Blood Pumps Constructed from Skeletal Muscle

  • K. A. Greer
  • D. R. Anderson
  • L. W. Stephenson


Skeletal muscle is capable of transforming chemical energy into mechanical energy with extraordinary efficiency. We and others have shown that skeletal muscle has the capacity to become fatigue-resistant and to adapt to new patterns of work. These changes occur when skeletal muscle is subjected to low-frequency electrical stimulation for a period of several weeks.


Skeletal Muscle Latissimus Dorsi Stroke Work Blood Pump Latissimus Dorsi Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leriche R, Fontaine R. Essai expérimental de traitment de certains infarctus de myocarde et de l’anevrisme du coeur par une greffe de muscle strié. Bull Soc Nat. Chir. 1933;59:229.Google Scholar
  2. 2.
    Beck CS. A new blood supply to the heart by operation. Surg Gynecol Obstet. 1935;61:407.Google Scholar
  3. 3.
    Petrovsky BV. The use of the diaphragm grafts for plastic operations in thoracic surgery. J Thorac Cardiovasc Surg. 1961;41:348.PubMedGoogle Scholar
  4. 4.
    Petrovsky BV. Surgical treatment of cardiac aneurysms. J Cardiovasc Surg (Torino). 1966;2:87.Google Scholar
  5. 5.
    Macoviak JA, Stephenson LW, Spielman S et al. Electrophysiological and mechanical characteristics of diaphragmatic autograft used to enlarge the right ventricle. Surg Forum. 1980;31:270.Google Scholar
  6. 6.
    Macoviak JA, Stephenson LW, Spielman S et al. Replacement of ventricular myocardium with diaphragmatic skeletal muscle: short term studies. J Thorac Cardiovasc Surg. 1981;81:519.PubMedGoogle Scholar
  7. 7.
    Macoviak JA, Stephenson LW, Alavi A, Kelly AM, Edmunds LH Jr. Effects of electrical stimulation on diaphragmatic muscle used to enlarge the right ventricle. Surgery. 1981;90:271.PubMedGoogle Scholar
  8. 8.
    Macoviak JA, Stephenson LW, Kelly A, Likoff M, Riechek N, Edmunds LH Jr. Partial replacement of the right ventricle with a synchronously contracting diaphragmatic skeletal muscle autograft. Proceedings of the Third Meeting of the International Society for Artificial Organs. 1981;5(Suppl.l):550.Google Scholar
  9. 9.
    Anderson WA, Anderson JS, Acker MA et al. Skeletal muscle applied to the heart: a word of caution. Circulation. 1988;78;III–I80.Google Scholar
  10. 10.
    Magovern GJ, Park SB, Magovern GJ Jr et al. Latissimus dorsi as a functioning synchronously paced muscle component in the repair of a left ventricular aneurysm. Ann Thorac Surg. 1986;41:116.PubMedCrossRefGoogle Scholar
  11. 11.
    Carpentier A, Chachques JC. Myocardial substitution with a stimulated skeletal muscle: first successful clinical case. Lancet. 1985;1:1267.PubMedCrossRefGoogle Scholar
  12. 12.
    Nakajima H, Niinami H, Hooper TL et al. Cardiomyoplasty: probable mechanism of effectiveness in infarct model using the pressure-volume relationship. Ann Thorac Surg. 1994;57:407.PubMedCrossRefGoogle Scholar
  13. 13.
    Acker MA, Hammond RL, Mannion JD, Salmons S, Stephenson LW. An autologous biologic pump motor. J Thorac Cardiovasc Surg. 1986;92:733.PubMedGoogle Scholar
  14. 14.
    Acker MA, Hammond RL, Mannion JD, Salmons S, Stephenson LW. Skeletal muscle as the potential power source for a cardiovascular pump: assessment in vivo. Science. 1987;236:321.CrossRefGoogle Scholar
  15. 15.
    Acker MA, Anderson WA, Hammond RL et al. Skeletal muscle ventricles in circulation: one to eleven weeks experience. J Thorac Cardiovasc Surg. 1987;94:163PubMedGoogle Scholar
  16. 16.
    Mannion JD, Hammond RL, Stephenson LW. Hydraulic pouches of canine latissimus dorsi: potential for left ventricular assistance. J Thorac Cardiovasc Surg. 1986;91:534.PubMedGoogle Scholar
  17. 17.
    Mannion JD, Velchik MA, Acker M et al. Transmural blood flow of multi-layered latissimus dorsi skeletal muscle ventricles during circulatory assistance. Trans Am Soc Artif Intern Organs. 1986;32:454.Google Scholar
  18. 18.
    Mannion JD, Acker MA, Hammond RL, Stephenson LW. Four-hour circulatory assistance with canine skeletal muscle ventricles. Surg Forum. 1986;37;211.Google Scholar
  19. 19.
