BioHydrogen pp 31-38 | Cite as

Marine Genomes

  • Tadashi Matsunaga
  • Haruko Takeyama


The diversified marine environment harbors a wide variety of organisms having many unique genes. From unique marine environments, photosynthetic microorganisms that are the largest primary producers of biomass are attracting attention as new gene resources. We report the results of screening of useful products from marine photosynthetic microorganisms, as well as the use of those organisms as a gene resource. Productivity of useful products has been improved by metabolic engineering. The survival strategies of novel marine cyanobacterial strains to environmental stress at the molecular level are described. Furthermore, a genome analysis of fish is introduced.


Somatic Embryo Marine Cyanobacterium Emiliania Huxleyi Undecylenic Acid Fresh Water Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbey, M., Clifton, P., Kestin, M., Belling, B., and Nestel, P., 1990, Effect of fish oil on lipoproteins, lecithin, cholesterol acyltransferase, and lipid transfer protein activity in humans, Arteriosclerosis, 10:85–94.PubMedGoogle Scholar
  2. Adams, M.D., 1995, Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence, Nature, 377:3–17.PubMedGoogle Scholar
  3. Bult, C.J., et al., 1996, Complete genome sequence of the methanogenic archeon, Methanococcus jannaschii, Science, 273:1058–1073.PubMedCrossRefGoogle Scholar
  4. Bussey, H., 1997, The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI, Nature, 387(6632):103–105.PubMedGoogle Scholar
  5. Burgess, J.G., Iwamoto, K., Miura, Y., Takano, H., and Matsunaga, T., 1993, An optical fiber photobioreactor for enhanced production of the marine unicellular alga Isochrysis aff. galbana T-Iso (UTEX LB 2307) rich in docosahexaenoic acid, Appl. Microbiol. Biotechnol., 39:456–459.CrossRefGoogle Scholar
  6. Burgess, J.G., Miyashita, H., Sudo, H., and Matsunaga, T., 1991, Antibiotic production by the marine photosynthetic bacterium Chromatium purpuratum NKPB 031704: localization of activity to the chromatophores, FEME Microbiol. Lett., 84:301–306.CrossRefGoogle Scholar
  7. Dunlap, W.C., and Chalker, B.E., 1986, Identification and quantitation of near-UV absorbing compounds (S-320) in a hermatypic scleractinian, Coral Reefs, 5:155–159.CrossRefGoogle Scholar
  8. Fleischmann, R.D., et al., 1995, Whole-genome randam sequencing and assembly of Haemophilus influenza RD, Science, 269:496–512.PubMedCrossRefGoogle Scholar
  9. Fraser, C.M., et al., 1995, The minimal gene complement of Mycoplasma genitalium, Science, 270:397–403.PubMedCrossRefGoogle Scholar
  10. Hirano, M., Mori, H., Miura, Y., Matsunaga, N., Nakamura, N., and Matsunaga, T., 1990, Gamma linolenic acid production by microalgae, Appl. Biochem. Biotechnol., 24/25:183–191.CrossRefGoogle Scholar
  11. Kaneko, T., et al., 1996, Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II; sequence determination of the entire genome and assignment of potential protein-coding regions, DNA Res., 3:109–136.PubMedCrossRefGoogle Scholar
  12. Kawaguchi, R., Nagaoka, T., Burgess, J.G., Takeyama, H., and Matsunaga, T., 1994, Sequence of a 2.6-kb cryptic plasmid from a marine cyanobacterium Synechococcus sp., Plasmid, 32:245–253.PubMedCrossRefGoogle Scholar
  13. Matsuda, N., Kusama, T., Oshiro, T., Kurihara, Y., Hamaguchi, S., and Sakaizumi, M., 1997, Isolation of a sex chromosome-specific DNA sequence in the medaka, Oryzias latipes, Gen. Genet. Syst., 72:263–268.CrossRefGoogle Scholar
  14. Matsumura, H., Takeyama, H., Kusakabe, E., Burgess, J.B., and Matsunaga, T., 1997, Cloning, sequencing and expressing the carotenoid biosynthesis genes, lycopen cyclase and phytoene desaturase, from the aerobic photosynthetic bacterium Erythrobacter longus sp. strain Och101 in Escherichia coli, Gene, 189:169–174.PubMedCrossRefGoogle Scholar
