Advertisement

Understanding Pulmonary Mechanics Using The Forced Oscillations Technique

Emphasis on Breathing Frequencies
  • Kenneth R. Lutchen
  • Béla Suki

Abstract

The lung is a marvelously over-designed mechanical ventilation system. It is capable of sustaining substantial injury or alteration while still maintaining life-sustaining blood gas levels. Nevertheless, these alterations often lead to compromised lung function and breathing discomfort. Consider two basic questions: What is the relative compromise in airway versus tissue properties during asthma?; and flow do airways and tissues contribute to alterations in breathing discomfort (dyspnea) and breathing function (i.e., to adequately ventilate)? Answers to these questions are required for designing and monitoring effective treatment protocols. Unfortunately, obtaining answers is fraught with ambiguities as they will be highly dependent on the breathing frequency and amplitude, on the alterations in the mechanical constituents comprising the airways and tissues (eg., airway geometry and wall properties and the tissue fiber system), and on the topological properties of the interdependent airway-tissue matrix. What is needed is a measurement approach which can provide specific and reliable insight on the mechanical properties and important mechanisms that contribute to breathing. Preferably, the method should be amenable to clinical applications and assessment.

Keywords

Lung Tissue Input Impedance Forced Oscillation Harmonic Distortion Tissue Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. l.
    Barnas, G.M., D.N. Campbell, C.F. Mackenzie, J.E. Mendham, B.G. Fahy, C.J. Runcie, and G.E. Mendham. Lung, chest wall, and total respiratory system resistance and elastance in the normal range of breathing. Amer. Rev. Resp. Dis. 143, 240–244, 1991.PubMedGoogle Scholar
  2. 2.
    Barnas, G.M., K. Yoshino, S.H. Loring, and J. Mead. Impedance and relative displacement of relaxed chest wall up to 4 Hz. J. Appl. Physiol. 62, 71–81, 1987.PubMedGoogle Scholar
  3. 3.
    Barnas, G.M., C. Mackenzie, M. Skacel, S. Hempleman, K. Wicke, C. Skacel, and S.H. Loring. Amplitude dependency of regional chest wall resistance and elastance at normal breathing frequencies. Amer. Rev. Respir.Dis. 140, 25–30, 1989.Google Scholar
  4. 4.
    Barnas. G., D. Stamenovic, and K.R. Lutchen. Lung and chest wall impedance in the dog in the normal range of breathing: effects of pulmonary edema. J. Appl. Physiol. 73: 1049–1046, 1992.Google Scholar
  5. 5.
    Barnas, G.M., D. Stamenovic, K.R. Lutchen, and C.F. Mackenzie. Lung and chest wall impedances in the dog in normal range of breathing: effects of frequency and tidal volume. J. Appl. Physiol. 72:87–93, 1992.PubMedGoogle Scholar
  6. 6.
    Bard, Y. Nonlinear Parameter Esrtimation New York, Academic Press., 1974.Google Scholar
  7. 7.
    Bates, J.H.T., F. Shardonofsky, and D.E. Stewert. The low-frequency dependence of respiratory system resistance and elastance in normal dogs. Resp. Physiol. 78, 369–389, 1989.CrossRefGoogle Scholar
  8. 8.
    Bates, J.H.T. Stochastic model of the pulmonary airway tree and its implication for bronchial responsiveness. J. Appl. Physiol 75(6): 2493–2499, 1993.PubMedGoogle Scholar
  9. 9.
    Bates, J.H.T., A.-M. Lauzon, G.S. Dechman, G.N. Maksym, and T.F. Schuessler. Temporal dynamics of pulmonary response to intravenous histamine in dogs: effects of dos and lung volume, J. Appl. Physiol. 76(2): 616–626, 1994.PubMedGoogle Scholar
  10. 10.
    Benade, A.H. On the propagation of sund waves in a cylindrical conduit. J. Accoust. Soc. Am. 44:616–623, 1968.CrossRefGoogle Scholar
  11. 11.
