Permanent Cardiac Replacement by A Total Artificial Heart: Experimental Background and Current Problems

  • W. J. Kolff


I could not be more delighted. Nearly 13 years after the implantation of an artificial heart into Dr Barney Clark in 1982, the Utah-type artificial heart (first called the Jarvik heart, then the Symbion heart, and now the CardioWest heart) has returned to Utah. On 12 April 1995 James W. Long implanted this artificial heart in Alvin Marsden at the LDS Hospital in Salt Lake City. It was my privilege to visit with him 10 days later.


Drive System Artificial Organ Artificial Heart Total Artificial Heart Cardiac Output Monitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akutsu T, Kolff WJ. Permanent substitute for valves and hearts. Am Soc Artif Intern Organs. 1958;4:230.Google Scholar
  2. 2.
    Kolff WJ, Akutsu T, Dreyer B, Norton H. Artificial heart in the chest and use of polyurcthane for making hearts, valves and aortas. Am Soc Artif Intern Organs. 1959;5:298.Google Scholar
  3. 3.
    Kolff WJ. The artificial heart: research, development or invention? Dis Chest, 1969;36:314.Google Scholar
  4. 4.
    Hiller KH, Seidel W, Kolff WJ. An electronic-mechanical control for an intrathoracic artificial heart. Am J Med Electronics. 1963;2:212.Google Scholar
  5. 5.
    Kolff WJ, Hiller K, Seidel W et al. Results obtained with artificial hearts driven by the N.A.S.A. Servomechanism and the pathologic physiology of artificial hearts. Am Soc Artif Intern Organs. 1962;8:135.Google Scholar
  6. 6.
    Nose Y, Kolff WJ. The intracorporeal mechanical heart. Vase Dis. 1966;3:25.Google Scholar
  7. 7.
    Kwan-Gett C, Zwart HH, Kralios AC et al. A prosthetic heart with hemispherical ventricles designed for low hemolytic action. Am Soc Artif Intern Organs. 1970;16:409.Google Scholar
  8. 8.
    Kolff WJ. The Tenth Hastings Lecture. Experiences and practical considerations for the future of artificial hearts and of mankind. Artif Organs. 1988;12:89.PubMedCrossRefGoogle Scholar
  9. 9.
    Kolff J, Cavarocchi NC, Riebman JB, McClurken JB, Jessup M. The antificial heart: design, capabilities, and indications in the treatment of heart failure. Heart Failure. 1988;4:13.Google Scholar
  10. 10.
    Willshaw P, Nielsen SD, Nanas J, Pichel R, Olson DB. A cardiac output monitor and diagnostic unit for pneumatically driven artificial heart. Artif Organs. 1984;8:215.PubMedCrossRefGoogle Scholar
  11. 11.
    Kless H, Blumenthal NV, Muhnhaupl A, Affeld K, Bucherl ES. Extracorporeal measurement of hemodynamic parameter of the artificial heart. Eur Soc Artif Organs. 1974;1:166.Google Scholar
  12. 12.
    Heimes HP, Klusen F. Completely integrated wearable TAH-drive unit. Int J Artif Organs. 1982;5:157.PubMedGoogle Scholar
  13. 13.
    Affeld K. A redundant portable driver for the total artificial heart. Am Soc Artif Intern Organs. 1984;13:1 (abstract).Google Scholar
  14. 14.
    Lioi AP, Orth JL, Crump KR et al. In vitro development of automatic control for the actively filled electrohydraulic heart. J Artif Organs. 1986;12(2):152.Google Scholar
  15. 15.
    Kolff J, Deeb GM, Cavarocchi NC et al. The artificial heart in human subjects. J Thurac Cardiovasc Surg. 1984;87:824.Google Scholar
  16. 16.
    Kinoshita M, Hansen C, Khanwilkar P, White K, Olson DB. Determination of atrial shunt size to balance electrohydraulic TAH. Am Soc Artif Intern Organs. 1991;20:13 (abstract).Google Scholar
  17. 17.
    Kiraly RJ. Development of an implantable left ventricular assist system. In: Andrade J, editor. Artificial organs. New York: VCH;1988:45.Google Scholar
  18. 18.
    Seare WJ Jr, Pantalos GM, Burns GL, Mohammad F, Olsen DB. The use of controlled porosity surface modifications in artificial heart applications. Proceedings of Cardiovascular Science and Technology Conference. 12–14 December 1992. (AAMI).Google Scholar
  19. 19.
    Smith L, Backman K, Sandquist G et al. Development on the implantation of a total nuclear-powered artificial heart system. Am Soc Artif Intern Organs. 1974;20:732.Google Scholar
  20. 20.
    Rosenberg G, Snyder AJ, Landis DL et al. An electric motor-driven total antificial heart: seven months survival in the calf. Am Soc Artif Intern Organs. 1984;30:69Google Scholar
  21. 21.
    Chen H, Miller PJ, Conley MG et al. Development of an implantable, permanent electromechanical ventricular assist system. In: Andrade J, editor. Artificial organs. New York: VCH;1988:59.Google Scholar
  22. 22.
    Houston CS, Akulsu T, Kolff WJ. Pendulum type of artificial heart within he chest: preliminary report. Am Heart J. 1960;59:723.PubMedCrossRefGoogle Scholar
  23. 23.
    Gao H, Cheng Q, Smith L et al. A new pusher plate ventricular assist device without compliance chambers or vent tubes. Am Soc Artif Intern Organ. 1995;41:42 (abstract).Google Scholar
  24. 24.
    Ahn JM, Min BG. An implantable controller with fault tolerance for the moving-actuator total artificial heart (TAH) using a dual board. Am Soc Artif Intern Organs. 1995;41:8 (abstract).Google Scholar
  25. 25.
    Isoyama T, Imachi K, Chinzci T et al. Flow transformed pulsatile total artificial heart (FTPTAH) having no electrical switching valve. Am Soc Artif Intern Organs. 1995;41:6 (abstract).Google Scholar
  26. 26.
    Imachi K, Abe T, Chinzei T et al. Optimal design of the jellyfish valve. Am Soc Artif Intern Organs. 1995;41:5 (abstract).Google Scholar
  27. 27.
    Norton SH, Akutsu T, Kolff WJ. Artificial heart with anti-vacuum bellows. Am Soc Artif Intern Organs. 1952;8:131.Google Scholar
  28. 28.
    Jarvik R, Voider J, Olsen D, Moulopoulos S, Kolff WJ. Venous return of an artificial heart designed to prevent right heart syndrome. Ann Biomed Eng. 1974;2:335.PubMedCrossRefGoogle Scholar
  29. 29.
    Joyce LD, De Vries WC, Hastings WL et al. Response of the human body to the first permanent implant of the Jarvik-7 total artificial heart. Am Soc Artif Intern Organs. 1983;29:81.Google Scholar
  30. 30.
    Kolff WJ, De Vries WC, Joyce LD et al. Lessons learned from Dr. Barney Clark, the first patient with an artificial heart. Prog Artificial Organs. 1984;2:165.Google Scholar
  31. 31.
    Kolff J, Dceb GM, Cavarocchi C et al. The artificial heart in human subjects. J Thorac Cardiovasc Surg. 1984;87:825.PubMedGoogle Scholar
  32. 32.
    Levinson MM, Smith RG, Cork RC et al. Thromboembolic complications of the Jarvik-7 total artificial heart: case report. Artif Organs. 1986;10:236.PubMedGoogle Scholar
  33. 33.
    Riebman JB, Liotta D, Navia JA et al. Orthotopic univentricular artificial heart. In: Andrade J, editor. Artificial organs. New York: VCH;1988:73.Google Scholar
  34. 34.
    Levinson MM, Smith R, Cork R et al. Clinical problems associated with the total artificial heart as a bridge to transplantation. In: Andrade, J, editor. Artificial organs. New York: VCH: 1988:169.Google Scholar
  35. 35.
    Allaire PH, Kim HC, Maslen EH et al. Prototype continuous flow ventricular assist device supported on magnetic bearings. J Artif Organs. 1996;20(6):582.Google Scholar
  36. 36.
    Kolff WJ. The future of artificial organs and of us all. In: Andrade, J, editor. Artificial organs. New York: VCH:1988:730.Google Scholar
  37. 37.
    Buczak S. Fabrication of implantable artificial heart devices and components. wThermedies Report No. l-HV-92907-6. Devices and Technology Branch. NIH Report. 28 October.Google Scholar
  38. 38.
    Farrer DJ, Litwak P, Lawson JH et al. In-vivo evaluations of a new thromboresistant polyurethane for artificial heart blood pumps. J Thorac Cardiovasc Surg. 1988;95:191.Google Scholar
  39. 39.
    Jacobs H, Okano R, Lin JY, Kim SW. PGEI-heparin conjugate releasing polymers. J Controlled Release. 1985;2:313.CrossRefGoogle Scholar
  40. 40.
    Kim SW. Platelet adhesion and prevention at blood-polymer interface. Artif Organs. 1987;11:228.PubMedGoogle Scholar
  41. 41.
    Heyman PW, Cho CS, McRea JC, Olsen DB, Kim SW. Heparinized polyurethanes: in viro and in vivo studies. J Biomed Mater Res. 1985;19:419.PubMedCrossRefGoogle Scholar
  42. 42.
    Nojiri C, Kuroda S, Hagiwara K et al. In vitro studies of heparin-immobilized and sulfonated polyurethane using epifluorescent video microscopy (EVM). Am Soc Artif Intern. Organs. 1995;41:14.Google Scholar
  43. 43.
    Paceagnella A, Majni G, Ottaviani G et al. Properties of a new carbon flim for biomedical applications. Int J Artif Organs. 1986;9:127.Google Scholar
  44. 44.
    Arru P, Santi M, Valluna F et al. A new pyrolytic carbon film for biomedical application. Presented at the Congress Ceramics in Biomatcrials, Milan; 1986.Google Scholar
  45. 45.
    Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237:1588.PubMedCrossRefGoogle Scholar
  46. 46.
    Topaz P, Topaz S, Kolff WJ. Molded double lumen silicone skin button for drive-lines to an artificial heart. ASAIO Trans. 1991;37:M222.PubMedGoogle Scholar
  47. 47.
    Panayotopoulos EK, Norton SH, Akutsu T, Kolff WJ. A special reciprocating pump to drive an artificial heart inside the chest. J Thorac Cardiovasc Surg. 1964;48:844.PubMedGoogle Scholar
  48. 48.
    Working Group on Mechanical Circulatory Support of the National Heart, Lung, and Blood Institute. Artificial heart and assist devices: directions, needs, costs, societal and ethical issues. US Dept of Health and Human Services publication (NIH) 85-2723. Bethesda, MD: Public Health Service: 1985.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • W. J. Kolff

There are no affiliations available

Personalised recommendations