google Scholar
  108. 108.
    Nolph KD, Mactier RA, Khanna R, Twardowski ZJ, Moore H, McGary T: The kinetics of ultrafiltration during peritoneal dialysis: the role of lymphatics. Kidney Int 32: 219, 1987PubMedGoogle Scholar
  109. 109.
    Mactier RA, Khanna R, Twardowski ZJ, Moore H, Nolph KD: Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in CAPD. J Clin Invest 80: 1311, 1987PubMedGoogle Scholar
  110. 110.
    Grodstein GP, Blumenkrantz MJ, Kopple JD, Moran JK, Coburn JW: Glucose absorption during continuous ambulatory peritoneal dialysis. Kidney Int 19: 564, 1981PubMedGoogle Scholar
  111. 111.
    DeSanto NG, Capodicasa G, Senatore R et al: Glucose utilization from dialysate in patients on continuous ambulatory peritoneal dialysis. Int J Artif Organs 2: 119, 1978CrossRefGoogle Scholar
  112. 112.
    Lindholm B, Bergstrom J: Nutritional management of patients undergoing peritoneal dialysis. in Peritoneal Dialysis, edited by Nolph KD, Dordrecht, Kluwer Academic Publishers 1989, p 230Google Scholar
  113. 113.
    Kreusch G, Bammatter F, Mordasini R, Binswanger U: Serum lipoprotein concentrations during continuous ambulatory peritoneal dialysis. in Advances in Peritoneal Dialysis, edited by Ghal GM, Kessel M, Nolph KD, Amsterdam, Excerpta medica, 1981, p 427Google Scholar
  114. 114.
    Lindholm B, Karlander SG, Norbek HE, Furst P, Bergstrom J: Carboyhdrate and lipid metabolism in CAPD patients. in Peritoneal Dialysis, edited by Atkins R, Thomson N, Farrell P, Edimburgh, Churchill Livingstone, 1981, p 198Google Scholar
  115. 115.
    Von Baeyer H, Gahl GM, Riedinger H et al.: Adaptation of CAPD patients to the continuous peritoneal energy upyake. Kidney Int 23: 29, 1983Google Scholar
  116. 116.
    Boyer J, Gill GN, Epstein FH: Hyperglycemia and hyperosmolality complicating peritoneal dialysis. Ann Intern Med 67: 568, 1967PubMedGoogle Scholar
  117. 117.
    Nolph KD, Rosenfeld PS, Powell JT, Danforth JR: Peritoneal glucose transport and hyperglycemia during peritoneal dialysis. Am J Med Sci 259: 272, 1970PubMedGoogle Scholar
  118. 118.
    Heaton A, Johnston DG, Burrin JM et al.: Carbohydrate and lipid metabolism during continuous ambulatory peritoneal dialysis: the effect of a single dialysis cycle. Clin Sci 65: 539, 1983PubMedGoogle Scholar
  119. 119.
    Amstrong VW, Creutzfeldt W, Ebert R, Fuchs C, Hilgers R, Scheler F: Effect of dialysis glucose load on plasma and glucoregulatory hormones in CAPD patients. Nephron 39: 141, 1985Google Scholar
  120. 120.
    Amstrong VW, Buschmann U, Ebert R, Fuchs C, Rieger J, Scheler F: Biochemical investigations of CAPD: plasma levels of trace elements and amino acids and impaired glucose tolerance during the course of treatment. Int J Artif Organs 3: 237, 1980Google Scholar
  121. 121.
    Oreopoulos DG, Marliss E, Anderson et al.: Nutritional aspects of CAPD and the potential use of amino acid containing dialysis solutions. Perit Dial Bull 3: 10, 1983Google Scholar
  122. 122.
    Wideroe TE, Smeby LC, Myking OL: Plasma concentrations and transperitoneal transport of native insulin and C-peptide in patients on continuous ambulatory peritoneal dialysis. Kidney Int 25: 82, 1984PubMedGoogle Scholar
  123. 123.
    Lindholm B, Bergstrom J, Karlander SG: Glucose metabolism in patients on continuous ambulatory peritoneal dialysis. Trans Am Soc Artif Intern Organs 17: 58, 1981Google Scholar
  124. 124.
    Lindholm B, Bergstrom J, Norbek HE: Lipoprotein (LP) metabolism in patients on continuous ambulatory peritoneal dialysis. in Advances in Peritoneal Dialysis, edited by Gahl GM, Kessel M, Nolph KD, Amsterdam, Excerpta medica, 1981, p 434Google Scholar
  125. 125.
    Lindholm B, Karlander SG, Norbek HE, Bergstrom J: Glucose and lipid metabolism in peritoneal dialysis. in Peritoneal Dialysis edited by La Greca G, Biasioli S, Ronco C, Milan, Wichtig Editore, 1982, p 219Google Scholar
  126. 126.
    Gokal R, Ramos JM, McGurk JG, Ward MK, Kerr DNS: Hyperlipidaemia in patients on continuous ambulatory peritoneal dialysis. in Advances in Peritoneal Dialysis, edited by Gahl GM, Kessel M, Nolph KD, Amsterdam, Excerpta medica, 1981, p 430Google Scholar
  127. 127.
    Roncari DAK, Breckenridge WC, Khanna R, Oreopoulos DG: Rise in high-density lipoprotein-cholesterol in some patients treated with CAPD. Perit Dial Bull 1: 136, 1981Google Scholar
  128. 128.
    Ramos JM, Heaton A, McGurk JG, Wark MK, Kerr DNS: Sequential changes in serum lipids and their subtractions in patients receiving continuous ambulatory peritoneal dialysis. Nephron 35: 20, 1983PubMedGoogle Scholar
  129. 129.
    Nolph KD, Ryan KL, Prowant B, Twardowski ZJ: A cross sectional assessment of serum vitamin D and triglyceride concentration in a CAPD population. Perit Dial Bull 4: 232, 1984Google Scholar
  130. 130.
    Lindholm B, Norbek HE: Serum lipids and lipoproteins during continuous ambulatory peritoneal dialysis. Acta Med Scand 220: 143, 1986PubMedCrossRefGoogle Scholar
  131. 131.
    Khanna R, Breckenridge WC, Roncari DAK, Digenis G, Oreopoulos DG: Lipids abnormalities in patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Bull 3: S13, 1983Google Scholar
  132. 132.
    Duwe AK, Vas SI, Weatherhead JW: Effect of composition of peritoneal dialysis fluid on chemiluminescence, phagocytosis and bactericidal activity in vitro. Infect Immun 33: 130, 1981Google Scholar
  133. 133.
    Verbrug HA, Verkooyen RP, Verhoef J, Oe PL, van der Meulen J: Defective complement-mediated opsonization and lysis of bacteria in commercial peritoneal dialysis solution. in Frontiers in Peritoneal Dialysis, edited by Maher JF and Winchester JF, New York, Field, Rich and Associates Inc, 1986, p 559Google Scholar
  134. 134.
    Gallimore B, Gagnon RF, Stevenson MM: Cytotoxicity of commercial peritoneal dialysis solutions towards peritoneal cells of chronically uremic mice. Nephron 43: 283, 1986PubMedCrossRefGoogle Scholar
  135. 135.
    Topley N, Alobaidi HM, Davies M et al.: The effect of dialysate on peritoneal phagocyte oxidative metabolism. Kidney Int 34: 404, 1988PubMedGoogle Scholar
  136. 136.
    Van Bronswijk H, Verbrugh HA, Bos HJ et al.: Cytotoxic effects of commercial continuous ambulatory peritoneal dialysis (CAPD) fluids and of bacterial exoproducts on human mesothelial cells in vitro. Perit Dial Int 9: 197, 1989Google Scholar
  137. 137.
    Manahan FJ, Ing BL, Chan JC et al.: Effect of bicarbonate containing versus lactate containing peritoneal dialysis solutions on superoxide production by human neutrophils. Artif Organs 13: 495, 1989PubMedCrossRefGoogle Scholar
  138. 138.
    Topley N, Mackenzie R, Petersen MM et al.: In vitro testing of a potentially biocompatible continuous ambulatory peritoneal dialysis fluid. Nephrol Dial Transplant 6: 574, 1991PubMedGoogle Scholar
  139. 139.
    Jorres A, Jorres D, Tople N, Gahl GM, Mahiout A: Leukotriene release from peripheral and peritoneal leukocytes following exposure to solutions for peritoneal dialysis. Nephrol Dial Transplant 6: 495, 1991PubMedGoogle Scholar
  140. 140.
    Henderson IS, Couper IA, Lumsden A. Potentially irritant glucose in unused CAPD fluid. in Frontiers in Peritoneal Dialysis edited by Maher JF, Winchester JF, New York: Field, Rich and Associates Inc, 1986, p 261Google Scholar
  141. 141.
    Dobbie JW, Lloyd JK, Gall CA: Categorization of ultrastructural changes in peritoneal mesothelium, stroma and blood vessels in uremia and CAPD patients. in Advances in Continuous Ambulatory Peritoneal Dialysis, edited by Khanna R, Nolph KD, Prowant P, Twardowski ZJ, Oreopoulos DG, Toronto, Peritoneal Dialysis Bulletin Inc, 1990, p 3Google Scholar
  142. 142.
    Heaton A, Ward MK, Johnston DG, Nicholson DV, Alberti KGMM, Kerr DNS: Short-term studies on the use of glycerol as an osmotic agent in continuous ambulatory peritoneal dialysis. Clin Sci 67: 121, 1984PubMedGoogle Scholar
  143. 143.
