Possible Fractal and/or Chaotic Breathing Patterns in Resting Humans

  • R. L. Hughson
  • Y. Yamamoto
  • J. -O. Fortrat
  • R. Leask
  • M. S. Fofana


Déjours[5] was one of the first to comment on the breath-by-breath variations in ventilation (V,:) and gas exchange (oxygen uptake, VO2, and carbon dioxide output, VCO2). It was suggested that the spontaneous variations in alveolar ventilation and perfusion of the lungs, as well as variations in venous blood O2 and CO2 content, were responsible for these breath-by-breath patterns. He observed that all fundamental respiratory variables varied around the mean value. Since that time, there have been many other observations of breath-by-breath variation in the breathing pattern. Lenfant[13] further characterized the pattern of variation, and Hlastala et al.[9] observed cyclical variations in functional residual capacity (FRC). Attempts to quantify the breath-by- breath variation have ranged from computation of autocorrelation functions by Benchetrit and Bertrand,[1] to analysis of run times[2] to more recent methods of spectral analysis,[11],[24] and of chaos theory[6],[15],[17]–[19]. The implication of fractal and/or chaotic behaviour in the breathing pattern has wide ranging consequences including, for chaotic systems, the requirement that the system be deterministic. The purpose of this paper is to explore further whether patterns of breathing are consistent with the properties of fractal or chaotic systems


