Skip to main content

The Science of Biohydrogen

An Energetic View

  • Chapter

Abstract

The importance of biological solar energy conversion to hydrogen is discussed from the viewpoint of energy and entropy. The historical view of the nature of the present system clarifies its limitations and the necessity for a brand-new energy accumulation technology, replacing the Industrial Revolution-based one. The capability of biological energy conversion system is described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berry, E.A., and Hinkel, P.C., 1983, Measurement of the electrochemical proton gradient in submitchondrial particles, J. Biol. Chem., 258:1474–1484.

    PubMed  CAS  Google Scholar 

  • Dutton, P.L., and Prince, R.C., 1978, Reaction-center-driven cytochrome interactions in electron and proton translocation and energy coupling, Photosynthetic Bacteria, Clayton, R.K., and Sistrom, W.R. (eds.), Plenum Press, New York and London, pp. 525–570.

    Google Scholar 

  • Gobel, F., 1978, Quantum efficiencies of growth, Photosynthetic Bacteria, Clayton, R.K., and Sistrom, W.R. (eds.), Plenum Press, New York and London, pp. 907–925.

    Google Scholar 

  • Greenbaum, E., 1988, Energetic efficiency of hydrogen photoevolution by algal water splitting, Biophys. J., 54:365–368.

    Article  CAS  PubMed  Google Scholar 

  • Kondratieva, E.N., and Gogotov, I.N., 1983, Production of molecular hydrogen in microorganisms, Adv. Biochem. Bioeng/Biotech., 28:139–191.

    Article  CAS  Google Scholar 

  • Kumazawa, S., and Mitsui, A., 1994, Efficient hydrogen photoproduction by synchronously grown cells of a marine cyanobacterium, Synechococcus Sp. Miami BG 043511, under high cell density conditions, Biotechnol. Bioeng., 44:854–858.

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto, K., Hallenbeck, P.C., and Benemann, J.R., 1979, Solar energy conversion by nitrogen-limited cultures of Anabaena cylindrica, Appl. Environ. Microbiol. 37:454–458.

    PubMed  CAS  Google Scholar 

  • Miyamoto, K., Hallenbeck, P.C., and Benemann, J.R., 1979, Nitrogen fixation by thermophilic blue-green algae, J. Ferment. Technol., 57:287.

    CAS  Google Scholar 

  • Miyake, J., and Kawamura, S., 1987, Efficiency of light energy conversion to hydrogen by the photosynthetic bacterium Rhodobacter sphaeroides, Int. J. Hydrogen Energy, 12:147–149.

    Article  CAS  Google Scholar 

  • Nakada, E., Asada, Y., Arai, T., and Miyake, J., 1995, Light penetration into cell suspensions of photosynthetic bacteria; relation to hydrogen production, J. Ferment. Bioeng., 80:53–57.

    Article  CAS  Google Scholar 

  • Miyake, J., Asada, Y., and Kawamura, S., 1989, Nitrogenase, Biomass Handbook, Hall, C.W., and Kirani, O. (eds.), Gordon and Breach Science Publishers, pp. 363–370.

    Google Scholar 

  • Oosawa, A., and Hayashi, F., 1984, A loose coupling mechanism of synthesis of ATP by proton flux in the molecular mechanism of living cells, J. Phys. Soc. Jpn., 53:1575–1579.

    Article  CAS  Google Scholar 

  • Rifkin, J., 1981, Entropy, Bantam Books, New York.

    Google Scholar 

  • Schrodinger, E., 1945, What Is Life? The Physical Aspect of the Living Cell, Cambridge University Press, United Kingdom.

    Google Scholar 

  • Vincenzini, M., Balloni, W., Mannelli, D., and Florenzano, G., 1981, A bioreactor for continuous treatment of wastewaters with immobilized cells of photosynthetic bacteria, Experientia, 37:710–711.

    Article  CAS  Google Scholar 

  • Warthmann, R., Pfennig, N., and Cypionka, H., 1993, The quantum requirement for H2 production by anoxygenic phototrophic bacteria, Appl. Microbiol. Biotechnol., 39:358–362.

    Article  CAS  Google Scholar 

  • Zhu, H., Suzuki, T., Nakada, E., Asada, Y., and Miyake, J., Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gel, Int. J. Hydrogen Energy, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Plenum Press, New York

About this chapter

Cite this chapter

Miyake, J. (1998). The Science of Biohydrogen. In: Zaborsky, O.R., Benemann, J.R., Matsunaga, T., Miyake, J., San Pietro, A. (eds) BioHydrogen. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-35132-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-35132-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46057-9

  • Online ISBN: 978-0-585-35132-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics