Hemodialysis Machines and Monitors

  • Hans-Dietrich Polaschegg
  • Nathan W. Levin


The last decade has seen not only an enormous growth in the number of hemodialysis patients but also a concomitant growth in the number of hemodialysis machines produced every year by fewer companies than 10 years ago. Because the risk of accidents increases with the number of different machines in the field, standard organizations and government authorities worldwide have issued standards and laws that regulate the design of hemodialysis machines. Both effects have slowed the development of new concepts and the effective use of modern technology in hemodialysis machines. The extracorporeal circuit has remained unchanged for more than twenty years. Bicarbonate dialysis with single patient machines and volumetric ultrafiltration control which were developed in the late 70s took more than 10 years to be generally accepted. Cost pressure has been an effective driving force for the introduction of new technology. High-efficiency dialysis was introduced in order to reduce treatment time. Underdialysis of many patients was the result because in many cases the shortening of the treatment time was not sufficiently compensated for by the increased efficacy of the dialysis process


Blood Pump Extracorporeal Circuit Dialysate Flow Ultrafiltration Rate Substitution Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kaufman AM, Polaschegg HD: What technological advances will significantly alter the future care of dialysis patients? Semin Dial 7: 321, 1994Google Scholar
  2. 2.
    IEC — International Electrotechnical Commission: 3_rue de Varembé, Ch-1211, Geneva 20Google Scholar
  3. 3.
    IEC 601-2-16: Medical electrical equipment, Part 2, Particular requirements for safety of haemodialysis equipmentGoogle Scholar
  4. 4.
    ISO — International Standard Organisation, Case postale 56, Ch-1211 Geneva 20Google Scholar
  5. 5.
    ISO 8637: Haemodialysers, haemofilters and haemoconcentratorsGoogle Scholar
  6. 6.
    ISO 8638: Extracorporeal blood circuit for haemodialysers, haemofilters and haemoconcentratorsGoogle Scholar
  7. 7.
    CENELEC — European Committee for Electrotechnical Standardization: Central Secretariat, rue des Stassart 35, B-1050 BrusselsGoogle Scholar
  8. 8.
    CEN — European Committee for Standardization: rue de Stassart 36, B-1050 BrusselsGoogle Scholar
  9. 9.
    AAMI 3330: Washington Boulevard, Suite 400, Arlington, VA 22201-4598, USAGoogle Scholar
  10. 10.
    ANSI/AAMI RD5-1992: American National Standard, Hemodialysis SystemsGoogle Scholar
  11. 11.
    Grimsrud L, Cole JJ, Eschbach JW, Babb AL, Scribner BH: Safety aspects of hemodialysis. Trans Am Soc Artif Intern Organs 13: 1, 1967Google Scholar
  12. 12.
    Kolff WJ: The beginning of the artificial kidney. Artif Organs 17: 293, 1993PubMedCrossRefGoogle Scholar
  13. 13.
    Kramer P, Wigger W, Rieger J, Matthaei D, Scheler F: Artero-venous hemofiltration: a new simple method for treatment of overhydrated patients resistant to diuretics. Klin Wschr 55: 1121, 1977PubMedGoogle Scholar
  14. 14.
    Eisenhauer Th: Development and actual performance of continuous arteriovenous hemofiltration (CAVH). in Continuos Arteriovenous Hemofiltration (CAVH), edited by Sieberth HG, Mann H, Basel, Karger, 1985Google Scholar
  15. 15.
    Polaschegg HD (inventors), Fresenius AG (assignee): Vorrichtung zur Bestimmung des behandelten Blutvolumens bei der Hämodialyse. EP patent 0513421. 11/19/92Google Scholar
  16. 16.
    Finsterwald PM, Eilers GJ (inventors), Cobe Laboratories Inc (assignee): Peristaltic pumps. GB patent 2190145. 11/11/87Google Scholar
  17. 17.
    Leong ASY, Disney AP, Gove DW: Spallation and migration of silicone from blood-pump tubing in patients on hemodialysis. N Engl J Med 306: 135, 1982PubMedCrossRefGoogle Scholar
  18. 18.
    Bommer J: Silikonablagerungen in den Organen von Dialysepatienten — Derzeitiger Stand der Untersuchungen. Nierenu. Hochdruckkrankheiten 12: 250, 1983Google Scholar
  19. 19.
    Scribner BH, Caner JEZ, Buri R, Quinton W: The Technique of continuous hemodialysis. Trans Am Soc Artif Intern Organs 6: 88, 1960PubMedGoogle Scholar
  20. 20.
    Schnell WJ (inventors), Baxter Travenol Laboratories Inc (assignee): Flow reversal in a dialyzer. US patent 4324662. 4/13/82Google Scholar
  21. 21.
    Polaschegg HD (inventors), Fresenius AG (assignee): Hämodialysevorrichtung mit Entlüftungseinrichtung. EP patent 0366950. 12/16/92Google Scholar
  22. 22.
    Polaschegg HD (inventors), Fresenius AG (assignee): Verfahren zum Füllen eines Blutschlauchsystems einer Hämodialysevorriehtung mit einer physiologischen Kochsalzlösung. EP patent 0161686. 2/13/91Google Scholar
  23. 23.
    Polaschegg HD (inventors), Fresenius AG (assignee): Dialysegerät. DE patent 3442744. 7/28/88Google Scholar
  24. 24.
    Eigendorf HG (inventors), Medical Support GmbH (assignee): Verfahren und Anordnung zum Spülen und Befüllen des extrakorporalen Blutkreislaufs von Dialyse-maschinen. DE patent 4208274. 10/21/93Google Scholar
  25. 25.
    Paolini F, Rossi A (inventors), Hospal AG (assignee): Equipment for detecting the presence of a tube and/or the presence of blood within it. EPA patent 0467805. 1/22/92Google Scholar
  26. 26.
    Ward RA, Farrell PC: Precise antikoagulation for routine hemodialysis using nomograms. Trans Am Soc Artif Intern Organs 24: 439, 1978PubMedGoogle Scholar
  27. 27.
    Polaschegg HD (inventors), Fresenius AG (assignee): Apparatus for infusion of medicaments into an extra-corporeal blood circuit. GB patent 2225954. 6/17/92Google Scholar
  28. 28.
    Lindholm DD, Murray JS: A simplified method of regional heparinization during hemodialysis according to a pre-determined dosage formula. Trans Am Soc Artif Intern Organs 10: 92, 1964PubMedGoogle Scholar
  29. 29.
    Lohr JW, Schwab SJ: Minimizing hemorrhagic complications in dialysis patients. Am Soc Nephrol 2: 961, 1991Google Scholar
  30. 30.