    Matthys E, Dolkart R, Lameire N: Extended use of a glycerol-containing dialysate in diabetic CAPD patients. Perit Dial Bull 7: 10, 1987Google Scholar
  144. 144.
    Daniels FH, Leonard EF, Cortell S: Glucose and glycerol compared as osmotic agents for peritoneal dialysis. Kidney Int 25: 20, 1984PubMedGoogle Scholar
  145. 145.
    Lindholm B, Werynski A, Bergstrom J: Kinetic of peritoneal dialysis with glycerol and glucose as osmotic agents. Trans Am Soc Artif Intern Organs 33: 19, 1987Google Scholar
  146. 146.
    Heaton A, Ward MK, Johnston DG, Alberti KGMM, Kerr DNS: Evaluation of glycerol as an osmotic agent for continuous ambulatory peritoneal dialysis in end-stage renal failure. Clin Sci 70: 23, 1986PubMedGoogle Scholar
  147. 147.
    Matthys E, Dolkart R, Lameire N: Potential hazards of glycerol dialysate in diabetic CAPD patients. Perit Dial Bull 7: 16, 1987Google Scholar
  148. 148.
    Hain H, Kessel M: Aspects of new solutions for peritoneal dialysis. Nephrol Dial Transplant 2: 67, 1987PubMedGoogle Scholar
  149. 149.
    Gokal R, Mistry C: Osmotic agents in continuous ambulatory peritoneal dialysis. in Peritoneal Dialysis, edited by La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, Milan, Wichtig Editore, 1988, p 61Google Scholar
  150. 150.
    Goodship THJ, Heaton A, Wilkinson R, Ward MK: The use of glycerol as an osmotic agent in continuous ambulatory peritoneal dialysis. in Current Concepts in Peritoneal Dialysis, edited by Ota K, Maher J, Winchester J, Hirszel P, Amsterdam, Excerpta Medica, 1992, p 143Google Scholar
  151. 151.
    Faict D, Lameire N, Kesteloot D, Peluso F: Evaluation of peritoneal dialysis solutions with amino acids and glycerol in a rat model. Nephrol Dial Transplant 6: 120, 1991PubMedGoogle Scholar
  152. 152.
    Faict D, Hartman JP, Lameire N, Kesteloot D, Peluso F: The evaluation of a peritoneal dialysis solution with amino acids and glycerol in a new rat model. Perit Dial Int 10(Suppll): S60, 1990Google Scholar
  153. 153.
    Bazzato G, Coli U, Landini S et al.: Xylitol and low dosages of insulin: new perspectives for diabetic uremic patients on CAPD. Perit Dial Bull 2: 161, 1982Google Scholar
  154. 154.
    Yatuc W, Ward G, Shipetar G, Tenckhoff H: Substitution of sorbitol for dextrose in peritoneal irrigation fluid. A preliminary report. Trans Am Soc Artif Intern Organs 13: 168, 1967Google Scholar
  155. 155.
    Raja RM, Moros JG, Kramer MS, Rosenbaum JL: Hyperosmolal coma complicating peritoneal dialysis with sorbitol dialysate. Ann Intern Med 73: 993, 1970PubMedGoogle Scholar
  156. 156.
    Bischel MC, Barbour BH: Peritoneal dialysis with sorbitol versus dextrose dialysate: clinical findings and alterations of blood and cerebrospinal fluid. Nephron 12: 449, 1974PubMedGoogle Scholar
  157. 157.
    Robson MD, Levi J, Rosenfeld JB: Hyperglycemia and hyperosmolality in peritoneal dialysis. Its prevention by the use of fructose. Proc Eur Dial Transplant Assoc 6: 300, 1969Google Scholar
  158. 158.
    Raja RS, Kramer MS, Manchanda R, Lazaro N, Rosenbaum JL: Peritoneal dialysis with fructose dialysate. Prevention of hyperglycemia and hyperosmolality. Ann Intern Med 79: 511, 1973PubMedGoogle Scholar
  159. 159.
    Gjessing J: Addition of amino acids to peritoneal dialysis fluid. Lancet ii: 82, 1968Google Scholar
  160. 160.
    Oreopoulos DG, Crassweller P, Katirtzoglou A et al.: Amino acids as an osmotic agent (instead of glucose) in continuous ambulatory peritoneal dialysis. in Continuous Ambulatory Peritoneal Dialysis, edited by Legrain M, Amsterdam, Excerpta medica, 1980, p 335Google Scholar
  161. 161.
    Williams PF, Marliss EB, Harvey Anderson G et al.: Amino acid absorption following intraperitoneal administration in CAPD patients. Perit Dial Bull 2: 124, 1982Google Scholar
  162. 162.
    Oren A, Wu G, Harvey Anderson G et al.: Effective use of amino acid dialysate over four weeks in CAPD patients. Perit Dial Bull 3: 66, 1983Google Scholar
  163. 163.
    Goodship THJ, Lloyd S, McKenzie PW et al.: Short-term studies on the use of amino acids as an osmotic agent in continuous ambulatory peritoneal dialysis. Clin Sci 73: 471, 1987PubMedGoogle Scholar
  164. 164.
    Lindholm B, Werynsky A, Bergstrom J: Peritoneal dialysis with amino acid solutions: fluid and solute transport kinetics. Artif Organs 12: 2, 1988PubMedCrossRefGoogle Scholar
  165. 165.
    Lindholm B, Traneus A, Werynski A, Osterberg T, Bergstrom J: Amino acids for peritoneal dialysis: technical and metabolic implications. in Peritoneal Dialysis, edited by La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, Milan, Wichtig Editore, 1986, p 149Google Scholar
  166. 166.
    Young GA, Dibble JB, Taylor AE, Kendall S, Brownjohn AM: A longitudinal study of the effects of amino acidbased CAPD fluid on amino acid retention and protein losses. Nephrol Dial Transplant 4: 900, 1989PubMedGoogle Scholar
  167. 167.
    Young GA, Dibble JB, Brownjohn AM: The use of amino acid based CAPD fluid in chronic renal failure. in Amino Acids, Chemistry, Biology and Medicine, edited by Lubec, Rosenthal, 1992, p 850Google Scholar
  168. 168.
    Steinhauer HB, Lubrich-Birker I, Kluthe R, Horl WH, Schollmeyer P: Amino acid dialysate stimulates peritoneal prostaglandin E2 generation in humans. in Advances in Peritoneal Dialysis, edited by Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopdulos DG, Toronto, Peritoneal Dialysis Bulletin Inc, 1988, p 21Google Scholar
  169. 169.
    Pedersen FB: Alternate use of amino acid and glucose solutions in CAPD. Contrib Nephrol 89: 147, 1991PubMedGoogle Scholar
  170. 170.
    Schilling H, Wu G, Pettit J et al.: Effects of prolonged CAPD with amino acid containing solutions in three patients. in Advances in Continuous Ambulatory Peritoneal Dialysis, edited by Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, Toronto, University of Toronto Press, 1985, p 49Google Scholar
  171. 171.
    Schilling H, Wu G, Pettit J et al.: Use of amino acid containing solutions in continuous ambulatory peritoneal dialysis patients after peritonitis: results of al prospective controlled trial. Proc Eur Dial Transplant Assoc-Eur Renal Assoc 22: 421, 1985Google Scholar
  172. 172.
    Dombros NV, Prutis K, Tong M et al.: Six-month overnight intraperitoneal amino-acid infusion in continuous ambulatory peritoneal dialysis (CAPD) patients. No effect on nutritional status. Perit Dial Int 10: 79, 1990PubMedGoogle Scholar
  173. 173.
    Lindholm B, Bergstrom J: Amino acids in CAPD solutions: lights and shadows. in Peritoneal Dialysis, edited by La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, Milan, Wichtig Editore, 1991. p 139Google Scholar
  174. 174.
    Pedersen FB, Dragsholt C, Laier E et al.: Alternate use of amino acid and glucose solutions in CAPD. Perit Dial Bull 5: 215, 1985Google Scholar
  175. 175.
    Young GA, Dibble JB, Hobson SM et al.: The use of an amino-acid-based CAPD fluid over 12 weeks. Nephrol Dial Transplant 4: 285, 1989PubMedGoogle Scholar
  176. 176.
    Dibble JB, Young GA, Hobson SM, Brownjohn AM: Amino-acid-based continuous ambulatory peritoneal dialysis (CAPD) fluid over twelve weeks: effects on carbohydrate and lipid metabolism. Perit Dial Int 10: 71, 1990PubMedGoogle Scholar
  177. 177.
    Bruno M, Bagnis C, Marangella M et al.: CAPD with an amino acid solution: a long-term, cross-Over study. Kidney Int 35: 1189, 1989PubMedGoogle Scholar
  178. 178.
    Arfeen S, Goodship THJ, Kirkwood A, Ward MK: The nutritional/metabolic and hormonal effects of 8 weeks of continuous ambulatory peritoneal dialysis with a 1 % amino acid solution. Clin Nephrol 33: 192, 1990PubMedGoogle Scholar
  179. 179.
    Scanziani R, Dozio B, Iacuitti G. CAPD in diabetics: use of amino acids. in Current Concepts in Peritoneal Dialysis, edited by Ota K, Maher J, Winchester J, Hirszel P, Amsterdam, Excerpta Medica, 1992, p 628Google Scholar
  180. 180.
