Principles and Biophysics of Dialysis

  • John A. Sargent
  • Frank A. Gotch


Intermittent dialysis therapy is used in chronic uremia to re-establish body water solute concentrations that cannot be achieved by the natural organ. In this sense, the dialyzer becomes an artificial kidney and it is through the transport of substances by this device that chemical and biophysical control consistent with continued survival is achieved. This chapter is organized as shown in Figure 1 and consists of two basic lines of development:
  1. 1.

    Consideration of the dialyzer and its operating principles

  2. 2.

    Application of mass balance principles to various solute systems and the effect of dialyzer use on solute control during intermittent dialysis therapy



Total Body Water Mass Balance Equation Dialysis Fluid Single Pool Acetate Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Michaels AS: Operating parameters and performance criteria for hemodialyzers and other membrane-separation devices. Trans Am Soc Artif Intern Organs 12: 387, 1966PubMedGoogle Scholar
  2. 2.
    Gotch FA, Autian J, Colton CK, Ginn HE, Lipps BJ, Lowrie EG: The Evaluation of Hemodialyzers, DHEW Publication No (NIH) 72–103, 1971–1972Google Scholar
  3. 3.
    Klein E, Autian J, Bower ID, Buffaioe G, Gtntella L, Colton CK, Darby TD, Farrell PC, Holland FF, Kennedy RS, Lipps B Jr, Mason R, Nolph KD, Villarroel F, Wathen RL: Evaluation of Hemodialyzers and Dialysis Membranes. DHEW Publication No (NIH) 77–1294, 1977Google Scholar
  4. 4.
    Guyton AC: Textbook of Medical Physiology, 6th Edition, Philadelphia, WB Saunders, 1981. p 208Google Scholar
  5. 5.
    Babb AL, Popovich RP, Christopher TG, Scrjbner BH: The genesis of the square meter-hour hypothesis. Trans Am Soc Artif Intern Organs 17: 81. 1971PubMedGoogle Scholar
  6. 6.
    Klein E: Membranes and materials evaluation, in Proc 7th Annu Contractors’s Conf Artif Kidney-Chronic Uremia Program NIAMDD, edited by Krueger KK, DEEW Publ No (NIH), Vol 85, 1974, 75–248Google Scholar
  7. 7.
    Gotch FA, Sargent JA, Keen ML, Seid MA, Foster R: Comparative treatment time with Kiil, Gambro and Cordis-Dow Kidneys. Proc Clin Dial Transplant Forum 3:217, 1973PubMedGoogle Scholar
  8. 8.
    Comroe JH: Physiology of Respiration, 2nd Edition, Chicago, Year Book Medical Publishers, 1975, p 60Google Scholar
  9. 9.
    Pitts RF: Physiology of the Kidney and Body Fluids, 2nd Edition, Chicago, Year Book Medical Publishers, 1968, p 29Google Scholar
  10. 10.
    Sargent JA, Gotch FA: Bicarbonate and carbon dioxide transport during dialysis therapy. ASAIO J 2: 61, 1979Google Scholar
  11. 11.
    Farrell PC, Grib NL, Fry DL, Popovich RP, Broviac JW, Babb AL: A comparison of in vitro and in vivo solutesprotein binding interactions in normal and uremic subjects. Trans Am Soc Artif Intern organs 18: 268, 1972PubMedGoogle Scholar
  12. 12.
    Wolf AV, Remp DG, Killey JE, Currie GD: Artificial kidney function: kinetics of hemodialysis. J Clin Invest 30: 1062, 1951PubMedGoogle Scholar
  13. 13.
    Smith HW: The Kidney: Structure and Function in Health and Disease, New York, Oxford University Press, 1951, p 39Google Scholar
  14. 14.
    Gotch FA: Hemodialysis: Technique and kinetic considerations, in The Kidney, edited by Brenner BM, Rector FC Jr, Philadelphia, WB Saunders Company, 1976, p 1673Google Scholar
  15. 15.
    Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW: Correction of the anemia of end-stage renal disease with recombinant human erythropoietin: results of a combined phase I and phase II clinical trial. N Eng J Med 316: 73, 1987CrossRefGoogle Scholar
  16. 16.
    Erslev A: Erythropoietin coming of age. N Eng J Med 316: 1987Google Scholar
  17. 17.
    Nolph KD, Nothum RJ, Maher JF: Effects of ultrafiltration on dialysance in commercially available coils. Kidney Int 2: 293 1972PubMedGoogle Scholar
  18. 18.
    Nolph KD, Nothum RJ, Maher JF: Ultrafiltration: A mechanism for removal of intermediate molecular weight substances in coil dialyzers. Kidney Int 6: 55, 1974PubMedGoogle Scholar
  19. 19.
    Farrell PC, Babb AL: Estimation of the permeability of cellulosic membranes from solute dimensions and diffusivities. J Biomed Mater Res 7: 25, 1973Google Scholar
  20. 20.
    Bottomley S, Parsons FM, Broughton PMG: The dialysis of non-electrolytes through regenerated cellulose (Cuprophane). I. The effect of molecular size. J Appl Polym Sci 16: 2115, 1972Google Scholar
  21. 21.
    Babb AL, Farrell PC, Uvelli DA, Scribner BH: Hemodialyzer evaluation by examination of solute molecular spectra. Trans Am Soc Artif Intern Organs 18: 98, 1972PubMedGoogle Scholar
  22. 22.
    Popovich RP, Hlavinka DO, Bomar JB, Monerief JW, Dechard IF: The consequences of physiological resistances on metabolic removal from the patient-artificial kidney system. Trans Am Soc Artif Intern Organs 21: 108, 1975PubMedGoogle Scholar
  23. 23.
    French D: The Schardinger dextrins. Adv Carbohydrate Chem 12: 189, 1957Google Scholar
  24. 24.
    Schreiner GE: The search for the uremic toxin(s). Kidney Int 7(Suppl 3): S270, 1975Google Scholar
  25. 25.
    Horowitz HI: Uremic toxins and platelet function. Arch Intern Med 127: 823, 1970Google Scholar
  26. 26.
    Cohen BD: Guanidinosuccinic acid in uremia. Arch Intern Med 126: 846, 1970Google Scholar
  27. 27.
    Giovannetti S, Biagini M, Cioni L: Evidence that methyl guanidine is retained in chronic renal failure. Experientia 24: 341, 1968PubMedGoogle Scholar
  28. 28.
    Schmidt EG, McElvian NS, Bowen JJ: Plasma amino acids and the ether soluble phenols in uremia. Am J Clin Path 20: 253, 1950PubMedGoogle Scholar
  29. 29.
    Gordon A, Bergstrom J, Furst P, Zimmerman L: Separation and characterization of uremic metabolites in biologic fluids. A screening approach to the definition of uremic toxins. Kidney Int 7(Suppl 3): S45, 1975Google Scholar
  30. 30.
    Giovanetti S, Barsotti G: Dialysis of methylguanidine. Kidney Int 6: 177, 1974Google Scholar
  31. 31.
    Furst P, Bergstrom J, Gordon A, Johnsson E, Zimmerman L: Separation of peptides of ‘middle’ molecular weight from biological fluids of patients with uremia. Kidney Int 7(Suppl 3): S272, 1975Google Scholar
  32. 32.
    Funck-Brentano J, Man NK, Sausse A. Zingraff J, Boudet J, Becker A, Cueiile GF: Characterization of a 1100–1300 MW uremic neurotoxin. Trans Am Soc Artif Intern Organs 22: 163, 1976PubMedGoogle Scholar
  33. 33.
    Bergstrom J, Furst P, Zimmerman L: Uremic middle molecules exist and are biologically active. Clin Nephrol 11: 229, 1979PubMedGoogle Scholar
  34. 34.
    Bergstrom J, Furst P: Uremic toxins. Kidney Int 12(Suppl 8): S9, 1978Google Scholar
  35. 35.
    Asaba H, Bergstrom J, Furst P, Oules R, Zimmerman L: Accumulation and excretion of middle molecules. Proc Eur Dial Transplant Assoc 13: 481, 1976Google Scholar
  36. 36.
    Asaba H, Furst P, Oules R, Ward M, Yahiel V, Zimmerman L, Bergstrom J: The effect of hemodialysis on endogenous middle molecules in uremic patients. Clin Nephrol 11: 257, 1979PubMedGoogle Scholar
  37. 37.
    Babb AL, Strand MJ, Uvelli DA, Milutinovic J, Scribner BH: Quantitative description of dialysis treatment: a dialysis index. Kidney Int 7(Suppl 2): S23, 1975Google Scholar
  38. 38.
    Babb AL, Strand MJ, Uvelli DA, Scribner BH: The dialysis index: a practical guide to dialysis treatment. Dial Transplant 6:9, 1977Google Scholar
  39. 39.
    Bell RL, Curtis FK, Babb AL: Analog simulation of the patient-artificial kidney system. Trans Am Soc Artif Intern Organs 11: 183, 1965PubMedGoogle Scholar
  40. 40.
    King PH, Baker WR, Ginn HE, Frost AB: Computer optimization of hemodialysis. Trans Am Soc Artif Intern Organs 14: 389, 1968PubMedGoogle Scholar
  41. 41.
    Dedrick RL: Pharmacodynamic considerations for chronic hemodialysis. Kidney Int 7(Suppl 2): S7, 1975Google Scholar
  42. 42.
    Sargent JA, Gotch FA: The analysis of concentration dependence of uremic lesions in clinical studies. Kidney Int 7(Suppl 2): S35, 1975Google Scholar
  43. 43.
    Gotch FA, Sargent JA, Keen ML, Lee M: Individualized quantified dialysis therapy of uremia. Proc Clin Dial Transplant Forum 4: 27, 1974PubMedGoogle Scholar
  44. 44.
    Gotch FA, Farrell PC, Sargent JA: Theoretical considerations of molecular transport in dialysis and sorbent therapy for uremia. J Dial 1: 105, 1976PubMedGoogle Scholar
  45. 45.
    Frost TH, Kerr DNS: Kinetics of hemodialysis: A theoretical study of the removal of solutes in chronic renal failure compared to normal health. Kidney Int 12: 41, 1977PubMedGoogle Scholar
  46. 46.
    Sargent JA: Kinetic modeling in the guidance of dialysis therapy. Dial Transplant 8: 1101, 1979Google Scholar
  47. 47.
    Sargent JA, Gotch FA: Mathematical modeling of dialysis therapy. Kidney Int 18(Suppl 10): S2, 1980Google Scholar
  48. 48.
    Sargent JA: Which mathematical model to guide clinical dialysis? in Uremia-Pathobiology of Patients Treated for Ten Years or More, edited by Giordano C, Friedman EA, Milan, Wichtig Editore, 1980, p 209, MilanoGoogle Scholar
  49. 49.
    Sargent JA, Lowrie EG: Which mathematical model to study uremic toxicity? Clin Nephrol 17: 303, 1982PubMedGoogle Scholar
  50. 50.
    Borah MF, Schoenfeld PY, Gotch FA. Sargent JA, Wolfson M, Humphreys MH: Nitrogen balance during intermittent dialysis therapy of uremia. Kidney Int 14: 491, 1978PubMedGoogle Scholar
  51. 51.
    Sargent JA, Gotch FA, Borah M, Piercy L, Spinozzi N, Schoenfeld P, Humphreys M: Urea kinetics: a guide to nutritional management of renal failure. Am J Clin Nutr 31: 1696, 1978PubMedGoogle Scholar
  52. 52.
    Cogan MG, Sargent JA, Yarbrough SG, Vincenti F, Amend WJ: Prevention of prednisone-induced negative nitrogen balance. Ann Intern Med 95: 158, 1981PubMedGoogle Scholar
  53. 53.