    Bhansali, C.G. Irvin, J.A. Dempsey, R. Bush, and J.G. Webster. Human pulmonary resistance: effect of frequency and gas physical properties. J. Appl. Physiol. 47, 161–168, 1979.PubMedGoogle Scholar
  12. 12.
    Capper, W., R.W. Guelke, and A. Bunn. The estimation of tube wall compliance using acoustic input impedance. IEEE Trans. Biom. Eng. 18, 544–550, 1991.CrossRefGoogle Scholar
  13. 13.
    Chalker, R., B. Celli, R. Habib, and A.C. Jackson. Respiratory system input impedance from 4–256 Hz in normals and patients with chronic airflow obstruction: comparison and correlation with spirometry. Am. Rev. Respir. Dis. 146:570–576, 1992.PubMedGoogle Scholar
  14. 14.
    Csendes, T. Nonlinear parameter estimation by global optimization-efficiency and reliability. Acta Cybernetica. 8, 361–370, 1988.Google Scholar
  15. 15.
    Daroczy, B. and Z. Hantos. Generation of optimum pseudorandom signals for respiratory impedance measurements. Int. J. Biomed. Comput. 25: 21–31, 1990.PubMedCrossRefGoogle Scholar
  16. 16.
    Davis, K.A., Lutchen, K.R. Respiratory impedance spectral estimation for digitally created random noise. Annls Biomed. Eng. 19, 179–195, 1991.CrossRefGoogle Scholar
  17. 17.
    Dorkin, H.L., K.R. Lutchen, and A.C. Jackson. Human respiratory input impedance from 4 to 200 Hz: physiological and modeling considerations. J. Appl. Physiol. 64:823–831, 1988.PubMedGoogle Scholar
  18. 18.
    DuBois, A.B., A.W. Brody, D.H. Lewis, and B.F. Burgess, Jr. Oscillation mechanics of lungs and chest in man. J. Appl. Physiol. 8:587–594, 1956.PubMedGoogle Scholar
  19. 19.
    Farre, R., R. Peslin, E. Oostveen, B. Suki, C. Duvivier, and D. Navajas. Human respiratory impedance from 8 to 256 Hz corrected for upper airway shunt. J. Appl. Physiol. 67:1973–1981, 1989.PubMedGoogle Scholar
  20. 20.
    Fredberg, J.J. and D. Stamenovic. On the imperfect elasticity of lung tissue. J. Appl. Physiol. 67, 2408–2419, 1989.PubMedGoogle Scholar
  21. 21.
    Fredberg, J.J. and A. Hoenig. Mechanical response of the lungs at high frequencies. ASME J. Bimomech. Eng. 44:616–623, 1978.Google Scholar
  22. 22.
    Fredberg, J.J., D.H. Keefe, G.M. Glass, R.G. Castille, and I.D. Frantz III. Alveolar pressure nonhomogeneity during small amplitude high-frequency oscillation. J. Appl. Physiol. 57: 788–800, 1984.PubMedGoogle Scholar
  23. 23.
    Fredberg, J.J., R.H. Ingram, Jr., R.G. Castile, G.M. Glass, and J.M. Drazen Nonhomogeneity of lung response to inhaled histamine assessed with alveolar capsules. J. Appl. Physiol. 58, 1914–1922, 1985.PubMedGoogle Scholar
  24. 24.
    Fredberg, J.J. Airway dynamics: recursiveness, randomness, and reciprocity in linear system simulation and parameter estimation. In Respiratory Physiology: An analytical approach, ed. H.K. Chang, and M. Piava, vol 40, Marcel Dekker, 167–194, 1989.Google Scholar
  25. 25.
    Fredberg, J.J. D. Bunk, E. Ingenito, and S. Shore. Tissue resistance and the contractile state of lung parenchyma. J. Appl. Physiol 74(3): 1387–1397, 1993.PubMedGoogle Scholar
  26. 26.
    Fuller, S.D. and A.N. Freed. Partitioning of pulmonary function in rabbits during cholinergic stimulation. J. Appl. Physiol, 78(4): 1242–1249, 1995.PubMedGoogle Scholar
  27. 27.
    Fung, Y.C. Biomechanics: Mechanical Properties of Living Tissues. New York, Springer, 1981.Google Scholar
  28. 28.
    Guelke, R.W. and A.E. Bunn. Transmission line therory applied to sound wave propagation in tubes with compliant walls. Acustica. 48:101–106, 1981.Google Scholar
  29. 29.
    Habib, R.H., B. Suki, J.H.T. Bates and A.C. Jackson. Seriel distribution of airway mechanical properties in dogs: effects of histamine. J. Appl. Physiol 77(2):554–566, 1994.PubMedGoogle Scholar
  30. 30.
    Hantos, Z., B. Daroczy, B. Suki, G. Galgoczy, and T. Csendes. Forced oscillatory impedance of the respiratory system at low frequencies. J. Appl. Physiol 60: 123–132, 1986.PubMedCrossRefGoogle Scholar
  31. 31.
    Hantos, Z., B. Daroczy, T. Csendes, B. Suki, and S. Nagy. Modeling of low frequency pulmonary Impedance in Dogs. J. Appl. Physiol, 68, 849–860, 1990.PubMedGoogle Scholar
  32. 32.
    Hantos, Z., B. Daroczy, B. Suki, S. Nagy, and J.J. Fredberg. Input impedance and peripheral inhomogeneity of dog lungs. J. Appl. Physiol, 72, 168–178, 1992.PubMedCrossRefGoogle Scholar
  33. 33.
    Hantos, Z. A. Adamicza, E. Govaerts, and B. Daroczy. Mechanical impedance of the lungs and chest wall in the cat. J. Appl. Physiol, 73, 427–433, 1992.PubMedGoogle Scholar
  34. 34.
    Hantos, Z. F. Petak, A. Adamicza, B. Daroczy, B. Suki, and K.R. Lutchen. Optimum ventilator waveform for the estimation of respiratory impedance: an animal study. Eur. Respir. Rev. 19:191–197, 1994.Google Scholar
  35. 35.
    Hildebrandt, J. Comparison of mathematical models for cat lung and viscoelastic ballooon derived by Laplace transform methods from pressure-volume data. Bull. Math. Biophys. 31:651–657, 1969.PubMedCrossRefGoogle Scholar
  36. 36.
    Hildebrandt, J. Pressure-volume data of cat lung interpreted by a plastoelastic linear viscoelastic model. J. Appl. Physiol 28, 365–372, 1970.PubMedGoogle Scholar
  37. 37.
    Horsfield, K. Pulmonary airways and blood vessels considered as confluent trees. The Lung: Scientificic Foundations, edited by R.G. Crystal, J.B. West et. al. Raven Press, New York, 1991.Google Scholar
  38. 38.
    Horsfield, K., G Dart, D.E. Olson, and G. Cumming. Models of the human bronchial tree. J. Appl. Physiol. 31, 207–217, 1971.PubMedGoogle Scholar
  39. 39.
    Horsfield, K.W. Kemp, and S. Phillips. An asymmetrical model of the airway of the dog lung. J. Appl. Physiol. 52:21–26, 1982.PubMedGoogle Scholar
  40. 40.
    Ingenito, E.P., B. Davison, and J.J. Fredberg. Tissue resistance in the guinea pig at baseline and during methacholine constriction. J. Appl. Physiol. 75(6):2541–2548, 1993.PubMedGoogle Scholar
  41. 41.
    Jackson, A.C., C.A. Giurdanella, and H.L. Dorkin. Density dependence of respiratory system impedances between 5 and 320 Hz in humans. J. Appl. Physiol. 67:2323–2330, 1989.PubMedGoogle Scholar
  42. 42.