    Lindholm B, Bergstrom J: Nutritional aspects on peritoneal dialysis. Kidney Int 42(Suppl 38): S165, 1992Google Scholar
  181. 181.
    Jones MR, Martis L, Algrim CE et al.: Amino acid solutions for CAPD: rationale and clinical experience. Miner Electrolyte Metab 18: 309, 1992PubMedGoogle Scholar
  182. 182.
    Bernard D, Kopple JD, Brunori G et al.: Nutritional benefit of intraperitoneal (IP) amino acids (AA) in CAPD patients. 6th Int Congr on Nutrition and Metabolism in Renal Disease, Harrogate, UK, 1991 (Abstract)Google Scholar
  183. 183.
    Lazarus-Barlow WS: Observations upon the initial rates of osmosis of certain substances in water and in fluids containing albumen. J Physiol 19: 140, 1895-6PubMedGoogle Scholar
  184. 184.
    Hain H, Ghal G: Osmotic agent. An update. Contrib Nephrol 89: 119, 1991PubMedGoogle Scholar
  185. 185.
    Daniels FH, Nedev ND, Cataldo T, Leonard EF, Cortell S: The use of polyelectrolytes as osmotic agent for peritoneal dialysis. Kidney Int 33: 925, 1988PubMedGoogle Scholar
  186. 186.
    Struijk DG, Bakker JC, Krediet RT, Koomen GCM, Stekkinger P, Arisz L: Effect of intraperitoneal administration of two different batches of albumin solutions on peritoneal solute transport in CAPD patients. Nephrol Dial Transplant 6. 198, 1991PubMedGoogle Scholar
  187. 187.
    Nolph KD, Hopkins C, Rubin J et al.: Polymer induced Ultrafiltration in dialysis: high osmotic pressure due to impermeant polymer sodium. Trans Am Soc Artif Intern Organs 24: 162, 1978PubMedGoogle Scholar
  188. 188.
    Rubin J, Nolph KD, McGary TJ: Osmotic ultrafiltration with dextran sodium sulfate: potential for use in peritoneal dialysis. J Dial 3: 251, 1979PubMedGoogle Scholar
  189. 189.
    Twardowski ZJ, Moore HL, McGary TJ, Poskuta M, Stathakis C, Hirszel P: Polymers as osmotic agent for peritoneal dialysis. Perit Dial Bull 4(Suppl 3): S125, 1984Google Scholar
  190. 190.
    Frank HA, Seligman AM, Fine J: Further experiences with peritoneal irrigation for acute renal failure. Ann Surg 128: 561, 1948PubMedGoogle Scholar
  191. 191.
    Twardowski ZJ, Hain H, McGary TJ, Moore HL, Keller RS: Sustained UF with gelatin dialysis solution during long dwell dialysis exchanges in rats, in Frontiers in Peritoneal Dialysis, edited by Maher JF, Winchester JF, New York, Field, Rich and Associates Inc, 1986, p 249Google Scholar
  192. 192.
    Ring J, Messmer K: Incidence and severity of anaphylactoid reactions to colloid substitutes. Lancet ii: 466, 1977Google Scholar
  193. 193.
    Gjessing J: The use of dextran as a dialysing fluid in peritoneal dialysis. Acta Med Scand 185: 237, 1969PubMedCrossRefGoogle Scholar
  194. 194.
    Hain H, Schutte W, Pustelnik A, Gahl G, Kessel M: Ultrafiltration and absorption characteristics of hydroxyethylstarch and dextran during long dwell peritoneal dialysis exchanges in rat. in Advances in Peritoneal Dialysis, edited by Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, Toronto, Peritoneal Dialysis Bulletin Inc, 1989, p 28Google Scholar
  195. 195.
    Hain H, Kempf D, Schnell P, Gahl G, Kessel M: Ultrafiltration patterns of dextran and hydroxyethylstarch during long dwell peritoneal dialysis exchanges in nonuremic rats, in Ambulatory Peritoneal Dialysis, edited by Avram MM, Giordano C, New York, Plenum Publishing Corporation, 1990, p 83Google Scholar
  196. 196.
    Bergonzi G, Paties C, Vassallo G et al.: Dextran deposit in tissues of patients undergoing hemodialysis. Nephrol Dial Transplant 5: 54, 1990PubMedGoogle Scholar
  197. 197.
    Dienes HP, Gerharz CD, Wagner R, Weber M, John HD: Accumulation of hydroxyethyl starch (HES) in the liver of patients with renal failure and portal hypertension. J Hepatol 3: 223, 1986PubMedGoogle Scholar
  198. 198.
    Winchester JF: Alternative osmotic agents to dextrose for peritoneal dialysis, in Peritoneal Dialysis: Proceedings of Second International Course on Peritoneal Dialysis, edited by La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, Milan, Wichtig Editore, 1986, p 135Google Scholar
  199. 199.
    Mistry CD, Gokal R, Mallick NP: Glucose polymer as an osmotic agent in CAPD. in Frontiers in Peritoneal Dialysis, edited by Maher JF, Winchester JF, New York, Field, Rich and Associates Inc, 1986, p 241Google Scholar
  200. 200.
    Mistry CD, Mallick NP, Gokal R: The advantage of glucose polymer as an osmotic agent in continuous peritoneal dialysis. Proc Eur Dial Transplant Assoc 22: 415, 1985Google Scholar
  201. 201.
    Mistry CD, Mallick NP, Gokal R: The use of large molecular weight polymer (MW 20,000) as an osmotic agent in continuous ambulatory peritoneal dialysis (CAPD). in Advances in Peritoneal Dialysis, edited by Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, Toronto, Peritoneal Dialysis Bulletin Inc, 1986, p 7Google Scholar
  202. 202.
    Mistry CD, Gokal RL: The use of hyposmolar glucose polymer solution in continuous ambulatory peritoneal dialysis, in Ambulatory Peritoneal Dialysis, edited by Avram MM, Giordano C, New York, Plenum Publishing Corporation, 1990, p 83Google Scholar
  203. 203.
    Mistry CD, Walker M, Gokal R: Safe use of glucose polymer dialysate over three months in CAPD patients. Nephrol Dial Transplant 5: 299, 1990Google Scholar
  204. 204.
    Gokal R: Unpublished data. Personal communicationGoogle Scholar
  205. 205.
    de Fijter CWH, Oe PL, Verbrugh HA et al.: Glucose polymers as osmotic agent in CAPD fluid: a more favorable effect on peritoneal macrophage (PMO) function than glucose-based solutions. Kidney Int 40: 978, 1991Google Scholar
  206. 206.
    Mistry CD, Gokal R: The use of glucose polymer in CAPD: essential physiological and clinical conclusions, in Current Concepts in Peritoneal Dialysis, edited by Ota K, Maher J, Winchester J, Hirszel P, Amsterdam, Excerpta medica, 1992, p 138Google Scholar
  207. 207.
    Mistry CD, Fox JE, Mallick NP, Gokal R: Circulating maltose and isomaltose in chronic renal failure. Kidney Int 32(Suppl 22): S210, 1987Google Scholar
  208. 208.
    Schildt B, Bouveng R, Sollenberg M: Plasma substitute induced impairement of reticuloendothelial system function. Acta Chir Scand 141: 7, 1975PubMedGoogle Scholar
  209. 209.
    Klein E, Ward RA, Williams TE, Feldhoff PW: Peptides as substitute osmotic agent for glucose in peritoneal dialysis. Trans Am Soc Artif Intern Organs 32: 550, 1986Google Scholar
  210. 210.
    Imholz ALT, Lameire N, Faict D, Koomen GCM, Krediet RT, Martis L: Evaluation of short-chain polypeptides as an osmotic agent in CAPD patients. Perit Dial Int 13(Suppl 1): S62, 1993Google Scholar
  211. 211.
    La Greca G, Fabris A, Feriani M, Chiaramonte S, Ronco C: Acid base homeostasis in clinical dialysis, in Replacement of Renal Function by Dialysis, edited by Maher JF, Dordrecht, Kluwer Academic Publishers, 1989, p 807Google Scholar
  212. 212.
    La Greca G, Biasioli S, Chiaramonte S et al.: Acid base balance on peritoneal dialysis. Clin Nephrol 16: 1, 1981PubMedGoogle Scholar
  213. 213.
    Boen ST: Kinetics of peritoneal dialysis. Medicine 40: 243, 1961Google Scholar
  214. 214.
    Preuss HG: Biochemistry of bicarbonate, lactate and acetate in man. North Med Proc 1:1, 1977Google Scholar
  215. 215.
    Boen ST Mulinari AS, Dillard DH, Scribner BH: Periodic peritoneal dialysis in the management of chronic uremia. Trans Am Soc Artif Intern Organs 8: 256, 1962Google Scholar
  216. 216.
    Biasioli S, Feriani M, Chiaramonte S, La Greca G: Buffers in peritoneal dialysis. Int J Artif Organs 10: 3, 1987PubMedGoogle Scholar
  217. 217.
    Kveim M, Nesbakken R: Utilization of exogenous acetate during hemodialysis. Trans Am Soc Artif Intern Organs 21: 138, 1975PubMedGoogle Scholar
  218. 218.
    La Greca G, Biasioli S, Brendolan A et al.: Buffer balance in peritoneal dialysis, in Peritoneal Dialysis, edited by La Greca G, Biasioli S, Ronco C, Milan, Wichtig Editore, 1982, p 177Google Scholar
  219. 219.