    Donatelli D (inventors), Donatelli D (assignee): Device for the automatic actuation of haemodialysis without anti-coagulants. EP patent 0235591. 9/9/87Google Scholar
  31. 31.
    Wamsiedler R, Polaschegg HD, Tattersall JE: Heparin-free dialysis with an on-line hemodiafiltration system. Artif Organs 17: 948, 1993PubMedCrossRefGoogle Scholar
  32. 32.
    Polaschegg HD, Christmann-Braun H: A fail-safe protective system against blood loss to the environment for extracorporeal circuits. Proc 14th Ann Int Conf IEEE-EMBS 14: 1302, 1992Google Scholar
  33. 33.
    Polaschegg HD (inventors), Fresenius AG (assignee): Apparatus for removing water from blood. US patent 4713171. 12/15/87Google Scholar
  34. 34.
    Gault MH, Duffet S, Purchase L, Murphy J: Hemodialysis intravascular hemolysis and kinked blood lines. Nephron 62: 267, 1992PubMedGoogle Scholar
  35. 35.
    Dhaene M, Gulbis B, Lietaer N, Gammar N: Red blood cell destruction in single-needle dialysis. Clin Nephrol 31:327, 1989PubMedGoogle Scholar
  36. 36.
    Wojke R, Polaschegg HD: Ein einfaches Testverfahren zur Detektion von Mikroblasen im extrakorporalen Blutkreislauf. Biomed Tech 38: 34, 1993Google Scholar
  37. 37.
    Hoenich NA, Downing N, Pearson S Review of mechanical systems for single-needle hemodialysis. inFirst International Symposium on Single-Needle Dialysis, edited by Ringoir S, Vanholder R, Ivanovich P, Cleveland, ISAO Press, No. 305, 1984, p 22Google Scholar
  38. 38.
    Kopp KF, Gutch CF, Kolff WJ: Single needle dialysis. Trans Am Soc Artif Intern Organs 18: 75, 1972PubMedGoogle Scholar
  39. 39.
    vanWaeleghem JP, Boone L, Ringoir S: New technique on the one needle system during haemodialysis. Proc Eur Dial Transplant Assoc 1: 10, 1973Google Scholar
  40. 40.
    Scribner BH, Canez JEZ, Buri R, Quinton W: The technique of continuous hemodialysis. Trans Am Soc Artif Intern Organs 6: 88, 1960PubMedGoogle Scholar
  41. 41.
    Tersteegen B, van Endert G (inventors), Tersteegen (assignee): Haemodialysegeraet und Arbeitsverfahren zur Ultrafiltrationssteuerung mit diesem Geraet. DE patent 3115665. 11/4/82Google Scholar
  42. 42.
    Schael W (inventors), Fresenius AG (assignee): Hemodialysis apparatus. US patent 4267040. 5/12/81Google Scholar
  43. 43.
    Freeman N, Connally Th (Eds): Proceedings, Conference on Hemodialysis, NIH, November 9–10, 1964, Public Health Service Publication No 1349, 1964, p 128Google Scholar
  44. 44.
    Weiss C, Jelkmann W: Funktionen des Blutes: Blutungstillung und Blutgerinnung, in Physiologie des Menschen, 24th Ed (English title: Human Physiology), edited by Schmidt RF, Thews G, Berlin, Springer-Verlag, 1994, p 439Google Scholar
  45. 45.
    Maggiore Q, Enia G, Catalano C, Mundo A: Dialysate temperature and complement activation. Contrib Nephrol 59: 72, 1987PubMedGoogle Scholar
  46. 46.
    Shouldice David Robert (inventors), Cobe Laboratories Inc (assignee): Heater control for liquid flowing through a chamber. US patent 4769151. 9/6/88Google Scholar
  47. 47.
    Mackison F, Warren J: Hemodialysis Systems Conformance Assessment Report, edited by Center for Devices and Radiological Health, FDA, 1990, p 1Google Scholar
  48. 48.
    Harvey EN, Barnes DK, McElroy WD, Whiteley AH, Pease DC, Cooper KW: Bubble formation in animals. J Cell Compar Physiol 24: 1, 1944Google Scholar
  49. 49.
    Kruis A, May A: Lösungsgleichgewichte von Gasen in Flüssigkeiten, in Landott-Börnstein: Eigenschaften der Materie in ihren Aggregatzuständen, 2. Teil, edited by Schäfer K, Lax E, Berlin, Springer-Verlag, 1962Google Scholar
  50. 50.
    Eschbach Jr JW, Wilson Jr WE, Peoples RW, Wakefieid AW, Babb AL, Scribner BH: Unattended overnight home hemodialysis. Trans Am Soc Artif Intern Organs 12: 346, 1966PubMedGoogle Scholar
  51. 51.
    Grimsrud L, Lorentzen O, Cappelen C: A truly portable, fully automatic, fluid preparation and control unit for hemodialysis. Trans Am Soc Artif Intern Organs 14: 160, 1968PubMedGoogle Scholar
  52. 52.
    Kolobow N, Thomas Connally (Eds): Proceedings, Conference on Hemodialysis, NIH, November 9–10, 1964, Public Health Service Publication No 1349, 1964, p 87Google Scholar
  53. 53.
    Grimsrud L, Cole JL, Lehman GA, Babb AL, Scribner BH: A central system for the continuous preparation and distribution of hemodialysis fluid. Trans Am Soc Artif Intern Organs 10: 107, 1964PubMedGoogle Scholar
  54. 54.
    Grimsrud L, Babb AL: Optimization of dialyzer design for the hemodialysis system. Trans Am Soc Artif Intern Organs 10: 101, 1964PubMedGoogle Scholar
  55. 55.
    Mion CM, Hegstrom RM, Boen ST, Scribner BH: Substitution of sodium acetate for sodium bicarbonate in the bath fluid for hemodialysis. Trans Am Soc Artif Intern Organs 10: 110, 1964PubMedGoogle Scholar
  56. 56.
    Serfass EJ, Troutner VH (inventors), Milton Roy Comp (assignee): Portable dialysate supply system. US patent 3508656. 4/28/70Google Scholar
  57. 57.
    Breitenfelder W: Technische Aspekte der Bikarbonat-Haemodialyse, Teil 2. Medizintechnik 106: 121, 1986Google Scholar
  58. 58.
    Polaschegg HD (inventors), Fresenius AG (assignee): Apparatus for hemodialysis. US patent 4895657. 1/23/90Google Scholar
  59. 59.
    Gambro AB, Lund, Sweden: AK100 leaflet HCE-7416Google Scholar
  60. 60.
    Ogawa FT (inventors), Cobe Laboratories Inc (assignee): Remote conductivity sensor having transformer coupling in fluid flow path. US patent 4740755. 4/26/88Google Scholar
  61. 61.
