Games Evolution Plays

  • Karl Sigmund


The evolution of cooperation is frequently analysed in terms of the repeated Prisoner’s Dilemma game. Computer simulations show that the emergence of cooperation is a robust phenomenon. However, the strategy which eventually gets adopted in the population seems to depend sensitively on fine details of the modelling process, so that it becomes difficult to predict the evolutionary outcome in real populations.


Evolutionary Game Theory Mutual Cooperation Mutual Defection Good Standing Human Cooperation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. Axelrod, R. (1984) The Evolution of Cooperation, Basic Books, New York (reprinted 1989 in Penguin, Harmondsworth).Google Scholar
  2. Boerlijst, M., Nowak, M. and Sigmund, K. (1996), The logic of contrition, to appear in Journal of Theoretical Biology.Google Scholar
  3. Boyd, R. (1989), Mistakes Allow Evolutionary Stability in the Repeated Prisoner’s Dilemma Game, Journal of Theoretical Biology 136, 47–56.PubMedCrossRefGoogle Scholar
  4. Frean, M.R. (1994), The Prisoner’s Dilemma without synchrony, Proceedings of the Royal Society London B, 257, 75–79.CrossRefGoogle Scholar
  5. Heinson, R. and Packer, C. (1995), Complex cooperative strategies in group-territorial african lions, Science 269 1260–2.CrossRefGoogle Scholar
  6. Hofbauer, J. and Sigmund, K. (1988), The Theory of Evolution and Dynamical Systems, Cambridge UP.Google Scholar
  7. Lindgren, K. (1991) Evolutionary phenomena in simple dynamics, in Artificial life II (ed. C.G. Langton et al), Santa Fe Institute for Studies in the Sciences of Complexity, X, 295–312.Google Scholar
  8. Lindgren, K. (1996), Evolutionary Dynamics in Game-Theory Models, to appear in The Economy as an Evolving, Complex System II, ed. W. Brian Arthur et al.Google Scholar
  9. Lindgren, K. and Nordahl, M.G. (1994), Evolutionary dynamics of spatial games, Physica D 75, 292–309.CrossRefGoogle Scholar
  10. Maynard Smith, J. (1982) Evolution and the theory of games, Cambridge UP.Google Scholar
  11. Milinski, M. (1987), Tit for tat in sticklebacks and the evolution of cooperation, Nature 325, 434–435.CrossRefGoogle Scholar
  12. Morell, V. (1995), Cowardly lions confound cooperation theory, Science 269, 1216–7.PubMedCrossRefGoogle Scholar
  13. Nowak, M. and Sigmund, K. (1992), Tit for tat in heterogeneous populations, Nature 355, 250–2.CrossRefGoogle Scholar
  14. Nowak, M. and Sigmund, K. (1993), Win-stay, lose-shift outperforms tit-for-tat, Nature, 364, 56–8.PubMedCrossRefGoogle Scholar
  15. Nowak, M. and Sigmund, K. (1994), The alternating Prisoner’s Dilemma, Journal of Theoretical Biology 168, 219–26.CrossRefGoogle Scholar
  16. Nowak, M., Sigmund, K. and El-Sedy, E. (1995), Automata, repeated games, and noise, Journal of Mathematical Biology 33, 703–32.CrossRefGoogle Scholar
  17. Selten, R. (1975), Re-examination of the perfectness concept for equilibrium points in extensive games, International Journal of Game Theory 4, 25–55.CrossRefGoogle Scholar
  18. Sinervo, B. and Lively, C.M. (1996), The rock-paper-scissors game and the evolution of alternative male strategies, Nature 380, 240–243.CrossRefGoogle Scholar
  19. R. Sugden (1986), The economics of Rights, Co-operation and Welfare, Blackwell, New York.Google Scholar
  20. Trivers, R. (1985), Social Evolution, Menlo Park CA, Benjamin Cummings.Google Scholar
  21. Wedekind, C. and Milinski, M. (1996), Human cooperation in the simultaneous and the alternating Prisoner’s Dilemma: Pavlov versus Generous Tit For Tat. Proceedings of the National Academy of Science of the USA, 93, 2686–2689.CrossRefGoogle Scholar
  22. Weibull (1995) Evolutionary Game Theory, MIT Press, Cambridge, Mass.Google Scholar
  23. Wu, J. and R. Axelrod (1995), How to cope with noise in the iterated Prisoner’s Dilemma, Journal of Conflict Resolution 39, 183–9.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Karl Sigmund
    • 1
  1. 1.Institut für MathematikUniversität WienViennaAustria

Personalised recommendations