  15. Matsunaga, T., Burgess, J.G., Yamada, N., Komatsu, K., Yoshida, S., and Wachi, Y., 1993, An ultraviolet (UV-A) absorbing biopterin glucoside from the marine planktonic cyanobacterium Oscillatoria sp., Appl. Microbiol. Biotechnol., 39:250–253.Google Scholar
  16. Matsunaga, T., Nakamura, N., Tsuzaki, N., and Takeda, N., 1988, Selective production of glutamate by immobilized blue-green alga Synechococcus sp., Appl. Microbiol. Biotechnol., 28:373–376.CrossRefGoogle Scholar
  17. Matsunaga, T., Takeyama, H., Miura, Y., Yamazaki, T., Furuya, H., and Sode, K., 1995, Screening of marine cyanobacteria for high palmitoleic acid production, FEMS Microbiol. Lett., 133:137–141.CrossRefGoogle Scholar
  18. Matsunaga, T., Takeyama, H., Sudo, H., Oyama, N., Ariura, S., Takano, H., Hirano, M., Burgess, J.G., Sode, K., and Nakamura, N., 1991, Glutamate production from CO2 by marine cyanobacterium Synechococcus sp. using a novel biosolar reactor employing light-diffusing optical fibers, Appl. Biochem. Biotechnol., 28/29:157–167.Google Scholar
  19. Miura, Y., Sode, K., Narasaki, Y., and Matsunaga, T., 1993b, Light-induced antimicrobial activity of extracts from marine Chlorella, J. Mar. Biotechnol., 1:143–146.Google Scholar
  20. Miura, Y., Sode, K., Narasaki, Y., and Matsunaga, T., 1993a, Production of g-linolenic acid from the marine green alga Chlorella sp. NKG 042401, FEMS Microbiol. Lett., 107:163–168.PubMedGoogle Scholar
  21. Muro-Pastor, A.M., Kuritz, T., Flores, E., Herrero, A., and Wolk, C.P., 1994, Transfer of a genetic marker from a megaplasmid of Anabaena sp. strain PCC 7120 to a megaplasmid of a different Anabaena strain, J. Bacteriol., 176:1093–1098.PubMedGoogle Scholar
  22. Shibata, K., 1969, Pigments and a UV-absorbing substance in corals and a blue green alga living in the Great Barrier Reef, Plant Cell Physiol., 10:325–335.Google Scholar
  23. Sudo, H., Burgess, J.B., Takemasa, H., Nakamura, N., and Matsunaga, T., 1994, Sulfated exopolysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytia, Curr. Microbiol., 30:1–4.Google Scholar
  24. Takano, H., Arai, T., Hirano, M., and Matsunaga, T., 1995b, Effect of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp. NKBG042902, Appl. Microbiol. Biotechnol., 43:1014–1018.CrossRefGoogle Scholar
  25. Takano, H., Jeon, J., Burgess, J.G., Manabe, E., Izumi, Y., Okazaki, M., and Matsunaga, T., 1994, Continuous production of extracellular ultrafine calcite particles by the marine coccolithophorid alga Pleurochrysis carterae, Appl. Microbiol. Biotechnol., 40:946–950.CrossRefGoogle Scholar
  26. Takano, H., Manabe, E., Hirano, M., Okazaki, M., Burgess, J.G., Nakamura, N., and Matsunaga, T., 1993, Development of a rapid isolation procedure for coccolith ultrafine particles produced by coccolithophorid algae, Appl. Biochem. Biotechnol., 39/40:239–247.Google Scholar
  27. Takano, H., Takei, R., Manabe, E., Burgess, J.G., Hirano, M., and Matsunaga, T., 1995a, Increased coccolith production by Emiliania huxleyi cultures enriched with dissolved inorganic carbon, Appl. Microbiol. Biotechnol., 43:460–465.CrossRefGoogle Scholar
  28. Takeyama, H., Burgess, J.G., Sode, K., and Matsunaga, T., 1991, Salinity dependent copy number increase of a marine cyanobacterial endogenous plasmid, FEMS Microbiol. Lett., 90:95–98.CrossRefGoogle Scholar
  29. Takeyama, H., Iwamoto, K., Hata, S., Takano, H., and Matsunaga, T., 1996a, DHA enrichment of rotifers; a simple two-step culture using the unicellular algae Chlorella regularis and Isochrysis galbana, J. Mar. Biotechnol., 3:244–247.Google Scholar
  30. Takeyama, H., Sunarjo, J., Yamada, A., Matsumura, H., Kusakabe, E., and Matsunaga, T., 1996b, β-carotene production in a novel hydrogen-producing marine photosynthetic bacterium Rhodovulum sulfidophilum expressing the Erythrobacter longus OCh101 crtI and crtY genes, J. Mar. Biotechnol., 4:224–229.Google Scholar
  31. Takeyama, H., Kanamaru, A., Yoshino, Y., Kakuta, H., Kawamura, Y., and Matsunaga, T., 1997b, Production of antioxidant vitamins, β-carotene, vitamin C, and vitamin E by two-step culture of Euglene gracilis Z, Biotechnol. Bioeng., 53:185–190CrossRefPubMedGoogle Scholar
  32. Takeyama, H., Takeda, D., Yazawa, K., Yamada, A., and Matsunaga, T., 1997a, Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a Synechococcus sp., Microbiology, 143:2725–2731.PubMedCrossRefGoogle Scholar
  33. Terano, T., Salmon, J.A., and Moncada, S., 1984, Effect of orally administered eicosapentaenoic acid (EPA) on the formation of leukotriene B4 and leukotrien B5 by rat leukocytes, Prostaglandins, 27:217–232.PubMedCrossRefGoogle Scholar
  34. van der Plas, J., Oosterhoff-Teertstra, R., Borrias, M., and Weisbeek, P., 1992, Identification of replication and stability functions in the complete nucleotide sequence of plasmid pUH24 from the cyanobacterium Synechococcus sp. PCC7942, Mol. Microbiol., 6:653–664.PubMedCrossRefGoogle Scholar
  35. Wachi, Y., Burgess, J.B., Iwamoto, K., Yamada, N., Nakamura, N., and Matsunaga, T., 1995a, Effect of ultraviolet-A (UV-A) light on growth, photosynthetic activity, and production of biopterin glucoside by the marine UV-A resistant cyanobacterium Oscillatoria sp, Biochim. Biophys. Acta, 1244:165–168.PubMedGoogle Scholar
  36. Wachi, Y., Burgess, J.B., Takahashi, J., Matsunaga, T., and Nakamura, N., 1995d, Production of superoxide dismutase by marine cyanobacteria, J. Mar. Biotechnol., 3:258–261.Google Scholar
  37. Wachi, Y., Burgess, J.G., Takahashi, J., Nakamura, N., and Matsunaga, T., 1995b, Tyrosinase inhibition by the water-soluble fraction of marine microalgae, J. Mar. Biotechnol., 2:210–213.Google Scholar
  38. Wachi, Y., Sode, K., Horikoshi, K., Takeyama, H., and Matsunaga, T., 1995c, Screening of melanin biosynthesis inhibitors from marine microalgae using Streptomyces bikiniensis bioassay, Biotechnol. Techniques, 9:633–636.CrossRefGoogle Scholar
  39. Wake, H., Akasaka, A., Umetsu, H., Ozeki, Y., Shimomura, K., and Matsunaga, T., 1992b, Enhanced germination of artificial seeds by marine cyanobacterial extract, Appl. Microbiol. Biotechnol., 36:684–688.CrossRefGoogle Scholar
  40. Wake, H., Akasaka, A., Umetsu, H., Ozeki, Y., Shimomura, K., and Matsunaga, T., 1992a, Promotion of plantlet formation from somatic embryos of carrot treated with a high molecular weight extract from a marine cyanobacterium, Plant Cell Reports, 11:62–65.CrossRefGoogle Scholar
  41. Wake, H., Umetsu, H., Shimomura, K., and Matsunaga, T., 1991, Extracts of marine cyanobacteria stimulated somatic embryogenesis of Daucus carota L, Plant Cell Reports, 9:655–658.CrossRefGoogle Scholar
  42. Webb, R., Reddy, K.J., and Shweman, L.A., 1990, Regulation and sequence of the Synechococcus sp. Strain PCC 7942 groEL operon, encoding a cyanobacterial chaperonin.Google Scholar
  43. Yamada, A., Takano, H., Burgess, J.G., and Matsunaga T., 1996, Enhanced hydrogen production by a marine photosynthetic bacterium, Rhodobacter marinus, immobilized onto light-diffusing optical fibers, J. Mar. Biotechnol., 4:23–27.Google Scholar
  44. Yang, X., and McFadden, B.A., 1993, A small plasmid, pCA2.4, from the cyanobacterium Synechocystis sp. strain PCC 6803 encodes a Rep protein and replicates by a rolling circle mechanism, J. Bacteriol., 175:3981–3991.PubMedGoogle Scholar
  45. Young, J.P.W., 1992, Phylogenetic classification of nitrogen-fixing organisms, in Biological Nitrogen Fixation, Stacey, G. et al. (eds.), Chapman and Gall Press, New York, pp. 43–86.Google Scholar

Copyright information

© Plenum Press, New York 1998

Authors and Affiliations

  • Tadashi Matsunaga
    • 1
  • Haruko Takeyama
    • 1
  1. 1.Department of BiotechnologyTokyo University of Agriculture and TechnologyTokyoJapan

Personalised recommendations