    Jackson, A.C., K.R. Lutchen, and H.L. Dorkin. Inverse modeling of dog airways and respiratory system impedances. J. Appl. Physiol. 62:2273–2282, 1987.PubMedGoogle Scholar
  43. 43.
    Jackson, A.C. and K.R. Lutchen. Modeling of respiratory system impedances in dogs. J. Appl. Physiol. 62:414–420, 1987.PubMedCrossRefGoogle Scholar
  44. 44.
    Jackson, A. and K.R. Lutchen. Physiological basis for resonant frequencies in respiratory system impedances in dogs. J. Appl. Physiol. 70:1051–1058, 1991.PubMedCrossRefGoogle Scholar
  45. 45.
    James, A.L., P.D. Pare, and J.C. Hogg. The mechanics of airway narrowing in asthma. Am. Rev. Respir. Dis. 139: 242–246, 1989.PubMedGoogle Scholar
  46. 46.
    Kariya, S. L.M. Thompson, E. P. Ingenito, and R.H. Ingram, Jr. Effects of lung volume, volume history and methacholine on lung tissue viscance. J. Appl. Physiol. 66(2), 977–982, 1989.PubMedCrossRefGoogle Scholar
  47. 47.
    Lauzon, A.-M., and J.H.T. Bates, estimation of time-varying respiratory mechanical parameters by recursive least squares. J. Appl. Physiol. 71: 1159–1165, 1991.PubMedGoogle Scholar
  48. 48.
    Larsen, G. L. Experimental models for reversible airway obstruction, in The Lung: Scientific Foundations, edited by R.G. Crystal, J.B. West et. al. Raven Press, New York, 1991.Google Scholar
  49. 49.
    Ludwig, M.S., F.M. Robatto, P.D. Sly, M. Browman, J.H.T. Bates, and P.V. Romero. Histamine-induced constriction of canine peripheral lung: an airway or tissue response. J. Appl. Physiol. 71, 287–293, 1991.PubMedGoogle Scholar
  50. 50.
    Ludwig, M.S., P.V. Romero, J.H.T. Bates. A comparison of the dose-response behavior of canine airways and parenchyma. J. Appl. Physiol. 67, 1220–1225, 1989.PubMedGoogle Scholar
  51. 51.
    Ludwig, M.S., F.M. Robatto, S. Simard, D. Stamenovic, and J.J. Fredberg. Lung tissue resistance during contractile stimulation: structural damping decomposition. J. Appl. Physiol. 72, 1332–1337, 1992.PubMedGoogle Scholar
  52. 52.
    Lutchen, K.R. and A.C. Jackson. Statistical measures of parameter estimates from models fit to respiratory impedance data: emphasis on joint variabilities. IEEE Trans. Biomed. Eng. 33, 1000–1010, 1986.PubMedCrossRefGoogle Scholar
  53. 53.
    Lutchen. K.R. and A.C. Jackson. Reliability of parameter estimates from models applied to respiratory impedance data. J. Appl. Physiol. 62:403 413, 1987.PubMedGoogle Scholar
  54. 54.
    Lutchen, K.R., Z. Hantos, and A.C. Jackson. Importance of low-frequency impedance data for reliably quantifying parallel inhomogeneities of respiratory mechanics. IEEE Trans. Biomed. Eng. 35:472–481, 1988.PubMedCrossRefGoogle Scholar
  55. 55.
    Lutchen, K.R.; Costa, K.D.; Physiological behavior of lumped parameters estimated from respiratory impedance data: use of forward/inverse modeling. IEEE Trans. Biomed. Eng. 11:1076–1086, 1990.CrossRefGoogle Scholar
  56. 56.
    Lutchen, K.R., R.H. Habib, H.L. Dorkin, and M.A. Wall. Relation of respiratory impedance to a multibreath nitrogen washout in healthy, asthmatic, and cystic fibrosis subjects. J. Appl. Physiol. 68:2139–2149, 1990.PubMedGoogle Scholar
  57. 57.
    Lutchen, K.R. and A.C. Jackson. Effects of tidal volume and methacholine on low-frequency total respiratory impedance in dogs. J. Appl. Physiol. 68:2128–2138, 1990.PubMedGoogle Scholar
  58. 58.
    Lutchen, K.R. D. W. Kaczka, B. Suki, G.M. Barnas, P. Barbini, and G. Cevenini. Low frequency respiratory mechanics using ventilator-driven oscillations. J. Appl. Physiol. 75(6): 2549–2560, 1993.PubMedGoogle Scholar
  59. 59.
    Lutchen, K.R. Sensitivity analysis of respiratory parameter uncertainties: Impact of criterion function form and constraints. J. Appl. Physiol. 69:766–775, 1990.PubMedGoogle Scholar
  60. 60.
    Lutchen, K.R. and A.C. Jackson. Confidence bounds on respiratory mechanical properties estimated from tranasfer fersus input impedance in humans versus dogs. IEEE Trans. Biomed. Eng. (39)6, 644–651, 1992.CrossRefGoogle Scholar
  61. 61.
    Lutchen, K.R.; Guirdenella, C; and Jackson, A.C., Inability to separate airway from tissue properties using input impedance in humans. J, Appl. Physiol. 68, 2403–2412, 1990.Google Scholar
  62. 62.
    Lutchen, K.R., J.R. Everett and A.C. Jackson. Influence of frequency range and input impedance on interpreting the airways tissue separation implied from transfer impedance J. Appl. Physiol. 73(3), 1089–1099, 1993.Google Scholar
  63. 63.
    Lutchen K.R., K. Yang, D.W. Kaczka, and B. Suki. Optimal ventilator waveform for estimating low frequency mechanical impedance J. Appl. Physiol. 75(1): 478–488, 1993.PubMedGoogle Scholar
  64. 64.
    Lutchen, K.R., B. Suki, Q. Zhang, F. Petak, B. Daroczy, and Z. Hantos. Airway and tissue mechanics during physiological breathing and bronchoconstriction in dogs. J. Appl. Physiol. 77(1), 373–385, 1994.PubMedGoogle Scholar
  65. 65.
    Lutchen, K.R., J.L. Greenstein, B. Suki. How inhomogeneities and airway walls affect frequency dependence and seperation of airway and tissue properties. J. Appl. Physiol. 80(5), 1696–1707, 1996.PubMedGoogle Scholar
  66. 66.
    Lutchen, K.R., Z. Hantos, F. Petak, A. Adamicza, B. Suki. Airway inhomogeneities contribute to apparent lung tissue resistance during constriction. J. Appl. Physiol 80(5): 1841–1849, 1996.PubMedGoogle Scholar
  67. 67.
    Lutchen, K.R. A. Sullivan, F.T. Arbogast, B.R. Celli, and A.C. Jackson. Use of transfer impedance measurements for clinical assessment of lung mechanics. Amer. J. of Resp. and Crit. Care Medicine. (under revision).Google Scholar
  68. 68.
    Maki, B.E. Interpretation of the coherence function when using pseudorandom inputs to identifynonlinear systems. IEEE Trans. Biomed. Eng. 33, 775–779, 1986 and Addendum, 35, 279–280, 1988.PubMedCrossRefGoogle Scholar
  69. 69.
    Marshall, R. and A.B. Dubois. The measurement of viscous resistance of the lung tissues in normal man. Clinical Sci. 15:161–170, 1956Google Scholar
  70. 70.
    Marshall, R. and A.B. Dubois. The viscous resistance of lung tissues in patients with pulmonary disease. Clinical Sci. 15:473–483, 1956Google Scholar
  71. 71.
    McIlroy, M.B., J. Mead, N.J. Selverstone, and E.P. Radford. Measurement of lung tissue viscous resistance using gases of equal kinematic viscosity. J. Appl. Physiol. 7:485, 1955.PubMedGoogle Scholar
  72. 72.
