The Temporal Dynamics of Acute Induced Bronchoconstriction

  • Jason H. T. Bates


The mechanical properties of the lungs are crucial determinants of our ability to breathe effectively. There are a number of important diseases in which these mechanical properties change markedly. These properties can also be quickly altered by contraction of the smooth muscle which is wrapped around the conducting airways. This process is known as bronchoconstriction and is a hallmark feature of asthma, a common condition characterized by an abnormal bronchoconstrictor response. That is, when an asthmatic subject is exposed to stimuli that cause the airway smooth muscle to contract, the resulting contraction is much more extreme than in a normal individual[1].


Lung Volume Airway Smooth Muscle Respiratory Mechanic Conventional Mechanical Ventilation Conducting Airway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Macklem, P.T. Bronchial hyporesponsiveness. Chest. 87:1585–1595, 1985.CrossRefGoogle Scholar
  2. 2.
    Itkin, I.H., S.C. Anand, M. Yau, and G. Middlebrook. Quantitative inhalation challenge in allergic asthma. J. Allergy. 34:97–106, 1963PubMedCrossRefGoogle Scholar
  3. 3.
    Felarca, A.B., amd I.H. Itkin. Studies with the quantitative inhalation challenge technique. I. Curve of dose response to acetyl-beta-methylcholine in patients with asthma of known and unknown origin, hay fever subjects, and nonatopic volunteers. J. Allergy. 37:223–235, 1966.PubMedCrossRefGoogle Scholar
  4. 4.
    Ludwig, M.S., P.V. Romero, and J.H.T. Bates. A Comparison of the dose-response behavior of canie airways and parenchyma. J. Appl. Physiol. 67:1220–1225, 1989.PubMedGoogle Scholar
  5. 5.
    Lauzon, A.-M., G. Dechman, and J.H.T. Bates. Time course of respiratory mechanics during histamine challenge in the dog. J. Appl. Physiol. 73:2643–2647, 1992.PubMedGoogle Scholar
  6. 6.
    Bates J.H.T., and R. Peslin. Acute pulmonary response to i.v. histamine and fixed lung volume in dogs. J. Appl. Physiol. 75:405–411, 1993.PubMedGoogle Scholar
  7. 7.
    Bates J.H.T., A-M. Lauzon, G.S. Dechman, G.N. Maksym and T.F. Shuessler. Temporal dynamics of pulmonary response to intravenous histamine in dogs: effects of dose and lung volume. J. Appl. Physiol. 76:616–626, 1994.PubMedGoogle Scholar
  8. 8.
    Mishima, M., Z. Balassy and J.H.T. Bates. Acute pulmonary response to i.v. histamine using forced oscillations through alveolar capsules in dogs. J. Appl. Physiol. 77:2140–2148, 1994.PubMedGoogle Scholar
  9. 9.
    Similowski, T., and J.H.T. Bates. Two-compartment modelling of respiratory system mechanics at low frequencies: gas redistribution or tissue rheology? Eur. Respir. J. 4:353–358, 1991.PubMedGoogle Scholar
  10. 10.
    Lutchen, K.R., Z. Hantos, and A.C. Jackson. Importance of low-frequency impedance data for reliably quantifying parallel inhomogeneities of respiratory mechanics. IEEE Trans. Biomed. Eng. 35:472–481, 1988.PubMedCrossRefGoogle Scholar
  11. 11.
    Baydur, A., P.K. Behrakis, W.A. Zin, M. Jaeger, and J. Milic-Emili. A simple method for assessing the validity of the esophageal balloon technique. Am. Rev. Respir. Dis. 126:788–791, 1982.PubMedGoogle Scholar
  12. 12.