    Williams DJ, Jugurnauth J, Harding K, Woolfson RG, Mansell MA: Acute hypernatraemia during bicarbonate-buffered haemodialysis. Nephrol Dial Transplant 9: 1170, 1994PubMedGoogle Scholar
  62. 62.
    Sethi D, Curtis JRT, Topham DL, Gower PE: Acute metabolic alkalosis during haemodialysis. Nephron 51: 119, 1989PubMedGoogle Scholar
  63. 63.
    Jönsson ULP, Carlsson PAV, Jönsson D, Jönsson SA, Knutsson SL, Tryggvason R (inventors), Gambro AB (assignee): A system for preparing a fluid intented for a medical procedure by mixing at least one concentrate in powder form with water and a cartridge intended to be used in said system. EPB patent 0278100. 7/15/92Google Scholar
  64. 64.
    Jönsson Lennart, Knutsson Stefan Lars (inventors), Gambro AB (assignee): System for preparation of a fluid intended for medical use. EPA patent 0443324. 8/28/91Google Scholar
  65. 65.
    Chevallet J, Gauckler J, inventors: Hospal Industrie (assignee): Preparation d’une solution à usage medical par dissolution concentres pulverulents avec recirculation d’une. FR patent 2647349. 11/30/90Google Scholar
  66. 66.
    Polaschegg HD, Pieper W, Weber D, inventors: Fresenius AG (assignee): Beutel zur Aufnahme von Konzentrat. EP patent 0575970. 12/29/93Google Scholar
  67. 67.
    Polaschegg HD, Walter C (inventors), Fresenius AG (assignee): Einrichtung zur Herstellung einer medizinischen Flüssigkeit. EP patent 0548537. 6/30/93Google Scholar
  68. 68.
    Polaschegg HD: History and methods of ultrafiltration monitoring. in Proc 9th Annual Symp on Renal Technology, Warwick July 15–17. Assoc of Renal Technicians, edited by Kilvington M, Lawrence A, 1984Google Scholar
  69. 69.
    Kiil F, Amundsen B: Haemodialysis and controlled ultra-filtration. Lancet 340, 1961Google Scholar
  70. 70.
    Bower JD, Magee JH: The use of the Seattle hemodialysis system in renal homotransplantation. Trans Am Soc Artif Intern Organs 10:251, 1964PubMedGoogle Scholar
  71. 71.
    Granger A, Sausse A (inventors), Rhône-Poulenc Ind (assignee): Artificial kidney and a method of ultrafiltering a liquid. US patent 3939069. 2/17/76Google Scholar
  72. 72.
    Gray OJ, Sanderson ML, Mallick NP: Automatically controlled ultrafiltration during haemodialysis using the Kiil haemodialyser. Proc Eur Dial Transplant Assoc 7: 474, 1970Google Scholar
  73. 73.
    Aid JD, Cameron NF, Hartranft TP (inventors), Baxter International Inc (assignee): Improved flow measurement system. EP patent 0298587. 1/11/89Google Scholar
  74. 74.
    Multimat System: Company brochure. Bellco advertising office 09/92-3000SHE000Google Scholar
  75. 75.
    Schultheis R: Gerät zur volumetrischen Bestimmung der abgezogenen Flüssigkeitsmenge bei der Haemodialysebehandlung. Biomed Tech 20: 81, 1975CrossRefGoogle Scholar
  76. 76.
    Beelen R (inventors), Beelen R (assignee): Distributor voor de dialysatomloop in een kunstnier. BE patent 831895. 11/17/75Google Scholar
  77. 77.
    Pinkerton HE (inventors), Pinkerton HE (assignee): Proportioning fluids. US patent 4037616. 7/26/77Google Scholar
  78. 78.
    Kozlov JG, Khaitlin AE, Lisitsina K (inventors), Kozlov GK, Khaitlin AE, Lisitsina K (assignee): Device for preparation of a dialyzing solution. US patent 3804107. 4/16/74Google Scholar
  79. 79.
    Polaschegg HD, Wojke R: Constant blood flow during single-needle dialysis is unnecessary. Int J Artif Organs 16: 505, 1993PubMedGoogle Scholar
  80. 80.
    Polaschegg HD (inventors), Fresenius AG (assignee): Hämodialysegerät mit einer Bilanzkammer. EPA patent 0615760. 9/21/94Google Scholar
  81. 81.
    FDA-M.D.R. Report dated 1/16/91. Publication date: 9101.00162549 MDR-219086 Subfile: MDRProduct(s): 11-218 Hemodialysis unitsGoogle Scholar
  82. 82.
    Polaschegg HD (inventors), Fresenius AG (assignee): Verfahren zur Feststellung der Funktionsfähigkeit einer Teileinrichtung eines Hämodialysegerätes und Vorrichtung zur Durchführung dieses Verfahrens. EP patient 0604753. 7/6/94Google Scholar
  83. 83.
    DePalma JR, Pecker EA, Gordon A, Maxwell MH: A new compact automatic home hemodialysis system. Trans Am Soc Artif Intern Organs 14: 152, 1968PubMedGoogle Scholar
  84. 84.
    Shintani Motoaki, Wada Yoshikazu, Nakamachi Hideo (inventors), Takeda Chemical Ind (assignee): Blutleckdetektor und damit ausgeruesteter Blutdialysator. DE patient 2631686. 1/20/77Google Scholar
  85. 85.
    Dawids SG, Vejlsgaard R: Bacteriological and clinical evaluation of different dialysate delivery system. Acta Medica Scandinavia 199: 151, 1976Google Scholar
  86. 86.
    Mion CM, Canaud B, Garred LJ, Stec F, Nguyen QV: Sterile and pyrogen-free bicarbonate dialysate: a necessity for hemodialysis today. Adv Nephrol 19: 275, 1990Google Scholar
  87. 87.
    Petersen NJ, Boyer KM, Carson LA, Favero MS: Pyrogenic reactions from inadequate disinfection of a dialysis fluid distribution system. Dial Transplant 7: 52, 1978Google Scholar
  88. 88.
    Cole JJ, Fritzen JR, Vizzo JE, van Paaschen WH, Grimsrud L: One year’s experience with a central dialysate supply system in a hospital. Trans Am Soc Artif Intern Organs 11:22, 1965PubMedGoogle Scholar
  89. 89.
    Polaschegg HD (inventors), Fresenius AG (assignee): Hämodialysevorrichtung. DE patent 3447989. 7/16/87Google Scholar
  90. 90.
    NN, inventors: ASM Anlagen und Systeme für Medizintechnik GmbH (assignee): Vorrichtung zum Zuführen zweier Flüssigkeiten. DE patent 3913008. 8/22/91Google Scholar
  91. 91.