    Mead, J. Contribution of compliance of airways to frequency dependent behavior of the lungs. J. Appl. Physiol. 26: 670–673, 1969.PubMedGoogle Scholar
  73. 73.
    Michaelson, E.D., E.D. Grassman, and W. R. Peters. Pulmonary mechanics by spectral analysis of forced random noise. J. Clin. Invest. 56, 1210–1230, 1975.PubMedCrossRefGoogle Scholar
  74. 74.
    Mishima, M., Z. Balassy, and J.H.T. Bates. Acute pulmonary response to intravenous histamine using forced oscillations through alvoelar capsules of dogs. J. Appl. Physiol. 77(5), 2140–2148, 1994.PubMedGoogle Scholar
  75. 75.
    Mitzner, W., S. Blosser, D. Yager, E. Wagner,. Effect of bronchial smooth muscle contraction on lung compliance. J. Appl. Physiol. 72, 158–167, 1992.PubMedCrossRefGoogle Scholar
  76. 76.
    Nagase, T, J.G. Martin, and M.S. Ludwig. Comparative study of mechanical interdependence: effect of lung volume on Raw during induced constriction. J. Appl. Physiol 75(6):2500–2505, 1993.PubMedGoogle Scholar
  77. 77.
    Nagels, J., F. J. Landser, L. Van der Linden, J. Clement, and K.P. Van de Woestijne. Mechanical properties of lungs and chest wall during spontaneous breathing. J. Appl. Physiol. 49, 408–416, 1980.PubMedGoogle Scholar
  78. 78.
    Navajas, D., R. Farre, M. Rotger, and J. Canet. Recording pressue at the distal end of the endotracheal tube to measure respiratory impedance. Eur. Respir. J. 2, 178–184, 1988.Google Scholar
  79. 79.
    Navajas, D., R. Farre, J. Canet, M. Rotger, and J. Sanchis. Respiratory input impedance in anesthesized paralyzed patients. J. Appl. Physiol. 69, 1372–1379, 1990.PubMedGoogle Scholar
  80. 80.
    Oostveen, E., R. Peslin, C. Gallina, and A. Zwart. Flow and volume dependence of respiratory mechanical properties studied by forced oscillation. J. Appl. Physiol. 67, 2212–2218, 1989.PubMedGoogle Scholar
  81. 81.
    Otis, A.B., C.B. McKerrow, R.A. Bartlett, J. Mead, M.B. McElroy, N.J. Selverstone, and E.P. Radford. Mechanical factors in the distribution of ventilation. J. Appl. Physiol. 8, 427–443, 1956.PubMedGoogle Scholar
  82. 82.
    Peslin, R., C. Duvivier, J. Didelon, and C. Gallina. Respiratory impedance measured with head generator to minimize upper airway shunt. J. Appl. Physiol. 59:1790–1795, 1985.PubMedGoogle Scholar
  83. 83.
    Peslin, R., C. Gallina, D. Teculescu, and Q.T. Pham. Respiratory input and transfer impedances in children 9–13 years old. Bull. Eur. Physiopathol. Respir. 23, 107–112, 1987.PubMedGoogle Scholar
  84. 84.
    Peslin, R. J. Papon, C. Duvivier, and J. Richalet. Frequency response of the chest: modeling and parameter estimation. J. Appl. Physiol. 39, 523–534, 1975.PubMedGoogle Scholar
  85. 85.
    Peslin, C. C. Duvivier, and C. Gallina. Total respiratory input and transfer impedance in humans. J. Appl. Physiol. 59, 492–501, 1985.PubMedGoogle Scholar
  86. 86.
    Peslin., R. C. Saunier, and M. Marchand. Analysis of low-frequency lung impedance in rabbits with nonlinear models. J. Appl. Physiol. 79: 771–780, 1995.PubMedGoogle Scholar
  87. 87.
    Petak, F., Z. Hantos, A. Adamicza, and B. Daroczy. Partitioning of pulmonary impedance: modeling vs alveolar capsule approach. J. Appl. Physiol. 75(2): 513–521, 1993.PubMedGoogle Scholar
  88. 88.
    Renzi, P.E., C.A. Giurdanella, and A. C. Jackson. Improved frequency response of pneumotachometers by digital compensation. J. Appl. Physiol. 68:382–386, 1990.PubMedGoogle Scholar
  89. 89.
    Robatto, S. Simard, and.S. Ludwig How changes in the serial distribution of bronchoconstriction affect lung mechanics. J. Appl. Physiol. 74(6): 2838–2847, 1993.PubMedGoogle Scholar
  90. 90.
    Romero, P.V., and M.S. Ludwig. Maximal methacholine-induced constriction in rabbit lung: interactions between airways and tissue? J. Appl. Physiol. 70, 1044–1050, 1991.PubMedGoogle Scholar
  91. 91.
    Romero, P.V., F.M. Robatto, S. Simard, and M.S. Ludwig. Lung tissue behavior during methacholine challange in rabbits in vivo. J. Appl. Physiol. 73, 207–212, 1992.PubMedGoogle Scholar
  92. 92.
    Rotger, M., R. Peslin, C. Duvivier, D. Navajas, and C. Gallina. Density dependence of respiratory input and transfer impedances in humans. J. Appl. Physiol. 65, 928–933, 1988.PubMedGoogle Scholar
  93. 93.
    Rotger, M., R. Peslin, E. Oostveen, and C. Gallina. Confidence intervals of respiratory mechanical properties derived from transfer impedance. J. Appl. Physiol. 70, 2432–2438, 1991.PubMedGoogle Scholar
  94. 94.
    Rotger, M. R. Peslin, D. Navajas, and R. Farre. Lung and respiratory impedance at low frequency during mechanical ventilation in rabbits. J. Appl. Physiol. 78: 2153–2160, 1995.PubMedGoogle Scholar
  95. 95.
    Sato, J., B.L.K. Davey, F. Shardonofsky, and J.H.T. Bates. Low-frequency respiratory resistance in the normal dog during mechanical ventilation. J. Appl. Physiol. 70: 1536–1543, 1991.PubMedGoogle Scholar
  96. 96.
    Sato, J., B. Suki, L.K. Davey, and J.H.T. Bates. Effect of methacholine on low frequency mechanics of canine airways and lung tissue. J. Appl. Physiol. 75(1): 55–62, 1993.PubMedGoogle Scholar
  97. 97.
    Shardonofsky, F.R. J.M. McDonough, and M.M. Grunstein. Effects of positive end-expiratory pressure on lung tissue mechanics in rabbits. J. Appl. Physiol. 75(6):2506–2513, 1993.PubMedGoogle Scholar
  98. 98.
    Sly, P.D. and C. J. Lanteri. Differential responses of the airways and pulmonary tissues to inhaled histamine in young dogs. J. Appl. Physiol. 68, 1562–1567, 1990.PubMedGoogle Scholar
  99. 99.
    Suki, B. R. H. Habib, and A.C. Jackson. Wave propagation, input impedance, and wall mechanics of the calf trachea from 16–1,600 Hz. J. Appl. Physiol. 75(6):2755–2766, 1993.PubMedGoogle Scholar
  100. 100.
    Suki. B. and K.R. Lutchen. Pseudorandom signals to estimate apparent transfer and coherence functions of nonlinear systems: Applications to respiratory mechanics. IEEE Trans. Biomed. Eng. 39(1), 1142–1151, 1992PubMedCrossRefGoogle Scholar
  101. 101.
    Suki, B., Z. Hantos, B. Daroczy, G. Alkaysi, and S. Nagy. Nonlinearity and harmonic distortion of dog lungs measured by low frequency forced oscillations. J. Appl. Physiol. 71, 69–75, 1991.PubMedGoogle Scholar
  102. 102.