    Mannion JD, Acker MA, Hammond RL, Faltemeyer W, Duckett S, Stephenson LW. Power output of skeletal muscle ventricles in circulation: short-term studies. Circulation. 1987;76:155.PubMedGoogle Scholar
  20. 20.
    Mocek FW, Anderson DR, Pochettino A et al. Skeletal muscle ventricles in circulation long-term: 191 to 836 days. J Heart Lung Transplant. 1992;11:S334.PubMedGoogle Scholar
  21. 21.
    Anderson DR, Pochettino A, Hammond RL et al. Autologously lined skeletal muscle ventricles in circulation: up to 9 months’ experience. J Thorac Cardiovasc Surg. 1991;101:661.PubMedGoogle Scholar
  22. 22.
    Nakajima H, Thomas GA, Nakajima HO et al. Skeletal muscle ventricles as aortic diastolic counterpulsators. Tex Heart Inst J. 1993;20:105.PubMedGoogle Scholar
  23. 23.
    Thomas GA, Lelkes PI, Chick DM et al. Skeletal muscle ventricles: in search of thrombo-resistant linings. In: Carpentier A, Chachques JC, Grandjean P, editors. Cardiomyoplasty. New York: Futura (In press).Google Scholar
  24. 24.
    Kantrowitz A, McKinnon W. The experimental use of the diaphragm as an auxiliary myocardium. Surg Forum. 1959;9:266.Google Scholar
  25. 25.
    Kantrowitz A. Functioning autogenous muscle used experimentally as an auxiliary ventricle. Trans Am Soc Artif Intern Organs. 1960;6:305.PubMedGoogle Scholar
  26. 26.
    Kusserow BK, Clapp JF. A small ventricle-type pump for prolonged perfusions: construction and initial studies including attempts to power a pump biologically with skeletal muscle. Trans Am Soc Artif Organs. 1964;10:74.Google Scholar
  27. 27.
    Spotnitz HM, Merker C, Malm JR. Applied physiology of the canine rectus abdominis. Trans Am Soc Artif Organs. 1974;20:747Google Scholar
  28. 28.
    Frank O, Zur Dynamik des Herzmuskets. Z Biol. 1895:32:370.Google Scholar
  29. 29.
    Vachon BR, Kunov J. Zingg W Mechanical properties of diaphragm muscles in dogs. Med Biol Eng. 1975;13:252.PubMedCrossRefGoogle Scholar
  30. 30.
    Von Recum A, Stule JP, Hamada O, Baba J, Kantrowitz A. Long term stimulation of a diaphragm muscle pouch. J Surg Res 1977;23:422.CrossRefGoogle Scholar
  31. 31.
    Juffe A, Ricoy JR, Marquez J, Castillo-Olivares JL, Figuera D. Cardialization: a new source of energy for circulatory assistance. Vasc Surg. 1978;12:10.Google Scholar
  32. 32.
    Mannion JD, Velchik M, Hammond RL et al. Effects of collateral blood vessel ligation and electrical conditioning on blood flow in dog latissimus dorsi muscle J Surg Res. 1989;47:332.PubMedCrossRefGoogle Scholar
  33. 33.
    Butler AJ, Eccles JC, Eccles RM. Differentiation of fast and slow muscles in the cat hind limb. J Physiol. 1960;150:399.Google Scholar
  34. 34.
    Butler AJ, Eccles JC, Eccles RM. Interactions between motor neurons and muscles in respect of the characteristic speeds of their responses J Physiol. 1960;150:417.Google Scholar
  35. 35.
    Salmons S, Vrbova G. The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol. 1969;21:535.Google Scholar
  36. 36.
    Pette D, Muller W, Leiser E, Vrbova G. Time dependent effects on contractile properties, fiber population, myosin light chains and enzymes of energy metabolism in intermittently and continuously stimulation fast-twitch muscles of the rabbit Pfleugers Arch. 1976;364:103.CrossRefGoogle Scholar
  37. 37.
    Henry CG, Lowry OH. Quantitative histochemistry of canine cardiac Purkinje fibers. Am J Physiol. 1983;245:H824.PubMedGoogle Scholar
  38. 38.
    Clark BJ, Acker MA, Subramanian H et al. In vivo P-NMR spectroscopy of electrically conditioned skeletal muscle. Am J Physiol. 1988;254:C258.PubMedGoogle Scholar
  39. 39.
    Bridges CR Jr, Clark BJ, Hammond RL, Stephenson LW. Skeletal muscle bioenergetics during fatigue. Am J Physiol (Cell). 1991;29:C643.Google Scholar
  40. 40.
    Acker MA, Anderson WA, Hammond RL et al. Oxygen consumption of chronically stimulated skeletal muscle. J Thorac Cardiovasc Surg. 1987;94:702.PubMedGoogle Scholar
  41. 41.
    Salmons S, Hendriksson J. The adaptive response of skeletal muscle to increased use. Muscle Nerve. 1981;4:94.PubMedCrossRefGoogle Scholar
  42. 42.
    Acker MA, Mannion JD, Brown WL et al. Canine diaphragm muscle after one year of continuous electrical stimulation: its potential as a myocardial substitute. J Appl Physiol. 1987;62:1264.PubMedGoogle Scholar
  43. 43.
    Armenti FR, Bitto T, Macoviak JA. et al. Transformation of canine diaphragm to fatigue resistant muscle by phrenic nerve stimulation. Surg Forum. 1984;35:258.Google Scholar
  44. 44.
    Macoviak JA, Stephenson LW, Armenti F et al. Electrical conditioning of in situ skeletal muscle for replacement of myocardium. J Surg Res. 1982;32:429.PubMedCrossRefGoogle Scholar
  45. 45.
    Mannion JD, Bitto T, Hammond RL, Rubinstein NA, Stephenson LW. Histochemical and fatigue characteristics of conditioned canine latissimus dorsi muscle. Circ. Res. 1986;58:298.PubMedGoogle Scholar
  46. 46.
    Johnson E. Force-interval relationship of cardiac muscle. In: Berna RM, editor. Handbook of physiology. Vol. I. Section 2. Bethesda: American Physiological Society; 1979:475.Google Scholar
  47. 47.
    Dewar ML, Drinkwater DC, Wittnich C, Chiu RC. Synchronously stimulated skeletal muscle graft for myocardial repair. J Thorac Cardiovasc Surg. 1984; 87:325.PubMedGoogle Scholar
  48. 48.
    Carlson FD, Wilkie DR. Muscle physiology. Englewood: Prentice Hall; 1974:33.Google Scholar
  49. 49.
    Stevens L, Brown J. Can non-cardiac muscle provide useful cardiac assistance? Preliminary studies of the properties of skeletal muscle. Am Surg. 1986;52:423.PubMedGoogle Scholar
  50. 50.
    Pochettino A, Spanta AD, Hammond RL et al. Skeletal muscle ventricles for total heart replacement. Ann Surg. 1990;212:345.PubMedCrossRefGoogle Scholar
  51. 51.
    Niinami H, Hooper TL, Hammond RL et al. Functional evaluation of intra-thoracic versus extra-thoracic skeletal muscle ventricles. J Surg Res. 1993;54:78.CrossRefGoogle Scholar
  52. 52.
    Neilson LR, Brister SJ, Khalafalla AS, Chiu RCJ. Left ventricular assistance in dogs using a skeletal muscle powered device for diastolic augmentation. J Heart Transplant. 1985;4:343.PubMedGoogle Scholar
  53. 53.
    Anderson DR, Pochettino A, Hammond RL et al. Autogenously lined skeletal muscle ventricles in circulation: up to nine months experience. J Thorac Cardiovasc Surg. 1991;101:661.PubMedGoogle Scholar
  54. 54.
    Thomas GA, Lu H, Isoda S et al. Pericardium-lined skeletal muscle ventricles in circulation up to 589 days. Ann Thorac Surg. 1994;58:978.PubMedCrossRefGoogle Scholar
  55. 55.
    Thomas GA, Lelkes PI, Isoda S et al. Endothelial-lined skeletal muscle ventricles in circulation. J Thorac Cardiovasc Surg. 1995;109:66PubMedCrossRefGoogle Scholar
  56. 56.
    Bridges CR, Anderson WA, Hammond RL, Anderson JS, Stephenson LW. Functional right heart replacement with a skeletal muscle. Circulation. 1989;80:183.Google Scholar
  57. 57.
    Niinami H, Hooper TL, Hammond RL et al. A new configuration for right ventricular assist with skeletal muscle ventricle: short term studies. Circulation. 1991;84:2370.Google Scholar
  58. 58.
    Niinami H, Hooper TL, Hammond RL et al. Skeletal muscle ventricles in the pulmonary circulation: up to sixteen weeks experience. Ann Thorac Surg. 1992;53:750.PubMedCrossRefGoogle Scholar
  59. 59.
    Hooper TL, Niinami H, Lu H et al. Skeletal muscle ventricles as left atrial-aortic pumps: short-term studies. Ann Thorac Surg. 1992;54:316.PubMedCrossRefGoogle Scholar
  60. 60.
    Lu H, Fietsam R Jr, Hammond RL et al. Skeletal muscle ventricles, configuration left ventricular apex to aorta: acute in circulation studies. Ann Thorac Surg. 1993;55:78.PubMedCrossRefGoogle Scholar
  61. 61.
    Stevens L, Badylak SF, Janas W et al. A skeletal muscle ventricle made from rectus abdominis muscle in the dog. J Surg Res. 1989;46:84.PubMedCrossRefGoogle Scholar
  62. 62.
    Brister S, Fradet G, Dewar M, Wittnich C, Lough J, Chiu RC-J. Transforming skeletal muscle for myocardial assist: a feasibility study. Can J Surg. 1985;28:341.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • K. A. Greer
  • D. R. Anderson
  • L. W. Stephenson

There are no affiliations available

Personalised recommendations