    NN (inventors), ASM Anlagen und Systeme für Medizintechnik GmbH (assignee): Desinfektionsverfahren eines Dialysierflüssigkeitskreislaufs, Gerät zur Durchführung derartiger Desinfektionsverfahren, Wasserversorgungseinrichtung für Dialysegerät und Dosiereinrichtung. DE patent 3941103. 12/17/92Google Scholar
  92. 92.
    Cappelen Chr, Grimsrud L (inventors), Cappelen Chr Jr (assignee): Method for the sterilization of a system for preparation of a liquid mixture. US patent 3738382. 6/12/73Google Scholar
  93. 93.
    Henderson LW: The beginning of hemofiltration. Contrib Nephrol 32: 1, 1982PubMedGoogle Scholar
  94. 94.
    Henderson LW, Besarab A, Michaels A, Bluemle LW: Blood purification by Ultrafiltration and fluid replacement (diafiltration). Trans Am Soc Artif Intern Organs 13: 216, 1967Google Scholar
  95. 95.
    Kramer P, Wigger W, Matthaei D, Langescheid C, Rieger J, Fuchs C, Rumpf KW, Scheler F: Clinical experience with continuously monitored fluid balance in automatic hemofiltration. Artif Organs 2: 147, 1978PubMedGoogle Scholar
  96. 96.
    NN (inventors), Fresenius AG (assignee): Vorrichtung zur Steuerung des Flüssigkeits-Ausgleichs eines Patienten bei der Hämodiafiltration. DE patent 2629717. 5/6/82Google Scholar
  97. 97.
    Streicher E (inventors), Streicher E (assignee): Vorrichtung zur volumengleichen Ersetzung einer ersten Fluessigkeit durch eine zweite Fluessigkeit, insbes. zur HDF. DE patent 2755882. 2/18/82Google Scholar
  98. 98.
    Beden J, Flaig HJ, Polaschegg HD, Steinbach B: Volumetric Fluid Balancing for Hemo-and Plasmafiltration, in Proc 2nd European Conf on Engineering and Medicine, edited by Faust UR, Stuttgart, April 25–29, Amsterdam, Elsevier Science Publishers, 1993, p 149Google Scholar
  99. 99.
    Maggiore Q, Pizzareili F, Zoccali C, Sisca S, Nicolo F, Parlongo S: Effect of extracorporeal blood cooling on dialytic arterial hypotension. Proc Eur Dial Transplant Assoc 28:597, 1981Google Scholar
  100. 100.
    Marangoni R, Savino R, Colombo R, Civadi F: Short time treatment with high-efficiency paired filtration dialysis for chronic renal failure. Artif Organs 16: 547, 1992PubMedCrossRefGoogle Scholar
  101. 101.
    Zucchelli P, Santoro A, Ferrari G, Spongano M: Acetate-free biofiltration: hemodiafiltration with base-free dialysate. Blood Purif 8: 14, 1990PubMedGoogle Scholar
  102. 102.
    Canaud B, Kerr P, Argilés A, Flavier JL, Stec F, Mion C: Is hemodiafiltration the dialysis modality of choice for the next decade? Kidney Int 43: S296, 1993Google Scholar
  103. 103.
    Klauber J, Reichelt H: Probleme und Perspektiven der Dialyseversorgung in den westlichen Bundesländern. WIdO-Materialien, Band 34, WIdO(Wissenschaftliches Institut der Ortskrankenkassen), 1992Google Scholar
  104. 104.
    Tierno PM, Aboody R: Risk of bacterial infection resulting from a blood leak during hemodialysis. Nephron 6: 110, 1969PubMedGoogle Scholar
  105. 105.
    Frinak S, Polaschegg HD, Levin NW, Pohlod DJ, Dumler F, Saravolatz LD: Filtration of dialysate using an on-line dialysate filter. Int J Artif Organs 14: 691, 1991PubMedGoogle Scholar
  106. 106.
    Brunet P, Ragon A, Gulian C, Mege JL, Clement JC, Tehhani E, Capo C, Berland Y: On-line production of infusion fluid for hemodiafiltration (Hdf) from contaminated dialysate. J Am Soc Nephrol 5: 410, 1994Google Scholar
  107. 107.
    Pegues DA, Oettinger CW, Bland LA, Favero MS: A prospective study of pyrogenic reactions in hemodialysis patients using bicarbonate dialysis fluids filtered to remove bacteria and endotoxin. J Am Soc Nephrol 3: 1002, 1992PubMedGoogle Scholar
  108. 108.
    Mion CM, Canaud B, Garred LJ, Stec F, Nguyen QV: Sterile and pyrogen-free bicarbonate dialysate: a necessity for hemodialysis today. Adv Nephrol 19: 275, 1990Google Scholar
  109. 109.
    Hosoya N, Sakai K: Backdiffusion rather than backfiltration enhances endotoxin transport through highly permeable dialysis membranes. Trans Am Soc Artif Intern Organs 36: M311, 1990Google Scholar
  110. 110.
    Takesawa S, Saito H, Hidai H, Suzuki M, Sakai K: Measurement of back clearance. Trans Am Soc Artif Intern Organs 36: M441, 1990Google Scholar
  111. 111.
    Bommer J, Becker KP, Urbaschek R: Endotoxin permeability of highflux polysulfon membranes. J Am Soc Nephrol 5: 408, 1994Google Scholar
  112. 112.
    Oettinger CW, Arduino MJ, Oliver JC, Bland LA: The clinical relevance of dialysate sterility. Semin Dial 7: 263, 1994Google Scholar
  113. 113.
    Quellhorst E, Schünemann B: Beta-2-amyloidosis and haemofiltration. in Dialysis Amyloidosis, edited by Gejyo F, Brancaccio D, Bardin T, Milan, Wichtig Editor, 1989Google Scholar
  114. 114.
    Lonnemann G: Dialysate bacteriological quality and the permeability of dialyzer membranes to pyrogens. Kidney Int 43: S195, 1993Google Scholar
  115. 115.
    Laude-Sharp M, Caroff M, Simard L, Puslinieri C, Kazatchkine MD, Haeffner-Cavaillon N: Induction of IL-1 during hemodialysis: transmembrane passage of intact endotoxins (LPS). Kidney Int 38: 1098, 1990Google Scholar
  116. 116.
    Henderson JW, Sanfelippo ML, Beans E: ‘On line’ preparation of sterile pyrogen-free electrolyte solution. Trans Am Soc Artif Intern Organs 24: 465, 1978PubMedGoogle Scholar
  117. 117.
    Sausse A (inventors), Rhône-Poulenc Ind (assignee): Artificial kidney. US patent 4024059. 5/17/77Google Scholar
  118. 118.
    Shinzato T, Sezaki R, Usuda M, Maeda K, Ohbayashi S, Toyoto T: Infusion-free hemodiafiltration: simultaneous hemofiltration and dialysis with no need for infusion fluid. Artif Organs 6: 453, 1982PubMedGoogle Scholar
  119. 119.
    Miller JH, von Albertini B, Gardner PW, Shinaberger JH: Technical aspects of high-flux hemodiafiltration for adequate short (under 2 hours) treatment. Trans Am Soc Artif Intern Organs 30: 378, 1984Google Scholar
  120. 120.
    Usuda M, Shinzato T, Sezaki R, Kawanishis A, Maeda K, Kawaguchi S, Shibata M, Toyoda T, Asakura Y, Ohbayashi S: New simultaneous HF and HD with no infusion fluid. Trans Am Soc Artif Intern Organs 28: 24, 1982PubMedGoogle Scholar
  121. 121.
    Sternby J: A decade of experience with on-line hemofiltration/hemodiafiltration. in Effective Hemodiafiltration: New Methods, edited by Maeda K, Shinzato T, Basel, Karger, 1994, p 1Google Scholar
  122. 122.
    Canaud B, N’guyen QV, Lagarde C, Stec F, Polaschegg HD, Mion C: Clinical evaluation of a multipurpose dialysis system adequate for hemodialysis or for postdilution hemofiltration/hemodiafiltration with on-line preparation of substitution fluid from dialysate. Contrib Nephrol 46: 184, 1985PubMedGoogle Scholar
  123. 123.
    Polaschegg HD (inventors), Fresenius AG (assignee): Vorrichtung zur Hämodialyse ohne Antikoagulation. DE patent 4240681. 9/8/94Google Scholar
  124. 124.
    Wamsiedler R, Polaschegg HD, Tattersall JE: Heparin-free dialysis with an on-lne hemodiafiltration system. Artif Organs 17: 948, 1993PubMedCrossRefGoogle Scholar
  125. 125.
    Saito A, Koyama M, Sakurai K, Ohta K, Maeda K, Haraguchi S: A new dialysate delivery system to control osmotic pressure and Ultrafiltration rate: description and clinical evaluation, in Proc Third Melting ISAO, edited by Funck-Brentano JL, Klinkmann H, Man NK, Paris, 1981, p 696Google Scholar
  126. 126.
    Murisasco A, Boobes Y, Elsen R, El Mehdi M, Baz M, Durand C, Crevat A, Monti JP, Fondarai J: Control of K+ homeostasis in ESRD patients treated with chronic hemodialysis. in Progress in Artificial Organs — 1985, edited by Nosé Y, Kjellstarnd C, Ivanovich P, Cleveland, ISAO Press No 205, 1986, 1985, p 197–203Google Scholar
  127. 127.
    Fresenius AG, Oberursel, Germany: Brochure ‘Computer Modelling System 08, CMS08’Google Scholar
  128. 128.
    Deuber HJ, Schulz W, Rebstöck W: Improved stability of circulation during computer modelling dialysis. Kidney Int 32: 433, 1987Google Scholar
  129. 129.
    Stefoni S, Coli L, Zaca F, Bombardini T, Puddu G, Feliciangeli G, Cianciolo G, Facchini MG: Modulated dialysis: a new strategy for the treatment of intradialytic intolerance. Nephrol Dial Transplant (Suppl): 154, 1990Google Scholar
  130. 130.
    Ebel H, Saure B, Laage Ch, Dittmar A, Keuchel M, Stellwaag M, Lange H: Influence of computer-modulated profile haemodialysis on cardiac arrhythmias. Nephrol Dial Transplant (Suppl): 165, 1990Google Scholar
  131. 131.
    Maeda K, Kawaguchi S, Kobayashi S, Niwa T, Kobayashi K, Saito A, Iyoda S, Ohta K: Cell-wash dialysis (CWD). Trans Am Soc Artif Intern Organs 26: 213, 1980PubMedGoogle Scholar
  132. 132.
    Gotch F, Evans M, Metzner K, Westphal D, Polaschegg H: An on-line monitor of dialyzer Na and K flux in hemodialysis. Trans Am Soc Artif Intern Organs 36: M359, 1990Google Scholar
  133. 133.
    Stefoni S, Coli L, Zacà F, Bombardini T, Feliciangeli, Stagni B, Puddu G, Cianciolo G, Puddu P, Bonomini V: The CMS 08 modulated dialysis. Contrib Nephrol 74: 221, 1989PubMedGoogle Scholar
  134. 134.
    Perschel WT, Röckel A, Klinke B, Reinhardt B, Behnken LJ, Abdelhamid S, Fiegel P, Walb D: Variation of ultra-filtration and dialysate sodium. Contrib Nephrol 74: 176, 1989PubMedGoogle Scholar
  135. 135.
    Lewis AED, Frost TH: Programmed clearance dialysis to minimize osmotic disequilibrium: A technique for microprocessor-controlled dialysis machines. Artif Organs 5: 364, 1981Google Scholar
  136. 136.
    Kim KE, Neff M, Cohen B, Somerstein M, Chinitz J, Onesti G, Swartz C: Blood volume changes and hypotension during hemodialysis. Trans Am Soc Artif Intern Organs 16:508, 1970PubMedGoogle Scholar
  137. 137.
    Bugarsky S, Tangl F: Physikalisch-chemische Untersuchungen über die molecularen Concentrationsverhältnisse des Blutserums. Arch Ges Physiol 72: 531, 1898Google Scholar
  138. 138.
    Stewart GN: The relative volume or weight of corpuscles and plasma in blood. J Physiol 24: 356, 1899PubMedGoogle Scholar
  139. 139.
    Oker-Blom M: Thierische Säfte und Gewebe in physikalisch-chemischer Beziehung. Arch Ges Physiol 79: 111, 1900Google Scholar
  140. 140.
    Gram HC: Cell volume and electrical conductivity of blood. J Biol Chem 59: 33, 1924Google Scholar
  141. 141.
    Stiller S, Mann H: Automatische Kontrolle des Blutvolumens bei extrakorporaler Dialyse und Filtration. Biomed Tech 25 (Ergaenzungsband): 286, 1980CrossRefGoogle Scholar
  142. 142.
    Stiller S, Mann H, Byrne T: Continuous monitoring of blood volume during hemodialysis. Proc Eur Soc Artif Organs 7: 167, 1980Google Scholar
  143. 143.
    Bonnie E, Lee WG, Stiller S, Mann H: Influence of fluid overload on vascular refilling rate in hemodialysis: continuous measurements with the conductivity method, in Progress in Artificial Organs — 1985, edited by Nosé Y, Kjellstrand C, Ivanovich P, Cleveland, ISAO Press, 1986, p 135Google Scholar
  144. 144.
    Maeda K, Shinzato T, Yoshida F, Tsuruta Y, Usuda M, Yamada K, Ishihara T, Inagaki F, Igarashi I, Kitano T: Newly developed circulating blood volume-monitoring system and its clinical application for measuring changes in blood volume during hemofiltration. Artif Organs 10: 452, 1986PubMedGoogle Scholar
  145. 145.
    Thomasset AL (inventors), Thomasset AL (assignee): Appareillage pour le controle des séances d’hémodialyse. EP patent 0029793. 8/24/83Google Scholar
  146. 146.
    Schaefer H: Hochfrequenzleitfahigkeit des Blutes bei Ultrakurzwellen von 3–6 m Wellenlänge. Klin Wochenschr 2: 102, 1933Google Scholar
  147. 147.
    Ishihara T, Igarashi I, Kitano T, Shinzato T, Maeda K: Continuous hematocrit monitoring method in an extracorporeal circulation system and its application for automatic control of blood volume during artificial kidney treatment. Artif Organs 17: 708, 1993PubMedCrossRefGoogle Scholar
  148. 148.
    Polaschegg HD (inventors), Fresenius AG (assignee): Vorrichtung zur Bestimmung der Veränderung des intravasalen Blutvolumens während der Hämodialyse. EP patent 0272414. 10/23/91Google Scholar
  149. 149.
    Ogawa FT: Remote conductivity sensor having transformer coupling in fluid flow path. US Patent 4740755, 04/26/88Google Scholar
  150. 150.
    de Vries PMJM, Kouw PM, Meijer JH, Oe LP, Schneider H, Donker AJM: Changes in blood parameters during hemodialysis as determined by conductivity measurements. Trans Am Soc Artif Intern Organs 34: 623, 1988Google Scholar
  151. 151.
    Baudin S, Jussiaux P (inventors), Laboratoire Eugedia (assignee): Procédé et appareil de surveillance du déroulement de l’hémodialyse. EPA patent 0551043. 7/14/93Google Scholar
  152. 152.
    Anderson NM: Light-absorbing and scattering properties of non-haemolysed blood. Phys Med Biol 12: 173, 1967PubMedGoogle Scholar
  153. 153.
    Schallenberg U, Stiller S, Mann H: A new method of continuous haemoglobinometric measurement of blood volume during haemodialysis. Life Support Systems 5: 293, 1987PubMedGoogle Scholar
  154. 154.
    Wilkinson JS, Fleming SJ, Greenwood RN, Catell WR, Aldridge C: Continuous measurement of blood hydration during ultrafiltration using optical methods. Med Biol Enginr Comput 25: 317, 1987Google Scholar
  155. 155.
    Mancini E, Santoro A, Spongano M, Paolinifer H, Hochfrequ F, Rossi M, Zucchelli P: Continuous on-line optical absorbance recording of blood volume changes during hemodialysis. Artif Organs 17: 691, 1993PubMedCrossRefGoogle Scholar
  156. 156.
    Caleffi Adamo (inventors), Hospal AG (assignee): Optical detector for equipment for measuring a substance in a liquid. EPA patent 0467804. 1/22/92Google Scholar
  157. 157.
    de Vries JPPM, Olthof CG, Visser V, Kouw PM, van Es A, Donker AJM, de Vries PMJM: Continuous measurement of blood volume during hemodialysis by an optical method. ASAIO J 38: M181, 1992PubMedGoogle Scholar
  158. 158.
    Steuer RR, Harris DH, Conis JM: A new optical technique for monitoring hematocrit and circulating blood volume: its application in renal dialysis. Dial Transplant 22: 260, 1993Google Scholar
  159. 159.
    Greenwood RN, Aldridge C, Catell WR: Serial blood water estimations and in-line blood viscometry: the continuous measurement of blood volume during dialysis procedures. Clin Sci 66: 575, 1984PubMedGoogle Scholar
  160. 160.
    Polaschegg HD (inventors), Fresenius AG (assignee): Vorrichtung zur Ultrafiltrationskontrolle und Ultrafiltrationsregelung bei Blutreinigungsverfahren. DE patent 4024434.6/11/92Google Scholar
  161. 161.
    Kenner T, Hinghofer-Szalkay H, Leopold H, Pogglitsch H: The relation between the density of blood and the arterial pressure in animal experiments and in patients during hemodialysis. Z Kardiol 66: 399, 1977PubMedGoogle Scholar
  162. 162.
    Holzer H, Pogglitsch H, Hinghofer-Szalkay H, Kenner T, Leopold H, Passath A: Die kontinuierliche Messung der Blutdichte waehrend der Haemodialyse. Wien klin Wochenschr 91: 762, 1979PubMedGoogle Scholar
  163. 163.
    Bradley EL, Sacerio J: The velocity of ultrasound in human blood under varying physiologic parameters. J Surg Res 12:290, 1972PubMedGoogle Scholar
  164. 164.
    Bakke T, Gytre T, Haagensen A, Giezendanner L: Ultrasonic measurement of sound velocity in whole blood. A comparison between an ultrasonic method and the conventional packed-cell-vlume test for hematocrit determination. Scand J Clin Lab Invest 35: 473, 1975PubMedGoogle Scholar
  165. 165.
    Roob JM, Schneditz D, Haas GM, Horina JH, Pogglitsch H: Kontinuierliche Messung von Blutvolumenaenderungen waehrend der Haemodialyse mit einer Ultraschallmethode. Wien klin Wochenschr 102: 131, 1990PubMedGoogle Scholar
  166. 166.
    Polaschegg HD: Vorrichtung zum Messen der Änderung des intravasalen Blutvolumens während der Blutfiltration in einer Blutreinigungseinrichtung. Deutsche Patentschrift 3827553Google Scholar
  167. 167.
    Maggiore Q, Pizzarelli F, Zoccali C, Sisca S, Nicolo F, Parlongo S: Effect of extracorporeal blood cooling on dialytic arterial hypotension. Proc Eur Dial Transplant Assoc 28: 597, 1981Google Scholar
  168. 168.
    Guyton AC: Energetics and metabolic rate, in Textbook of Medical Physiology, Eight Ed, WB Saunders Company, 1991, p 789Google Scholar
  169. 169.
    Benzinger TH: Heat regulation: Homeostasis of central temperature in man. Physiol Rev 49: 671, 1969PubMedGoogle Scholar
  170. 170.
    Tattersall J, Lister Hospital Stevenage UK: Personal communication, 1993Google Scholar
  171. 171.