    Fredberg, J.J., D.H. Keefe, G.M. Glass, R.G. Castile, and I.D. Franz. Alveolar pressure nonhomogeneity during small-amplitude high-frequency oscillation. J. Appl. Physiol. 57:788–800, 1984.PubMedGoogle Scholar
  13. 13.
    Fredberg, J.J., R.H. Ingram, R.G. Castile, G.M. Glass and J.M. Drazen. Nonhomogeneity of lung response to inhaled histamine assessed with alveolar capsules. J. Appl. Physiol. 58:1914–1922, 1985.PubMedGoogle Scholar
  14. 14.
    Fung, Y.C.B. Biomechanics. Mechanical properties of living tissues. New York: Springer-Verlag, 1981.Google Scholar
  15. 15.
    Sato, J., B.L.K. Davey, F. Shardonofsky and J.H.T. Bates. Low-frequency respiratory system resistance in the normal dog during mathematical ventilation. J. Appl. Physiol. 70:1536–1543, 1991.PubMedGoogle Scholar
  16. 16.
    Draper, N.R., and H. Smith. Applied Regression Analysis. New York: Wiley, 1966, ch. 2.Google Scholar
  17. 17.
    Hsia, T.C. System Identification. Lexington, MA: D.C. Heath, 1977.Google Scholar
  18. 18.
    Avanzolini, G., P. Barbini, A. Cappello, and G. Cevenini. Real-time tracking of parameters of lung mechanics: Emphasis on algorithm tuning. J. Biomed. Eng. 12:489–495, 1990.PubMedCrossRefGoogle Scholar
  19. 19.
    Lauzon, A.-M. and J.H.T. Bates. Estimation of time-varying respiratory mechanical parameters by recursive least squares. J. Appl. Physiol. 71:1159–1165, 1991.PubMedGoogle Scholar
  20. 20.
    Ludwig, M.S., I. Dreshaj, J. Solway, A. Munoz, and R.H. Ingram, Jr. Partitioning of pulmonary resistance during constriction in the dog: effects of volume history. J. Appl. Physiol. 62:807–815, 1987.PubMedGoogle Scholar
  21. 21.
    Kariya, S.T., L.M. Thompson, E.P. Ingenito, and R.H. Ingram, Jr. Effects of lung volume, volume history, and methacholine on lung tissue viscance. J. Appl. Physiol. 66:977–982, 1989.PubMedCrossRefGoogle Scholar
  22. 22.
    Mitzner. W., S. Blosser, D. Yager, and E. Wagner. Effect of bronchial smooth muscle contraction on lung compliance. J. Appl. Physiol. 72:158–167, 1992.PubMedCrossRefGoogle Scholar
  23. 23.
    Otis, A.B., C.B. McKerrow, R.A. Bartlett, J. Mead, M.B. McIlroy, N.J. Selverstone and E.P. Radford. Mechanical factors in the distribution of pulmonary ventilation. J. Appl. Physiol. 8:427–443, 1956.PubMedGoogle Scholar
  24. 24.
    Lauzon, A.-M., G. Dechman, J.G. Martin, and J.H.T. Bates. The complete time course of bronchoconstriction by i.v. bolus histamine in the dog. Respir. Physiol. 99:127–138, 1995.PubMedCrossRefGoogle Scholar
  25. 25.
    Davey, B.L.K. and J.H.T. Bates. Regional lung impedance from forced oscillations through alveolar capsules. Resp. Physiol. 91:165–182, 1993.CrossRefGoogle Scholar
  26. 26.
    Balassy, Z., M. Mishima, and J.H.T. Bates. Changes in regional lung impedance following i.v. histamine bolus in dogs: effects of lung volume. J. Appl. Physiol. 78:875–880, 1995.PubMedGoogle Scholar
  27. 27.
    Bates, J.H.T., M. Mishima, and Z. Balassy. Measuring the mechanical properties of the lung in vivo with spatial resolution at the acinar level. Physiol. Meas. 16:151–159, 1995.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press 1996

Authors and Affiliations

  • Jason H. T. Bates
    • 1
  1. 1.Meakins—Christie Laboratories and Departmant of Biomedical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations