BioHydrogen pp 281-294 | Cite as

Artificial Bacterial Algal Symbiosis (Project ArBAS)

Sahara Experiments
  • Ingo Rechenberg


The blue alga Nostoc muscorum is the model for a two-stage compound reactor that splits water. In the first stage, green algae (Chlamydomonas oblonga) produce oxygen and excrete carbohydrates by imitating the vegetative cells of Nostoc. The excreted matter of the algae enters the second stage (the analogon of the heterocysts of Nostoc), where purple bacteria (Rhodobacter capsulatus) decompose the carbohydrates into hydrogen and carbon dioxide. Carbon dioxide is fed back into the algal reactor to get reloaded with hydrogen. This process has been tested since 1988 in a small dune region at the edge of the Sahara in southern Morocco. The reactor is cooled by passing the heat through a cooling tube imbedded deep into the dune. Field experiments have demonstrated that the rate of hydrogen production is significantly increased if the reflected solar radiation from the dunes is used; that fluorescent laser dyes will further amplify hydrogen formation; and that contamination of the algal reactor by microorganisms, which consume the excreted carbohydrates, is the main problem during outdoor experiments.


Hydrogen Production Hydrogen Evolution Purple Bacterium Rhodobacter Sphaeroides Spirulina Platensis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benemann, J.R., Miyamoto, K., and Hallenbeck, P.C., 1980, Bioengineering aspects of biophotolysis, Enzyme Microb. Technol., 2:103–111.CrossRefGoogle Scholar
  2. Fogg, G.E., 1966, Extracellular products of algae, Oceanogr. Mar. Biol. Ann. Rev., 4:195–212.Google Scholar
  3. Koch-Schwessinger, G., 1996, Wasserstoffproduktion durch Purpurbakterien, Werkstatt Bionik und Evolutionstechnik Band 3, Frommann Holzboog, Stuttgart.Google Scholar
  4. Miyake, J., and Kawamura, S., 1987, Efficiency of light energy conversion to hydrogen by the photosynthetic bacterium Rhodobacter sphaeroides, Int. J. Hydrogen Energy, 12(3):147–149.CrossRefGoogle Scholar
  5. Rechenberg, I., 1981/1987, Wasserstofferzeugung mit Purpurbakterien. Wissenschafts magazin TU-Berlin (1), 36–43 / Schweizerische Laboratoriums-Zeitschrift, 44(11):417–425.Google Scholar
  6. Rechenberg, I., 1989, Evolution strategy—nature’s way of optimization, in Optimization: Methods and Applications, Possibilities and Limitations, Bergmann, H.W. (ed.), DLR lecture notes in engineering, Springer, Berlin, 47:106–128.Google Scholar
  7. Rechenberg, I., 1994, Evolutionsstrategie’ 94, Werkstatt Bionik und Evolutionstechnik Band 1, Frommann Holzboog, Stuttgart.Google Scholar
  8. Rechenberg, I, 1994, Photobiologische Wasserstoffproduktion in der Sahara, Werkstatt Bionik und Evolutionstechnik Band 2, Frommann Holzboog, Stuttgart.Google Scholar
  9. Watanabe, Y., de la Noüe, J., and Hall, D.O., 1995, Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis, Biotechnol. Bioeng., 47:261–269.CrossRefGoogle Scholar
  10. Zaborsky, O.R., Mitsui, A., and Black, C.C. (eds.), 1982, Handbook of Biosolar Resources, parts 1 and 2, CRC Press, Boca Raton.Google Scholar

Copyright information

© Plenum Press, New York 1998

Authors and Affiliations

  • Ingo Rechenberg
    • 1
  1. 1.Bionics and EvolutiontechniqueTechnical University BerlinBerlinGermany

Personalised recommendations