    Polaschegg HD: Verfahren und Vorrichtung zum Entziehen von Waerme aus Blut im extrakorporalen Kreislauf. European Patent 0265795, priority date 30.10.1986Google Scholar
  172. 172.
    Kraemer M, Steil H, Polaschegg HD: Optimization of a sensor head for blood temperature measurement during hemodialysis. in Proc 14th Ann Int Conf IEEE-EMBS, Paris, 1992, p 1610Google Scholar
  173. 173.
    Kraemer M, Polaschegg HD: Control of blood temperature and thermal energy balance during hemodialysis. in Proc 14th Ann Int Conf IEEE-EMBS, Paris, 1992, p 2299Google Scholar
  174. 174.
    College of American Pathologists Quality Assurance Services: Group Summary, New York IX Regional Chemistry Q/C Program, October 1991Google Scholar
  175. 175.
    American National Standard ANSI/AAMI RD5-1992: Association for the Advancement of Medical Instrumentation, Arlington, VA, USA, 1993Google Scholar
  176. 176.
    Sargent JA, Gotch FA: Principles and Biophysics of Dialysis, in Replacement of Renal Function by Dialysis, 3rd Ed, edited by Maher JF, Dordrecht, Kluwer Academic Publishers, 1989, p 118Google Scholar
  177. 177.
    Garred LJ, Amour NRS, McCready WG, Canaud BC: Urea kinetic modeling with a prototype urea sensor in the spent dialysate stream. ASAIO J 39: M337, 1993PubMedGoogle Scholar
  178. 178.
    Hanss M, Rey A: Application de la conductimétrie à l’étude de réactions enzymatique. Biochim Biopnys Acta 227: 630, 1971Google Scholar
  179. 179.
    Zeller H, Novak P, Landgraf R: Blood glucose measurement by infrared spectroscopy. lnt J Artif Organs 12: 129, 1989Google Scholar
  180. 180.
    Kabei N, Machiyama E, Yamada A. Kikuchi M, Sakurai Y: Blood chemical continuous monitoring system for hemodialysis. Trans Am Soc Artif Intern Organs 24: 468, 1978PubMedGoogle Scholar
  181. 181.
    Thavarungkul P, Hakanson H, Holst O, Mattiasson B: Continuous monitoring of urea in blood during dialysis. Biosens Bioelectron 6: 101, 1991PubMedGoogle Scholar
  182. 182.
    Jacobs P, Suls J, Sansen W, Hombrouckx R: A disposable urea sensor for continuous monitoring of hemodialysis efficiency. ASAIO J 39: M353, 1993PubMedGoogle Scholar
  183. 183.
    Klein E, Montaivo JG: Continuous monitoring of urea and inorganic phosphate during hemodialysis: It. Clinical trials. Int JArtif Organs 1: 175, 1978Google Scholar
  184. 184.
    Bosticardo GM, Avalle U, Giacchino F, Molino A, Alloatti S: Accuracy of an on-line urea monitor compared with urea kinetic model and direct dialysis quantification. ASAIO J 40: M426, 1994PubMedGoogle Scholar
  185. 185.
    Metry GS, Attman PO, Lönnroth P, Beshara SN, Aurell M: Urea kinetics during hemodialysis measured by microdialysis — a novel technique. Kidney Int 44: 622, 1993PubMedGoogle Scholar
  186. 186.
    Gal G, Grof J: Continuous UV photometric monitoring of the efficiency of hemodialysis. Int J Artif Organs 3: 338, 1980PubMedGoogle Scholar
  187. 187.
    Kuhlmann U, Gräf R, Schindler J, Lange H: Continuous ionography (CIG) in haemodialysis by ion-selective carrier membrane electrodes (ISCME) with solid cement contact for flow-through measurement. Int J Artif Organs 15:209, 1992Google Scholar
  188. 188.
    Murisasco A, Leblond G, Elsen R, Stroumza P, Durand C, Jeannigros E, Crevat A, Reynier JP: Equilibration of body water distribution and Na+ balance during hemodialysis (HD) with an ion specific electrode feedback system and integrated computer. Trans Am Soc Artif Intern Organs 30: 254, 1984PubMedGoogle Scholar
  189. 189.
    Bashein G, Greydanus WK, Kenny MA: Evaluation of a blood gas and chemistry monitor for use during surgery. Anesthesiology 70: 123, 1989PubMedCrossRefGoogle Scholar
  190. 190.
    Parault B: Technique for improved patient care: initial experience with the GEM-6. J Extra-corporeal Technol 20: 47, 1988Google Scholar
  191. 191.
    Polaschegg HD (inventors), Fresenius AG (assignee): Apparatus for the drawing off of untreated and treated dialyzing liquid and or blood from a dialysis device. US patent 4662208. 5/5/87Google Scholar
  192. 192.
    Gotch FA, Lam MA, Prowitt M, Keen M: Preliminary clinical results with sodium-volume modeling of hemodialysis therapy. Proc Dial Transplant Forum 10: 12, 1980Google Scholar
  193. 193.
    Heineken, FG, Evans, MC, Keen, ML, Gotch FA: Intercompartmental fluid shifts in hemodialysis patients. Biotechnol Prog 3: 69, 1987Google Scholar
  194. 194.
    Man NK, Petitclerc T, Tien NQ, Jehenne G, Funck-Brentano JL: Clinical validation of a prediclive modeling equation for sodium. Artif Organs 9: 150, 1985PubMedCrossRefGoogle Scholar
  195. 195.
    Petitclerc T, Man NK, Goureau Y, Guilleaume J, Funck-Brentano JL: Optimization of sodium dialysate concentration by plasma water conductivity monitoring. in Progress in Artificial Organs — 1985, edited by Nosé Y, Kjellstrand C, Ivanovich P, Cleveland, ISAO Press, 1986, p 234Google Scholar
  196. 196.
    Petitclerc T, Hamani A, Jacobs C: Optimization of sodium balance during hemodialysis by routine implementation of kinetic modeling. Blood Purif 10: 309, 1992Google Scholar
  197. 197.
    Polaschegg HD, Husar D (inventors), Fresenius AG (assignee): Dialysis apparatus with regulated mixing of the dialysis solution. US patent 4508622. 4/2/85Google Scholar
  198. 198.
    Polaschegg HD (inventors), Fresenius AG (assignee): Vorrichtung zum Bestimmen des intravasalen Blutvolumens während der Hämodialyse. DE patent 3640089. 12/22/88Google Scholar
  199. 199.
    Sternby JP (inventors), Gambro AB (assignee): Dialysis system. EPA patent 0547025. 6/16/93Google Scholar
  200. 200.