    Gotch FA, Sargent JA, Keen ML, Lam M, Prowitt M, Grady M: Clinical results of intermittent dialysis therapy (IDT) guided by ongoing kinetic analysis or urea metabolism. Trans Am Soc Artif Intern Organs 22: 175, 1976PubMedGoogle Scholar
  54. 54.
    Sargent JA: Urea kinetics: A quantitative guide to nutrition and treatment in renal disease. Dial Transplant 10: 275, 1981Google Scholar
  55. 55.
    Sargent JA: The role of acetate in acid base corrections during hemodialysis treatment, Doctoral dissertation, University of California, Berkeley, 1976Google Scholar
  56. 56.
    Gotch FA, Keen ML: Precise control of minimal heparinization for high bleeding risk hemodialysis. Trans Am Soc Artif Intern Organs 23: 168, 1977PubMedGoogle Scholar
  57. 57.
    Sherlock JE, Yoon Y, Ledwith JW, Letteri JM: Respiratory gas exchange during hemodialysis. Proc Clin Dial Transplant Forum 2: 171, 1972PubMedGoogle Scholar
  58. 58.
    Sherlock JE, Ledwith JW, Letteri JM: Hypoventilation and hypoxemia during hemodialysis: reflex response to removal of CO2 across the dialyzer. Trans Am Soc Artif Intern Organs 23: 406, 1977PubMedGoogle Scholar
  59. 59.
    Aurigemma NM, Feldman NT, Gottlieb M, Ingram RH, Lazarus JM, Lowrie EG: Arterial oxygenation during hemodialysis. N Engl J Med 297: 871, 1977PubMedCrossRefGoogle Scholar
  60. 60.
    Tolchin N, Rogers JL, Hayashi J, Lewis EJ: Metabolic consequences of high mass-transfer hemodialysis. Kidney Int 11:366, 1977PubMedGoogle Scholar
  61. 61.
    Tolchin N, Roberts JL, Lewis EJ: Respiratory gas exchange by high efficiency hemodialysis. Nephron 21: 137, 1978PubMedCrossRefGoogle Scholar
  62. 62.
    Guyton AC: Textbook of Medical Physiology, 6th Edition, Philadelphia, WB Saunders, 1981, p 518Google Scholar
  63. 63.
    Kreyszig E: Advanced Engineering Mathematics, New York, John Wiley and Sons, 1972, p 24, 147Google Scholar
  64. 64.
    Sokolnikoff IS, Redheffer RM: Mathematics of Physics and Modern Engineering, New York, McGraw Hill, 1958, p 23, 756Google Scholar
  65. 65.
    Giovanetti S, Maggiore Q: A low nitrogen diet with proteins of high biological value for severe chronic uremia. Lancet 1: 1000, 1964Google Scholar
  66. 66.
    Shaw AB, Bazzard FJ, Booth EM, Nilwarangkur S, Berlyne GM: The treatment of chronic renal failure by modified Giovannetti diet. Q J Med 34: 237, 1965PubMedGoogle Scholar
  67. 67.
    Kerr DNR, Robson A, Elliott RW, Ashcroft R: Diet in chronic renal failure. Proc Roy Soc Med 60: 115, 1967PubMedGoogle Scholar
  68. 68.
    Franklin SS, Gordon A, Kleeman CR, Maxwell MH: Use of a balanced low-protein diet in chronic renal failure. JAMA 202: 477, 1967PubMedGoogle Scholar
  69. 69.
    Kopple JD, Sorensen MK, Coburn JW, Gordon A, Rubini ME: Controlled comparison of 20 g and 40 g protein diets in the treatment of chronic uremia. Am J Clin Nutr 21: 553, 1968PubMedGoogle Scholar
  70. 70.
    Hewlett AW, Gilbert QO, Wickett AD: The toxic effects of urea on normal individuals. Arch Intern Med 18: 636, 1916Google Scholar
  71. 71.
    Grollman EF, Grollman A: Toxicity of urea and its role in the pathogenesis of uremia. J Clin Invest 38: 749, 1959PubMedGoogle Scholar
  72. 72.
    Cohen BD, Handelsman DG, Narayan Pai B: Toxicity arising from the urea cycle. Kidney Int 7(Suppl 3): S285, 1975Google Scholar
  73. 73.
    Johnson WJ, Hagge WW, Wagoner RD, Dinapoli RP, Rosevear JW: Toxicity arising from urea. Kidney Int 7(Suppl 3): S288, 1975Google Scholar
  74. 74.
    Lowrie EG, Laird NM, Parker TF, Sargent JA: Effect of the Hemodialysis prescription on patient morbidity: report from the national cooperative dialysis study. N Engl J Med 305: 1176, 1981PubMedCrossRefGoogle Scholar
  75. 75.
    Luke RG: Uremia and the BUN. N Engl J Med 305: 1213, 1981PubMedCrossRefGoogle Scholar
  76. 76.
    Lowrie EG, Laird NM, Henry RP: Protocol for the national cooperative dialysis study. Kidney Int 23(Suppl 13): S11. 1983Google Scholar
  77. 77.
    Laird NM, Berry CS, Lowrie EG: Modeling success or failure of dialysis therapy: the national cooperative dialysis study. Kidney Int 23(Suppl 13): S101, 1983Google Scholar
  78. 78.
    Gotch FA, Sargent JA: A Mechanistic analysis of the national cooperative dialysis study (NCDS). Kidney Int 28: 526, 1985PubMedGoogle Scholar
  79. 79.
    Steffenson KA: Some determinations of the total body water in man by means of intravenous injections of urea. Acta Physiol Scand 13: 282, 1947Google Scholar
  80. 80.
    Lehnnger AL: Biochemistry, New York, Worth Publishers, 1970, p 433Google Scholar
  81. 81.
    Sargent JA, Gotch FA: Is urea generation adaptive? Controv Nephrol 1: 451, 1979Google Scholar
  82. 82.
    Walser M, Bodenlos LJ: Urea metabolism in man. J Clin Invest 38: 1617, 1959PubMedGoogle Scholar
  83. 83.
    Wolpert E, Phillips SF, Summerskill WHJ: Transport or urea and ammonia production in the human colon. Lancet 2: 1387, 1971PubMedGoogle Scholar
  84. 84.
    Richards P, Brown CL: Urea metabolism in an azotemic woman with normal renal function. Lancet 2: 207, 1975PubMedGoogle Scholar
  85. 85.
    Blumenkrantz MJ, Kopple JD, Moran JK, Grodstein GP, Coburn JW: Nitrogen and urea metabolism during continuous ambulatory peritoneal dialysis. Kidney Int 20: 78, 1981PubMedGoogle Scholar
  86. 86.
    Berlyne GM, Shaw AB, Nilwaramgkur S: Dietary treatment of chronic renal failure. Experience with a modified Giovanetti diet. Nephron 2: 129, 1965PubMedGoogle Scholar
  87. 87.
    Walser M: The conservative management of the uremic patient, in The Kidney, edited by Brenner BM, Rector FC, Philadelphia, WB Saunders Co, 1976, p 1613Google Scholar
  88. 88.
    Bennett N: Urea kinetics: A dietitian’s clinical tool in the nutritional management of patients with end stage renal disease. Dial Transplant 10: 332, 1981Google Scholar
  89. 89.
    Forbes G, Bruining GJ: Urinary creatinine excretion and lean body mass. Am J Clin Nutr 29: 1359, 1976PubMedGoogle Scholar
  90. 90.
    Sargent JA, Gotch FA: Mass balance: A quantitative guide to clinical nutritional therapy I: the predialysis renal disease patient. J Am Dietetic Assoc 75. 547, 1979Google Scholar
  91. 91.
    Sargent JA: Assessing the utility and improving the effectiveness of nutritional support. Nut r Clin Prac 1: 29, 1986Google Scholar
  92. 92.
    Kopple JD, Coburn JW: Evaluation of chronic uremia. Importance of serum urea nitrogen, serum creatinine, and their ratio. JAMA 227: 41, 1974PubMedGoogle Scholar
  93. 93.
    Rutherford WE, Blondin J, Miller JP, Greenwalt AS. Vavra JD: Chronic progressive renal disease; rate of change of serum creatinine concentration. Kidney Int 11: 62, 1977PubMedGoogle Scholar
  94. 94.
    Sargent JA: Control of dialysis by a single-pool urea model; the national cooperative dialysis study. Kidney Int 23(Suppl 13): S2, 1983Google Scholar
  95. 95.
    Cestero RVM, Thunberg B, Jain VK, Fain VK: Diagnostic value of modeled therapy: nutritional status and technical problems of treatment. Dial Transplant 10: 302, 1981Google Scholar
  96. 96.
    Acchiardo SR, Moore LW: Urea kinetics: the possibility of selectively reduced treatment frequency. Dial Transplant 10: 295, 1981Google Scholar
  97. 97.
    Collins A, Kesaviah P, Berkseth R, Ilstrup K, McMichael C, Ebben J: Short efficient hemodialysis with reduced symptoms. Kidney Int 27: 158, 1985Google Scholar
  98. 98.
    Keshaviah P, Collins A: Rapid high-efficiency bicarbonate hemodialysis. Trans Am Soc Artif Intern Organs 32: 17, 1986Google Scholar
  99. 99.
    Heineken FG, Evans MC, Keen ML, Gotch FA: Intercompartmental fluid shifts in hemodialysis patients. Biotechnol Progr 3:2, 1987Google Scholar
  100. 100.
    Shackman R, Chisholm GD, Holden AJ, Pigott RW: Urea distribution in the body after haemodialysis. Br Med J 2: 355, 1962PubMedGoogle Scholar
  101. 101.
    Wathen R, Keshaviah P, Hommeyer R, Cadwell K, Comty C: Role of dialysate glucose in preventing gluconeogenesis during hemodialysis. Trans Am Soc Artif Intern Organs 23: 393, 1977PubMedGoogle Scholar
  102. 102.
    Wathen RL, Keshaviah P, Hommeyer P, Cadwell K, Comty CM: The metabolic effects of hemodialysis with and without glucose in the dialysate. Am J Clin Nutr 31:1870, 1978PubMedGoogle Scholar
  103. 103.
    Farrell PC, Hone PW: Dialysis induced catabolism. Am J Clin Nutr 33: 1417, 1980PubMedGoogle Scholar
  104. 104.
    Wineman RJ, Sargent JA, Piercy L: Nutritional implications of renal disease, II. The dietitian’s key role in studies of dialysis therapy. J Am Diet Assoc 70: 483, 1977PubMedGoogle Scholar
  105. 105.
    Sargent J: Shortfalls in the delivery of dialysis. Am J Kidney Dis 15: 500, 1990PubMedGoogle Scholar
  106. 106.
    Lowrie EG, Lew NL: Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis 15: 458–482, 1990PubMedGoogle Scholar
  107. 107.
    Smye SW, Evans JHC, Wills E, Brocklebank JT: Paediatric haemodialysis: estimation of treatment efficiency in the presence of urea rebound. Clin Phys Physiol Meas 13(1): 51–62, 1992PubMedGoogle Scholar
  108. 108.
    Sargent JA, Gotch FA, Henry RA, Bennett N: Mass balance: a quantitative guide to clinical nutritional therapy. J Am Diet Assoc 75: 551, 1979PubMedGoogle Scholar
  109. 109.
    Collins AJ, Ma JZ, Urnen A, Keshaviah P: Urea index and other predictors of hemodialysis patient survival. Am J Kid Dis 23(5): 272–282, 1994 23: 272, 1994PubMedGoogle Scholar
  110. 109a.
    Schneditz D, Van Stone JC, and Davgirdas JT: A regional blood circulation alternative to in-series two compartment urea kinetic modeling. Am Soc Artif Int Organs 39(3): M573–M577Google Scholar
  111. 110.
    Hakim RA, Breyer J, Nuhad I, Schulman G: Effects of dose of dialysis on morbidity and mortality. Am J Kid Dis 23(5): 661–669, 1994PubMedGoogle Scholar
  112. 111.
    Delmez JA, Weerts CA, Hasamear PD et al.: Severe dialyzer dysfunction undetectable by standard reprocessing validation tests. Kidney Int 36: 478, 1989PubMedGoogle Scholar
  113. 112.
    Basile C, Casino F, Lopez T: Percent reduction in blood urea concentration during dialysis estimates Kt/V in a simple and accurate way. Am J Kid Disease 15: 40, 1990Google Scholar
  114. 113.
    Jindal K, Manuel A, Goldstein M: Percent reduction in blood urea concentration during hemodialysis (PRU). Trans Am Soc Artif Intern Organs 33: 286, 1987Google Scholar
  115. 114.
    Daugirdas J: Rapid methods of estimating Kt/V: three formulas compared. ASAIO Trans 36: M362, 1990PubMedGoogle Scholar
  116. 115.
    Lowrie E, Lew N: The urea reduction ratio (URR): A simple method for evaluating hemodialysis treatment. Cont Dial Nephrol Feb: 11, 1991Google Scholar
  117. 116.
    Lowrie EG, Laird NM, Parker TF, Sargent JA: Effect of the hemodialysis prescription on patient morbidity. Report from the National Cooperative Dialysis Study. N Engl J Med 305: 1176–1181, 1981PubMedCrossRefGoogle Scholar
  118. 117.
    Olsson P, Lagergen H, Er S: The elimination from plasma of intravenous heparin. Acta Med Scand 173: 619, 1963PubMedCrossRefGoogle Scholar
  119. 118.
    Eiber HB, Danishefsky I, Borelli JJ: Studies with radioactive heparin in humans. Angiology 2: 40, 1960Google Scholar
  120. 119.
    Estes JW: The kinetics of heparin. Ann NY Acad Sci 179: 187, 1971PubMedGoogle Scholar
  121. 120.
    Christensen HN: General concepts of neutrality regulation. Am J Surg 103: 286, 1962PubMedGoogle Scholar
  122. 121.
    Christensen HN: Diagnostic Biochemistry: Quantitative Distribution of Body Constituents and Their Physiological Interpretation, New York, Oxford University Press, 1959, p 122Google Scholar
  123. 122.
    Isaksson B: Urinary nitrogen output as a validity test in dietary surveys. Am J Clin Nutr 33: 4, 1980PubMedGoogle Scholar
  124. 123.
    Gotch FA, Sargent, JA: Measurement of H+ balance during acetate and bicarbonate dialysis therapy. Kidney Int 16: 887, 1979Google Scholar
  125. 124.
    Relman AS, Schwartz WB: The effects of DOCA on electrolyte balance in normal man and its relation to sodium chloride intake. Yale J Biol Med 24: 540, 1952PubMedGoogle Scholar
  126. 125.
    Schwartz WB, Jenson RL, Relman AS: The disposition of acid administered to sodium-depleted subjects: the renal response and the role of the whole body buffers. J Clin Invest 33: 687, 1954Google Scholar
  127. 126.
    Schwartz WB, Orning KJ, Porter R: The internal distribution of hydrogen ions with varying degrees of metabolic acidosis. J Clin Invest 36: 373, 1957PubMedGoogle Scholar
  128. 127.
    Hunt JH: The influence of dietary sulfur on the urinary output of acid in man. Clin Sci 5: 119, 1956Google Scholar
  129. 128.
    Mion CM, Hegstrom RM, Boen ST, cribner BH: Substitution of sodium acetate for sodium bicarbonate in the bath fluid for hemodialysis. Trans Am Soc Artif Intern Organs 10: 110, 1964PubMedGoogle Scholar
  130. 129.
    Grimsrud L, Cole JJ, Lehman GA, Babb AL, Scribner BH: A central system for the continuous preparation and distribution of hemodialysis fluid. Trans Am Soc Artif Intern Organs 10: 107, 1964PubMedGoogle Scholar
  131. 130.
    Sargent JA, Gotch FA, Lam MA, Prowitt M, Keen ML: Technical aspects of on line proportioning of bicarbonate dialysate. Proc Clin Dial Transplant Forum 7: 109, 1977PubMedGoogle Scholar
  132. 131.
    Krebs HA: The biochemical lesions in ketosis. Arch Intern Med 107: 119, 1961Google Scholar
  133. 132.
    Lundquist F: Production and utilization of free acetate in man. Nature 193:579, 1962PubMedGoogle Scholar
  134. 133.
    Kaiser BA, Potter DE, Bryant RE, Vreman HJ, Weiner MW: Acid-base changes and acetate metabolism during routine and high-efficiency hemodialysis in children. Kidney Int 19:70, 1981PubMedGoogle Scholar
  135. 134.
    Swan RC, Pitts RF: Neutralization of infused acid by nephrectomized dogs. J Clin Invest 34: 205, 1955PubMedGoogle Scholar
  136. 135.
    Gotch FA, Borah MF, Keen ML, Lam MA, Provitt M, Sargent JA: The solute kinetics of intermittent dialysis therapy. Third Annual Report of Artificial Kidney Chronic Uremia Program N1AMDD 1977, p 48Google Scholar
  137. 136.
    Garella S, Dana CL, Chazan JA: Severity of metabolic acidosis as a determinant of bicarbonate requirements. N Engl J Med 289: 121, 1973PubMedCrossRefGoogle Scholar
  138. 137.
    Dombec DH, Klein E, Wendt RP: Evaluation of two pool model for predicting serum creatinine levels during intra and interdialytic periods. Trans Am Soc Artif Intern Organs 21: 117, 1975Google Scholar
  139. 138.
    Sanfelippo ML, Hall DA, Walker WE, Swenson RS: Quantitative evaluation of hemodialysis therapy using a simple mathematical model and a programmable pocket calculator. Trans Am Soc Artif Intern Organs 21: 125, 1975PubMedGoogle Scholar
  140. 139.
    Katz MA, Hull AR: Transcellular creatinine disequilibrium and its significance in hemodialysis. Nephron 12: 171, 1974PubMedGoogle Scholar
  141. 140.
    Jones JD, Burnett PC: Implication of creatinine and gut flora in the uremic syndrome: Induction of ‘creatinine’ in colon contents of the rat by dietary creatinine. Clin Chem 18: 280, 1972PubMedGoogle Scholar
  142. 141.
    Jones JD, Burnett PC: Creatinine metabolism in humans with decreased renal function: creatinine deficit. Clin Chem 20: 1204, 1974PubMedGoogle Scholar
  143. 142.
    Mitch WE, Walser M: A proposed mechanism for reduced creatinine excretion in severe chronic renal failure. Nephron 21: 248, 1978PubMedGoogle Scholar
  144. 143.
    Wehle B, Asaba H, Castenfors J, Furst P, Grahn A, Gunnarson B, Shaldon S, Berstrom J: The influence of dialysis fluid composition on the blood pressure response during dialysis. Clin Nephrol 10: 62, 1978PubMedGoogle Scholar
  145. 144.
    Ogden DA: A double crossover comparison of high and low sodium dialysis. Proc Clin Dial Transplant Forum 8: 157, 1978PubMedGoogle Scholar
  146. 145.
    Van Stone JC, Cook J: Decreased postdialysis fatigue with increased dialysate sodium concentration. Proc Clin Dial Transplant Forum 8: 152, 1978PubMedGoogle Scholar
  147. 146.
    Quellhorst D, Reiger J, Doht B, Beckman H, Jacob I, Kraft B, Mietzsch G, Scheler F: Treatment of chronic uraemia by an Ultrafiltration kidney-first clinical experience. Proc Eur Dial Transplant Assoc 13: 314, 1976Google Scholar
  148. 147.
    Maekawa M, Kishimoto T, Ohyama T, Tanaka H: Present status of hemofiltration and hemodiafiltration in Japan. Artif Organs 4: 85, 1980PubMedGoogle Scholar
  149. 148.
    Kakagwa S: Multifactorial evaluation of hemofiltration therapy in comparison with conventional hemodialysis. Artif Organs 4: 94, 1980CrossRefGoogle Scholar
  150. 149.
    Streicher E, Schneider H: Clinical experience in hemofiltration. Int J Artif organs 3: 221, 1980PubMedGoogle Scholar
  151. 150.
    Schneider H, Streicher D, Hachmann H, Chmiel H, von Mylius U: Clinical experience with haemofiltration. Proc Eur Dial Transplant Assoc 14: 136, 1977PubMedGoogle Scholar
  152. 151.
    Baldamus CA, Knobloch M, Schoeppe W, Koch KM: Hemodialysis/hemofiltration. A report of a controlled cross-over study. Int J Artif Organs 3: 211, 1980PubMedGoogle Scholar
  153. 152.
    Shaldon S, Beau MC, Claret G, Deschodt G, Oules R, Ramperez P. Mion H, Mion C: Haemofiltration with sorbent regeneration of ultrafiltrate: first clinical experience in end stage renal disease. Proc Eur Dial Transplant Assoc 15:220, 1978PubMedGoogle Scholar
  154. 153.
    Shaldon, Deschodt G, Beau MC, Claret G, Mion H, Mion C: Vascular stability during high flux haemofiltration (HF). Proc Eur Dial Transplant Assoc 16: 695, 1979PubMedGoogle Scholar
  155. 154.
    Shaldon S, Beau MC, Deschodt G, Ramperez P, Mion C: Vascular stability during hemofiltration. Trans Am Soc Artif Intern Organs 26: 391, 1980PubMedGoogle Scholar
  156. 155.
    Baldamus CA, Ernst W, Fassbinder W, Koch KM: Differing haemodynamic stability due to differing sympathetic response: comparison of ultrafiltration, haemodialysis and haemofiltration. Proc Eur Dial Transplant Assoc 17: 205, 1980PubMedGoogle Scholar
  157. 156.
    Shaldon S, Beau MC, Deschodt G, Flavier JL, Gullberg CA, Ramperez P, Mion C: Two years clinical experience with short hour high efficiency haemofiltration (HF). Abstracts Clin Dial Transplant Forum, 1980, p 52Google Scholar
  158. 157.
    Quellhorst E, Schuenemann B, Hildebrand U, Falda Z: Response of the vascular system to different modification of haemofiltration and haemodialysis. Proc Eur Dial Transplant Assoc 17: 197, 1980PubMedGoogle Scholar
  159. 158.
    Ladenson JH: Direct potentiometric analysis of sodium and potassium in human plasma: evidence for electrolyte interaction with a non protein, protein-associated substance (S). J Lab Clin Med 90: 654, 1977PubMedGoogle Scholar
  160. 159.
    Shyr C, Young CC: Effect of sample protein concentration on results of analysis for sodium and potassium in serum. Clin Chem 26: 1517, 1980PubMedGoogle Scholar
  161. 160.
    Coleman RL: Differences in electrolyte results as measured by direct potentiometry (ISE) and flame photometry. Bulletin from Nova Biomedical, Newton, MA.Google Scholar
  162. 161.
    Gotch FA, Evans MC, Keen ML: Measurement of the effective dialyzer Na diffusion gradient in vitro and in vivo. Trans Am Soc Artif Inters Organs 31: 354, 1985Google Scholar
  163. 162.
    Flannery JM: Differences in electrolyte results as measured by direct potentiometry (ion selective electrode) and flame photometry. Bulletin from Nova Biomedical, Newton, MAGoogle Scholar
  164. 163.
    Bijster P, Vader HL, Vink CLJ: An evaluation of the Coming 902 direct potentiometric sodium/potassium/analyzer. J Automatic Chem 4: 125, 1982Google Scholar
  165. 164.
    Aluer A, Belledonne M, Saciaggi A, Glabman S, Bosch J: Sodium fluxes during hemodialysis. Trans Am Soc Artif Intern Organs 29: 684, 1983Google Scholar
  166. 165.
    Nolph KD, Stoltz ML, Carter CB, Fox M, Maher JF: Factors affecting the composition of ultrafiltrate from hemodialysis coils. Trans Am Soc Artif Intern Organs 16: 495, 1970PubMedGoogle Scholar
  167. 166.
    Shinaberger JH, Brautbar N, Miller JH. Gardner PN: Successful application of sequential hemofiltration followed by diffusion dialysis with standard dialysis equipment. Trans Am Soc Artif Intern Organs 24: 677, 1978PubMedGoogle Scholar
  168. 167.
    Flear CTG, Bhattacharya SS, Sung CM: Sblute and water exchanges between cells and extracellular fluids in health and disturbances after trauma. J Pen J Parenter Enteral Nutr 4: 98, 1980Google Scholar
  169. 168.
    Maffly RH: The body fluids: Volume, composition, and physical chemistry, in The Kidney edited by Brenner BM, Rector FC, Philadelphia, WB Saunders Co, 1976, p 65Google Scholar
  170. 169.
    Edelman IS, Leibman J: Anatomy of body water and electrolytes. Am J Med 27: 256, 1959PubMedGoogle Scholar
  171. 170.
    Edelman IS, Leibman J, O’Meara MP, Birkenfeld LW: Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water. J Clin Invest 37: 1236, 1958PubMedGoogle Scholar
  172. 171.
    Feig PU, Shook A, Sterns RH: Effect of potassium removal during hemodialysis on the plasma potassium concentration. Nephron 27: 25–30, 1981PubMedCrossRefGoogle Scholar
  173. 172.
    Feig PU, Pring M, Guzzo J, Singer I: Disposition of intravenous potassium in anuric man: a kinetic analysis. Kidney Int 15: 651–660, 1979PubMedGoogle Scholar
  174. 173.
    Landis EM, Pappenheimer JR: Exchange of substances through the capillary walls. in Handbook of Physiology, Section II, Circulation, Volume 22, Washington DC, Am Physiol Soc, 1963, p 961Google Scholar
  175. 174.
    Maeda K, Saito A, Kawaguchi S: Hemodiafiltration with sodium concentration-controlled dialysate Artif Organs 4: 121, 1980PubMedGoogle Scholar
  176. 175.
    Keen M, Evans M, Gotch FA: Comparison of morbidity in high flux dialysis (HFD) and conventional dialysis (CD). Kidney Int 31: 235, 1987Google Scholar
  177. 176.
    Acchiardo S, Burk L, Bannister D: High-flux (HF) hemodialysis (HD). Kidney Int 31: 226, 1987Google Scholar
  178. 177.
    Kjellstrand CM, Rosa AA, Shideman JR: Hypotension during hemodialysis: osmolality fall is an important pathogenetic factor. ASA1O J 3: 11, 1980Google Scholar
  179. 178.
    Heinrich EL, Woodard TD, Blackley JD, Gomez-Sanchez C, Pettinger W, Cronin RE: Role of osmolality in blood pressure stability after dialysis and ultrafiltration. Kidney Int 18: 480, 1980Google Scholar
  180. 179.
    DiRaimondo C, Stone W: B2M amyoidosis. Int J Artif Organs 10:281, 1987Google Scholar
  181. 180.
    Sethi D, Gower P: Synodal fluid B2-M levels in dialysis arthropathy. N Engl J Med 315: 1419, 1986PubMedCrossRefGoogle Scholar
  182. 181.
    Gejyo F, Odani S, Yamada R, Honma N, Saito H, Suzuki Y, Nakagawa Y, Kobayashi H, Maruyama Y, Hirasawa Y, Suzuki M, Arakawa M: B2-microglobulin: a new form of amyloid protein associated with chronic hemodialysis. Kidney Int 30: 385, 1986PubMedGoogle Scholar
  183. 182.
    Gorevic P, Munoz P, Casey T: Polymerization of intact B2/microglobulin in tissue cases amuloidosis in patients on chronic hemodialysis. Proc Natl Acad Sci USA 83: 7908, 1986PubMedGoogle Scholar
  184. 183.
    Kachel H, Altmeyer P, Baldamus C, Koch K: Deposition of amyloid-like substance as a possible complication of regular dialysis treatment. Contrib Nephrol 36: 127, 1983PubMedGoogle Scholar
  185. 184.
    Ogawa H, Saito A, Hirabayashi N, Hara K: Amyloid deposition in systemic organs in long-term hemodialysis patients. Clin Nephrol 28: 199, 1987PubMedGoogle Scholar
  186. 185.
    Messmer RP: B2-microglobulin: an old molecule assumes a new look. J Lab Clin Med 104: 141, 1984Google Scholar
  187. 186.
    Vincent C, Pozet N, Revillard J: Plasma B2-microglobulin turnover in renal insufficiency. Acta Clin Belg 35(Suppl 10): 1, 1980Google Scholar
  188. 187.
    Karlsson F, Groth T, Sege K, Wibell L, Peterson P: Turnover in humans of B2-microgolulin: The constant chain of HLA-antigens. Euro J Clin Invest 10: 293, 1980Google Scholar
  189. 188.
    Schardijn G, Statius Van Eps L: B2-microglobulin: Its significance in the evaluation of renal function. Kidney Int 32: 635, 1987PubMedGoogle Scholar
  190. 189.
    Cresswell P, Springer T, Strominger JL, Turner MU, Grey HM, Kubo RT: Immunological identity of the small subunit of HLA antigens and B2-microglobulin and its turnover on the cell membrane. Proc Nat Acid Sci USA 71: 2123, 1974Google Scholar
  191. 190.
    Statius Van Eps L, Schardijn G: B2-microglobulin and the renal tubule, in Non-Invasive Diagnosis of Kidney Disease, edited by Lubec G, Basel, Karger, 1983, p 103Google Scholar
  192. 191.
    Bhalla R, Safai B, Mertelsmann R, Schwartz MK: Abnormally high concentrations of B2-M in acquired immunodeficiency syndrome (AIDS) patients. Clin Chem 29: 1560, 1983PubMedGoogle Scholar
  193. 192.
    Bergstrom J, Wehle B: No change in corrected B2-M concentration after cuprophane hemodialysis. Lancet 1: 628, 1987PubMedGoogle Scholar
  194. 193.
    Shaldon S, Koch KM, Dinarello CA, Colton CK, Knudsen PJ, Floege J, Granolleras C: B2-microglobulin and haemodialysis. Lancet 1: 925, 1987Google Scholar
  195. 194.
    Mahiout A, Ludat K, Schultze G: Alteration of blood osmolality induces a shift of B2-M plasma levels in patients undergoing hemodialysis. Nephrol Dial Transplant 2: 448, 1987Google Scholar
  196. 195.
    Geiyo F, Homma N, Suziki Y, Arakawa M: Serum levels of Beta-2-microglobulin as a new form of amyloid protein in patients undergoing long-term hemodialysis. N Engl J Med 314: 585, 1986CrossRefGoogle Scholar
  197. 196.
    Burzynski SR: Biologically active peptides in human urine: I. Isolation of a group of medium size peptides. Physiol Chem Physics 5: 437, 1973Google Scholar
  198. 197.
    Scribner BH, Babb AL: Evidence for toxins of middle molecular weight. Kidney Int 7(Suppl 3): S349, 1975Google Scholar
  199. 198.
    Shinaberger JH, Miller JH, Rosenblatt MG, Gardner PW, Carpenter GW, Martin FE: Clinical studies of ‘low flow’ dialysis with membranes highly permeable to middle weight molecules. Trans Am Soc Artif Intern Organs 18: 82, 1972PubMedGoogle Scholar
  200. 199.
    Rattazzi T, Wathen R, Comty C, Raij L, Leonard A, Shapiro F: The comparison of low flow (Qd200) to regular flow (Qd500) dialysis. Trans Am Soc Artif Intern Organs 20: 402, 1974Google Scholar
  201. 200.
    Ginn HE, Teschan PE, Walker PJ, Bourne JR, Macalyne F, Ward JW, McLain LW, Johnson HB, Hamel B: Neurotoxicity in uremia. Kidney Int 7(Suppl 3): S357, 1975Google Scholar
  202. 201.
    Tenckhoff H, Curtis FK: Experience with maintenance peritoneal dialysis in the home. Trans Am Soc Artif Intern Organs 16: 90, 1970PubMedGoogle Scholar
  203. 202.
    Gotch FA: A quantitative evaluation of small and middle molecule toxicity in therapy of uremia. Dial Transplant 9: 183, 1980Google Scholar
  204. 203.
    Gotch FA, Sargent JA, Modelling of middle molecules in clinical studies. Symposium on present status and future orientation of middle molecules in uremia and other diseases. Artif Organs 4: 133, 1980Google Scholar
  205. 204.
    Henderson LW, Stone RA, Ford CA, Lysagth MJ: Blood pressure control with hemodiafiltration. Proc 10th Annu Contractors: Conf Artif Kidney — Chronic Uremia Program NIAMDD, DHEW Publication No (NIH) 77-1442, 1977, p 110Google Scholar
  206. 205.
    Funck-Brentano JL, Man NK, Sausse A, Cueille G, Zingraff J, Drueke T, Jungers P, Billon JP: Neuropathy and ‘middle’ molecule toxins. Kidney Int 7(Suppl 3): S352, 1975Google Scholar
  207. 206.
    Gulyassy PRF, Peters JH, Lin SC, Ryan PM: Hemodialysis and plasma amino acid composition in chronic renal failure. Am J Clin Nutr 21: 565, 1968PubMedGoogle Scholar
  208. 207.
    Bartsch HJ: Handbook of Mathematical Formulas, Translated by Liebscher H, New York, Academic Press, 1974, p 139Google Scholar
  209. 208.
    Cottini ERP, Gallina DK, Dominguez JE: Urea excretion in adult humans with varying degrees of kidney malfunction fed milk, egg or an amino acid mixture: assessment of nitrogen balance. J Nutr 103: 11, 1973PubMedGoogle Scholar
  210. 209.
    Bleiler RE, Schedl HP: Creatinine excretion: variability in relationship to diet and body size. J Lab Clin Med 59: 945, 1962PubMedGoogle Scholar
  211. 210.
    Harmon WE, Spinozzi N, Meyer A, Grupe WE: Use of protein catabolic rate to monitor pediatric hemodialysis. Dial Transplant 10: 324, 1981Google Scholar
  212. 211.
    Sargent JA, Gotch FA: Nutrition and treatment of the acutely ill patient using urea kinetics. Dial Transplant 10: 314, 1981Google Scholar
  213. 212.
    Sargent JA: Urea mass balance: Nutrition and treatment of the acutely ill patient. Nutr Support Services 2: 2, 1982Google Scholar
  214. 213.
    Cuthbertson DP: The metabolic response to injury and its nutritional implications: retrospect and prospect. J Parenter Enterai Nutr 3: 1078, 1979Google Scholar
  215. 214.
    Long JM, Wilmore DW, Mason AD: Effect of carbohy drate and fat intake on nitrogen excretion during total intravenous feeding. Ann Surg 185: 417, 1977PubMedGoogle Scholar
  216. 215.
    Clowes GHA Jr, O’Donnell TF Jr, Blackburn GL et al.: Energy metabolism and proteolysis in traumatized and septic man. Surg Clin North Am 56: 1169, 1976PubMedGoogle Scholar
  217. 216.
    Clowes GHA Jr, O’Donnell TF Jr, Ryan NT: Energy metabolism in sepsis: treatment based on different patterns in shock and high output stage. Ann Surg 179: 684, 1974PubMedGoogle Scholar
  218. 217.
    Wolfe BM, Culebras JM, Sim AJW, Ball MR, Moore FD: Substrate interaction in intravenous feeding: comparative effects of carbohydrate and fat on amino acid utilization in fasting man. Ann Surg 186: 518, 1977PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • John A. Sargent
    • 1
  • Frank A. Gotch
    • 2
  1. 1.EmeryvilleUSA
  2. 2.University of CaliforniaSan FranciscoUSA

Personalised recommendations