    Suki, B. and J.H.T. Bates. A nonlinear viscoelastic model of lung tissue mechanics. J. Appl. Physiol. 71, 826–833, 1991.PubMedGoogle Scholar
  103. 103.
    Suki, B. Nonlinear phenomena in respiratory mechanical measurments. J. Appl. Physiol.. 74(5): 2574–2584, 1993.PubMedGoogle Scholar
  104. 104.
    Suki, B., A-L Barabasi, and K.R. Lutchen. Lung tissue viscoelasticity: a mathematical framework and its molecular basis. J. Appl. Physiol. 76(6), 2749–2759, 1994.PubMedGoogle Scholar
  105. 105.
    Suki, B., Q. Zhang, and K.R. Lutchen. Relationship between frequency dependence and amplitude dependence in the lung: a nonlinear block-structured modeling approach. J. Appl. Physiol. 79(2): 660–671, 1995.PubMedGoogle Scholar
  106. 106.
    Suki, B., F. Petak, A. Adamicza, Z. Hantos, and K.R. Lutchen. Partitioning of airway and lung tissue properties from lung input impedance: comparison of in situ and open chest conditions. J. Appl. Physiol. 79(2): 660–671, 1995.PubMedGoogle Scholar
  107. 107.
    Suki, B., F. Petak, A. Adamicza, B. Daroczy, K.R. Lutchen, and Z. Hantos. Airways and lung tissues are more sensitive to methacholine in closed chest than in open chest dogs. J. Appl. Physiol. (submitted).Google Scholar
  108. 108.
    Tepper, R. J. Sato, B. Suki, J.G. Martin, and J.H.T. Bates. Low frequency pulmonary impedance in rabbits and its response to inhaled methacholine. J. Appl. Physiol.. 73, 290–295, 1992.PubMedGoogle Scholar
  109. 109.
    VanNoord, J.A., J. Clement, K.P. Van de Woestijne, and M. Demedts. Total respiratory resistance as a measure of response to bronchial challenge with histamine. Amer. Rev. Resp. Dis. 139, 921–926, 1989.PubMedGoogle Scholar
  110. 110.
    VanNoord, J.A., J. Clement, M. Cauberghs, and K.P. Van de Woestijne. Effects of rib cage and abdominal restriction on total respiratory resistance and reactance. J. Appl. Physiol. 61, 1736–1740.Google Scholar
  111. 111.
    Wiggs, B.R., R. Moreno, J.C. Hogg, C. Hillian, and P.D. Pare. A model of the mechanics of airway narrowing. J. Appl. Physiol. 69: 849–860, 1990.PubMedGoogle Scholar
  112. 112.
    Wiggs, B.R., C. Bosken, P.D. Pare, A. James, and J.C. Hogg. A model of the airway narrowing in asthma and chronic obstructive pulmonary disease. Am. Rev. Resp. Dis. 145:1251–1258, 1992.PubMedGoogle Scholar
  113. 113.
    Ying, Y., R. Pcslin, C. Duvivier, C. Gallina, and J. Felicia da Silava. Respiratory input and transfer impedances in patients with chronic obstructive pulmonary disease. Ear. Respir. J. 3, 1186–1192, 1990.Google Scholar
  114. 114.
    Zwart, A. and R. Peslin, editors. Mechancial Respiratory Impedance: the forced oscillation method. Contributions to the workshop held for the European Commission. Europ. Resp. Rev. vol 1, rev. 3, 1991.Google Scholar
  115. 115.
    Zhang, Q., B. Suki, and K.R. Lutchen. An extended harmonic distortion index to quantify system nonlinearities from broadband inputs: application to lung mechanics. Ann. Biomed. Eng. 23: 672–681, 1995.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press 1996

Authors and Affiliations

  • Kenneth R. Lutchen
    • 1
  • Béla Suki
    • 1
  1. 1.Department of Biomedical EngineeringBoston University Boston

Personalised recommendations