    Faller B, Marichal JF: Loss of ultrafiltration in CAPD: a role for acetate. Perit Dial Bull 4: 10, 1984Google Scholar
  220. 220.
    Slingeneyer A, Mion C, Mourad G et al.: Progressive sclerosing peritonitis. A late and severe complication of maintenance peritoneal dialysis. Trans Am Soc Artif Intern Organs 29: 633, 1983PubMedGoogle Scholar
  221. 221.
    Brin M: The synthesis and metabolism of lactic acid isomers. Ann NY Acad Sci 119: 942, 1965Google Scholar
  222. 222.
    Searle GL, Cavalieri RR: Determination of lactate kinetics in the human analysis of data from single injection. Proc Soc Exp Biol Med 139: 1002, 1972PubMedGoogle Scholar
  223. 223.
    Fabris A, Biasioli S, Chiaramonte S et al.: Buffer metabolism in CAPD: relationship with respiratory dynamics. Trans Am Soc Artif Intern Organs 28: 270, 1982PubMedGoogle Scholar
  224. 224.
    Teehan BP, Schleifer CR, Reichard GA, Cupit MC, Sigler MH, Haff AC: Acid base studies in continuous ambulatory peritoneal dialysis, in CAPD Update, edited by Moncrief JW, Popovich RP, New York, Masson Publishing USA Inc, 1981, p 95Google Scholar
  225. 225.
    Richardson RMA, Roscoe JM: Bicarboante, L-lactate and D-lactate balance in intermittent peritoneal dialysis. Perit Dial Bull 6: 178, 1986Google Scholar
  226. 226.
    Nolph KD, Twardowski ZJ, Khanna R et al.: Tidal peritoneal dialysis with racemic or L-lactate solutions. Perit Dial Int 10: 161, 1990PubMedGoogle Scholar
  227. 227.
    Robson MD, Faivoseviz A, Malmoud H: Physiological transfer of acid base, in Continuous Ambulatory Peritoneal Dialysis, edited by Legrain M, Amsterdam, Excerpta medica, 1980, p 194Google Scholar
  228. 228.
    Rubin J, Adair C, Johnson B, Bower JD: Stereospecific lactate absorption during peritoneal dialysis. Nephron 31: 224, 1982PubMedGoogle Scholar
  229. 229.
    Fine A: Metabolism of D-lactate in the dog and in man. Perit Dial Int 9: 99, 1989PubMedGoogle Scholar
  230. 230.
    Nissenson AR: Acid base homeostasis in peritoneal dialysis patients. Int J Artif Organs 7: 175, 1984PubMedGoogle Scholar
  231. 231.
    Gennari FJ, Cohen JJ, Kassirer JP: Normal acid base values, in Acid/Base, edited by Cohen JJ, Kassirer JP, Boston, Little, Brown and Company, 1982, pp 107Google Scholar
  232. 232.
    Yamamoto T, Sakakura T, Yamakawa M et al.: Clinical effects of long-term use of neutralized dialysate for continuous ambulatory peritoneal dialysis. Nephron 60: 324, 1992PubMedCrossRefGoogle Scholar
  233. 233.
    May RC, Kelly RA, Mitch WE: Mechanisms for defects in muscle protein metabolism in rats with chronic uremia. J Clin Invest 79: 1099, 1987PubMedGoogle Scholar
  234. 234.
    Williams B, Hattersley J, Layward E, Walls J: Metabolic acidosis and skeletal muscle adaptation to low protein diets in chronic uremia. Kidney Int 40: 779, 1991PubMedGoogle Scholar
  235. 235.
    Papadoyannakis NJ, Stefanidis CJ, McGeown M: The effect of the correction of metabolic acidosis on nitrogen and potassium balance of patients with chronic renal failure. Am J Clin Nutr 40: 623, 1984PubMedGoogle Scholar
  236. 236.
    Frohlich ED: Vascular effects of the Krebs intermediate metabolites. Am J Physiol 208: 149, 1965PubMedGoogle Scholar
  237. 237.
    Kirkendol PL, Devia CJ, Bower JD et al.: Comparison of the cardiovascular effects of sodium acetate sodium bicarbonate and other potential sources of fixed base in hemodialysis solutions. Trans Am Soc Artif Intern Organs 23: 399, 1977PubMedGoogle Scholar
  238. 238.
    Veech RL: The untoward effects of the anions of dialysis fluid. Kidney Int 34: 587, 1988PubMedGoogle Scholar
  239. 239.
    Veech RL: The toxix impact of parenteral solutions on the metabolism of cells: a hypothesis for physiological parenteral therapy. Am J Clin Nutr 44: 519, 1986PubMedGoogle Scholar
  240. 240.
    Sistare FD, Haynes RC: The interaction between the cytosolic pyridine nucleotide redox potential and gluconeogenesis from lactate/pyruvate in isolated rat hepatocytes. J Biol Chem 23: 12748, 1985Google Scholar
  241. 241.
    Oh MS, Phelpo KR, Traube M et al: D-lactic acidosis in a man with the short bowel syndrome. N Engl J Med 301: 249, 1979PubMedCrossRefGoogle Scholar
  242. 242.
    Veech RL, Fowler RC: Cerebral dysfunction and respiratory alkalosis during peritoneal dialysis with D-lactate containing dialysis fluid. Am J Med 82: 572, 1986Google Scholar
  243. 243.
    Ing TS, Quon MJ, Daugirdas JT, Ghandi VC, Epstain MB: Preparation of bicarbonate containing peritoneal dialysate using an automated dialysate delivery system. Int J Artif Organs 4: 148, 1981PubMedGoogle Scholar
  244. 244.
    Ing TS, Quon MJ, Daugirdas JT, Liu P, Gandhi VC, Reid RR: On line preparation of bicarbonate containing dialysate for use in peritoneal dialysis. Int J Artif Organs 4: 308, 1981PubMedGoogle Scholar
  245. 245.
    Ing TS, Humayun HM, Daugirdas JT et al.: Preparation of bicarbonate-containing dialysate for peritoneal dialysis. Int J Artif Organs 6; 217, 1983PubMedGoogle Scholar
  246. 246.
    Ing TS, Ghandi VC, Daugirdas JT, Reid RW, Hunt J, Popli S: Peritoneal dialysis using bicarbonate buffered dialysate. Int J Artif Organs 7: 166, 1984PubMedGoogle Scholar
  247. 247.
    Feriani M, La Greca G: CAPD with bicarbonate solution, in New Perspectives in Hemodialysis, Peritoneal Dialysis, Arterovenous Hemofiltration and Plasmaferesis, edited by Horl WH, Schollmeyer PJ, New York, Plenum Publishing Corporation, 1989, p 139Google Scholar
  248. 248.
    Feriani M, Reinhard B, La Greca G: Calcium carbonate precipitation in oversatured bicarbonate containing CAPD solutions, in Peritoneal dialysis, edited by La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, Milan, Wichtig Editore, 1991, p 145Google Scholar
  249. 249.
    Gretz N, Kraft E, Meisinger E, Lasserre J, Strauch M: Calcium deposits due to bicarbonate containing CAPD solutions? in Advances in Peritoneal Dialysis, edited by Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, Toronto, Peritoneal Dialysis Bulletin Inc, 1988, p 220Google Scholar
  250. 250.
    Feriani M, Biasioli S, Barbacini S et al.: Acidbase correction in bicarbonate CAPD patients, in Advances in Peritoneal Dialysis, edited by Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, Toronto, Peritoneal Dialysis Bulletin Inc, 1989, p 191Google Scholar
  251. 251.
    Feriani M, Dissegna D, La Greca G, Passlick-Deetjen J: Short term clinical study with bicarbonate containing peritoneal dialysis solution. Perit Dial Int 1993. In pressGoogle Scholar
  252. 252.
    Di Paolo N, Garosi G, Traversari L, Di Paolo M: Mesothelial biocompatibility of peritoneal dialysis solutions. Perit Dial Int 13(Suppl 2): S109, 1993Google Scholar
  253. 253.
    Jorres A, Ghal GM, Ludat K, Muller C, Passlick-Deetjen J: In vitro biocompatibility testing of a new bicarbonate buffered dialysis fluid for CAPD. Perit Dial Int 12: S2, 1992Google Scholar
  254. 254.
    Andre A, Egle B, Dobos GH, Lubrich-Birkner I, Schollmeyer P, Steinhauer HB. Comparison of lactate and bicarbonate buffered peritoneal dialysate (PD) fluids: effect on human peritoneal macrophages (PMO). Perit Dial Int 13(Suppl 1): S24, 1993Google Scholar
  255. 255.
    Schambye HT, Flesner P, Pedersen RB et al.: Bicarbonateversus lactate-based CAPD fluids: a biocompatibility study in rabbits. Perit Dial Int 12: 281, 1992PubMedGoogle Scholar
  256. 256.
    Slingeneyer A, Faller B, Michel C, Przybylski C, Rolland R, Mion C: Increased ultrafiltration capacity using a new bicarbonate CAPD solution. Perit Dial Int 13(Suppl 1): S57, 1993Google Scholar
  257. 257.
    Slingeneyer A, Przybylski C, Rolland R, Mion C: A new bicarbonate buffered solution for CAPD. Perit Dial Int 13(Suppl 1): S57, 1993Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Mariano Feriani
    • 1
  • Claudio Ronco
    • 1
  • Giuseppe La Greca
    • 1
  1. 1.Department of NephrologySt. Bortolo HospitalVicenzaItaly

Personalised recommendations