    Chevallet J (inventors), Hospal Industrie (assignee): Method for determining a patients blood sodium level and artificial kidney for the application thereof. US patent 4923613. 5/8/90Google Scholar
  201. 201.
    Albers, JR, Smith, JM: A conductivity technique for rapid measurement of in vitro dialyzer performance. Trans Am Soc Artif Intern Organs 11: 161, 1965PubMedGoogle Scholar
  202. 202.
    Boag J, Vlchek D: Clearance testing of dialyzers using conductivity. Contemp Dial Nephrol 11, 1987Google Scholar
  203. 203.
    Resnick D: QA testing of hemodialyzers in a clinical setting. Dial Transplant 19: 136, 1990Google Scholar
  204. 204.
    Polaschegg HD: Automatic, noninvasive intradialytic clearance measurement. Int J Artif Organs 16: 185, 1993PubMedGoogle Scholar
  205. 205.
    Gotch FA: Models to predict recirculation and its effect on treatment time in single-needle dialysis, in First International Symposium on Single-Needle Dialysis, edited by Ringoir S, Vanholder R, Ivanovich P, Cleveland, ISAO Press, No 305, 1984, p 47Google Scholar
  206. 206.
    Steil H, Kaufman AM, Morris AT, Levin NW, Polaschegg HD: In vivo verification of an automatic noninvasive system for real time Kt evaluation. ASAIO J 39: M348, 1993PubMedGoogle Scholar
  207. 207.
    Malchesky PS, Ellis P, Nosse C, Magnusson M, Lankhorst B, Nakamoto S: Direct quantification of dialysis. Dial Transplant 11: 42, 1982Google Scholar
  208. 208.
    Keshaviah P, Star R: A new approach to dialysis quantification: an adequacy index based on solute removal. Semin Dial 7: 85, 1994Google Scholar
  209. 209.
    Kidd EE: Bacterial contamination of dialysing fluid of artificial kidney. Br Med J 1: 880, 1964PubMedCrossRefGoogle Scholar
  210. 210.
    Aviram A, Peters JH, Gulyassy PF. Dialysance of amino acids and related substances. Nephron 8: 440, 1971PubMedCrossRefGoogle Scholar
  211. 211.
    Garred LJ, Rittau M, McReady W, Canaud B: Urea kinetic modeling by partial dialysate collection. Int J Artif Organs 12: 96, 1989PubMedGoogle Scholar
  212. 212.
    Stiller S, Schaefer U (inventors), Stiller S (assignee): Passiver Dialysatfluss-Teiler. DE patent 3312909. 10/18/84Google Scholar
  213. 213.
    Ing TS, Yu AW, Khalaf MN, Tiwari P, Rafiq M, Khan AA, Nawab ZM: Collection of hemodialysate aliquot whose composition reflects that of total dialysate. Am Soc Artif Intern Organs Abs 85, 1994Google Scholar
  214. 214.
    Krämer M, Polaschegg HD: Automated measurement of recirculation. Proc Eur Dial Transplant Assoc-Eur Renal Care Assoc 19: 6, 1993Google Scholar
  215. 215.
    Schneditz D, Polaschegg HD, Lewin NW, Cu GA, Morris AT, Krämer M, Daugirdas JT, Kaufman AM: Cardiopulmonary recirculation in dialysis. An underrecognized phenomenon. ASAIO J 38: M194, 1992PubMedGoogle Scholar
  216. 216.
    Sohi PS, Laurin L, Lowery M, Twolan C, Posen GA: Hemodialysis (HD) catheter malfunction: impact on recirculation rate (RR) and dialysis efficiency, J Am Soc Nephrol 4: 387, 1993Google Scholar
  217. 217.
    Depner TA, Rizwan S, Cheer AY, Wagner JM, Eder LA: High venous urea concentration in the opposite arm. A consequence of hemodialysis-induced compartment disequilibrium. Trans Am Soc Artif Intern Organs 37: M141, 1991Google Scholar
  218. 218.
    Aldridge C, Tattersall J, Tomlinson C, Greenwood R: Haemodialysis recirculation detected by the three sample method is an artefact. Proc Eur Dial Transplant Assoc-Eur Renal Care Assoc 19: 2, 1993Google Scholar
  219. 219.
    Aldridge C, Greenwood RN, Cattell WR, Barrett RV: The assessment of arteriovenous fistulae created for haemodialysis from pressure and thermal dilution measurements. J Med Eng Technol 8: 118, 1984PubMedGoogle Scholar
  220. 220.
    Greenwood RN, Aldridge C, Goldstein L, Baker LRI: Assessment of arteriovenous fistulae from pressure and recirculation studies. Clinical experience in 186 fistulae. Clin Nephrol 23: 189, 1985PubMedGoogle Scholar
  221. 221.
    Polaschegg HD (inventors), Fresenius AG (assignee): Vorrichtung zur Behandlung von Blut im extrakorporalen Kreislauf. EP patent 0265795. 6/5/91Google Scholar
  222. 222.
    Aldrige C, Greenwood RN, Frampton CF, Wilkinson JS: Instrument design for the bedside assessment of arteriovenous fistulae in hemodialysis patients. Proc Eur Dial Transplant Assoc-Eur Renal Care Assoc 14: 255, 1985Google Scholar
  223. 223.
    Hester RL, Ashcraft D, Curry E, Bower J: Non-invasive determination of recirculation in the patient on dalysis. ASAIO J 38: M190, 1992PubMedGoogle Scholar
  224. 224.
    Buffaloe GW, Brugger JM, Ogawa FT (inventors), Cobe Laboratories Inc (assignee): Differential conductivity recirculation monitor. EPA patent 0590810. 4/6/94Google Scholar
  225. 225.
    Canaud B, Tetta C, Bosc JY, Berti M, Mazzocchi C, Mion C: Routine on-line evaluation of access recirculation (R) without blood sampling. J Am Soc Nephrol 5: 411, 1994Google Scholar
  226. 226.
    Schwab SJ, Raymond JR, Saeed M, Newman GE, Dennis PA, Bollinger RR: Prevention of hemodialysis fistula thrombosis. Early detection of venous stenoses. Kidney Int 36: 707, 1989PubMedGoogle Scholar
  227. 227.
    Polaschegg HD (inventors), Fresenius AG (assignee): Vorrichtung zur Ultrafiltrationskontrolle und Ultrafiltrationsregelung bei Blutreinigungsverfahren. DE patent 4024434. 6/11/92Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Hans-Dietrich Polaschegg
    • 1
  • Nathan W. Levin
    • 2
  1. 1.OberurselGermany
  2. 2.Division of NephrologyBeth Israel Medical CenterNew YorkUSA

Personalised recommendations