Heart Rate Variability Lyapunov Exponent Chaotic System Breathing Pattern Surrogate Data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benchetrit, G. and F. Bertrand. A short term memory in the respiratory centres: statistical analysis. Resp. Physiol. 23: 147–158, 1975.CrossRefGoogle Scholar
  2. 2.
    Bolton, D. P. G. and J. Marsh. Analysis and interpretation of turning points and run lengths in breath-by-breath ventilatory variables. J. Physiol. (London) 351 451–4591984.Google Scholar
  3. 3.
    Butler, G. C., Y. Yamamoto, and R. L. Hughson. Heart rate variability and fractal dimension during orthostatic challenges. J. Appl. Physiol. 752602–26121993.PubMedGoogle Scholar
  4. 4.
    DeBoer, R. W., J._M. Karemaker. and J. Strackee. Comparing spectra of a series of point events particularly for heart rate variability data. IEEE Trans. Biomed. Eng. 31: 384–387, 1984.PubMedCrossRefGoogle Scholar
  5. 5.
    Dejours, P., R. Puccinelli, J. Armand, and M. Dicharry. Breath-to-breath variations of pulmonary gas exchange in resting man. Respir. Physiol. 1: 265–280, 1966.PubMedCrossRefGoogle Scholar
  6. 6.
    Donaldson, G. C. The chaotic behaviour of resting human respiration. Respir. Physiol. 88: 313–321, 1992.PubMedCrossRefGoogle Scholar
  7. 7.
    Glass, L. and D. Kaplan. Time series analysis of complex dynamics in physiology and medicine. Med. Prog. Technol. 19: 115–128, 1993.PubMedGoogle Scholar
  8. 8.
    Goldberger, A. L., D. R. Rigney. and B. J. West. Chaos and fractals in human physiology. Sci. Am. 262: 42–49. 1990.PubMedCrossRefGoogle Scholar
  9. 9.
    Hlastala. M. P., B. Wranne, and C. J. Lenfant. Cyclical variations in FRC and other respiratory variables in resting man. J. Appl. Physiol. 34: 670–676, 1973.PubMedGoogle Scholar
  10. 10.
    Hughson, R. L.. D. R. Northey, H. C. Xing, B. H. Dietrich, and J. E. Cochrane. Alignment of ventilation and gas fraction for breath-by-breath respiratory gas exchange calculations in exercise. Comput. Biomed. Res. 24: 118–128, 1991.PubMedCrossRefGoogle Scholar
  11. 11.
    Hughson, R. L. and Y. Yamamoto. On the fractal nature of breath-by-breath variation in ventilation during dynamic exercise. In: Control of Breathing and Its Modeling Perspectives, edited by Y. Honda. Y. Miyamoto. K. Konno, and J. Widdicombe. New York: Plenum Press, 1992. p. 255–262.Google Scholar
  12. 12.
    Kennel, M. B., R. Brown, and H. D. I. Abarbanel. Determining embedding dimension for phase-space reconstruction using geometrical construction. Phys. Rev. 45: 3403–3410, 1992.CrossRefGoogle Scholar
  13. 13.
    Lenfant, C. Time-dependent variations of pulmonary gas exchange in normal man at rest. J. Appl. Physiol. 22: 675–684, 1967.PubMedGoogle Scholar
  14. 14.
    Ruelle, D. Deterministic chaos: the science and the fiction. Proc. R. Soc. Lond. A. 427: 241–248, 1990.CrossRefGoogle Scholar
  15. 15.
    Sammon, M. Symmetry, bifurcations, and chaos in a distributed respiratory control system. J. Appl. Physiol. 77: 2481–2495, 1994.PubMedGoogle Scholar
  16. 16.
    Sammon, M. Geometry of respiratory phase switching. J. Appl. Physiol. 77: 2468–2480, 1994.PubMedGoogle Scholar
  17. 17.
    Sammon, M., J. R. Romaniuk, and E. N. Bruce. Bifurcations of the respiratory pattern associated with reduced lung volume in the rat. J. Appl. Physiol. 75: 887–901, 1993.PubMedGoogle Scholar
  18. 18.
    Sammon, M., J. R. Romaniuk, and E. N. Bruce. Role of deflation-sensitive feedback in control of end-expiratory volume in rats. J. Appl. Physiol. 75: 902–911, 1993.PubMedGoogle Scholar
  19. 19.
    Sammon, M., J. R. Romaniuk, and E. N. Bruce. Bifurcations of the respiratory pattern produced with phasic vagal stimulation in the rat. J. Appl. Physiol. 75: 912–926, 1993.PubMedGoogle Scholar
  20. 20.
    Sano, M. and Y. Sawada. Measurement of Lyapunov spectrum from a chaotic time series. Phys. Rev. Lett. 55: 1082–1085. 1985.PubMedCrossRefGoogle Scholar
  21. 21.
    Saul, J. P., P. Albrecht, R. D. Berger, and R. J. Cohen. Analysis of long term heart rate variability: methods, 1/f scaling and implications. Comp. Cardiol. 14: 419–422, 1988.Google Scholar
  22. 22.
    Schepers, H. E., J. H. G. M. Van Beek, and J. B. Bassingthwaighte. Four methods to estimate the fractal dimension from self-affine signals. IEEE Eng. Med. Biol. June: 57–71, 1992.Google Scholar
  23. 23.
    Sugihara, G. and R. M. May. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344: 734–741, 1990.PubMedCrossRefGoogle Scholar
  24. 24.
    Szeto, H. H., P. Y. Cheng, J, A. Decena, Y. Cheng, D.-L. Wu, and G. Dwyer. Fractal properties in fetal breathing dynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 263: R141–R147, 1992.Google Scholar
  25. 25.
    Theiler, J., S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer. Testing for nonlinearity in time series: the method of surrogate data. Physica D 58: 77–94, 1992.CrossRefGoogle Scholar
  26. 26.
    Tuck, S. A., Y. Yamamoto, and R. L. Hughson. The effects of hypoxia and hyperoxia on the 1/f nature of breath-by-breath ventilatory variability. In: Modelling and Control of Ventilation, edited by S. Semple, L. Adams and B. Wfaipp. NY: Plenum, 1995, p.297–302.Google Scholar
  27. 27.
    Wagner, P. G. and F. L. Eldridge. Development of short-term potentiation of respiration. Respir. Physiol. 83: 129–140, 1991.PubMedCrossRefGoogle Scholar
  28. 28.
    Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov exponents from a time series. Physica D 16: 285–317, 1985.CrossRefGoogle Scholar
  29. 29.
    Yamamoto, Y., J. O. Fortrat, and R. L. Hughson. On the fractal nature of heart rate variability in humans: effects of respiratory sinus arrhythmia. Am. J. Physiol. Heart Circ. Physiol 269:H480–H486, 1995.Google Scholar
  30. 30.
    Yamamoto, Y. and R. L. Hughson. Extracting fractal components from time series. Physica D 68: 250–264, 1993.CrossRefGoogle Scholar
  31. 31.
    Yamamoto, Y. and R. L. Hughson. On the fractal nature of heart rate variability in humans: effects of data length and β-adrenergic blockade. Am. J. Physiol 266: R40–R49, 1994.PubMedGoogle Scholar
  32. 32.
    Yamamoto, Y., R. L. Hughson, J. R. Sutton, C. S. Houston, A. Cymerman, E. L. Fallen, and M. V. Kamath. Operation Everest II: An indication of deterministic chaos in human heart rate variability at extreme simulated altitude. Biol. Cybern. 69: 205–212, 1993.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press 1996

Authors and Affiliations

  • R. L. Hughson
    • 1
  • Y. Yamamoto
    • 1
  • J. -O. Fortrat
    • 1
  • R. Leask
    • 1
  • M. S. Fofana
    • 1
  1. 1.Department of KinesiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations