Advances in Heart Storage

  • W. N. Wicomb
  • V. F. Portnoy
  • G. M. Collins


In this chapter we have chosen to focus our attention on some of the recent developments in heart preservation (both research and clinical) that we believe require additional investigation, and thus we hope to reveal new insights into the broad field of hypothermic myocardial protection. We will also discuss various interventions that influence the return of normal myocardial function at the end of the period of hypothermic heart storage. There are many unanswered questions that will continue to challenge basic research workers, including the notion that a universal preservation solution is possible.


Oxygen Free Radical Rabbit Heart Donor Heart Heart Lung Transplant Blood Cardioplegia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Novitzky D, Wicomb WN, Cooper DKC et al. Electrocardiographic, hemodynamic and endocrine changes occurring during experimental brain death in the chacma baboon. J Heart Transplant. 1984;4:63.Google Scholar
  2. 2.
    Reimer KA, Murry CE, Richard VJ. The role of neutrophils and free radicals in the ischemic-reperfused heart: why the confusion and controversy? J Mol Cell Cardiol. 1989;21:1225.PubMedCrossRefGoogle Scholar
  3. 3.
    Cooper DKC, Novitzky D. Selection and management of the donor. In: Cooper DKC. Novitzky D, editors. The transplantation and replacement of thoracic organs. Lancaster: Kluwer; 1990:41.Google Scholar
  4. 4.
    Allen MD. Donor management. In: Shumway SJ, Shumway NE, editors. Thoracic-transplantation. Oxford: Blackwell; 1995:84.Google Scholar
  5. 5.
    Hickey PA. Prevention of intraoperative myocardial injury by pretreatment with pharmacological agents. Ann Thorac Surg. 1975;20:101.PubMedGoogle Scholar
  6. 6.
    Lolley DM, Ray JF, Myers WO, Sautter RD, Tewksbury DA. Importance of preoperative myocardial glycogen levels in human cardiac preservation. J Thorac Cardiovasc Surg. 1979;78:678.PubMedGoogle Scholar
  7. 7.
    Kawauchi M, Gundry SR, Alfonso de Begona J et al. Prolonged preservation of human pediatric hearts for transplantation: correlation of ischemic time and subsequent function. J Heart Lung Transplant. 1993;12:55.PubMedGoogle Scholar
  8. 8.
    Schaub R, Lemole G, Pinder G. Effects of lidocaine and epinephrine on myocardial preservation following cardiopulmonary bypass in the dog. J Thorac Cardiovasc Surg. 1977;74:571.PubMedGoogle Scholar
  9. 9.
    Sugimoto S, Puddu PE, Monti F et al. Pretreatment with the adenosine triphosphate-sensitive potassium channel opener nicorandil and improved myocardial protection during high-potassium cardioplegic hypoxia. J Thorac Cardiovasc Surg. 1994;108:455.PubMedGoogle Scholar
  10. 10.
    Reul GJ Jr, Wukasch DC, Romagnoli A, Norman JC, Cooley DA. Ischemic myocardial contraction (stone heart). Prevention by induced hypothermia and propranolol. J Cardiovasc Surg. Special issue, 1973:740.Google Scholar
  11. 11.
    Portnoy VF, Dvortsin GF, Shargorodskaya AY, Machulin AV, Cherkashchenko LN. The effect of increasing propranolol doses on cardiac function and myocardial pH during total ischemia. J Surg Res. 1981;31:6.PubMedCrossRefGoogle Scholar
  12. 12.
    Thomas GE, Levitsky S, Feinberg H. Chlorpromazine inhibits loss of contractile function, compliance and ATP in ischemic rabbit heart. J Mol Cell Cardiol. 1983;15:621.Google Scholar
  13. 13.
    Walpoth B, Bleese N, Zhao H et al. Assessment of rabbit hearts during reperfusion after hypothermic long-term storage: the role of verapamil and its effect on myocardial calcium. Surg Forum. 1984;35:288.Google Scholar
  14. 14.
    Guffin AV, Kates RA, Holbrook GW, Jones EL, Kaplan JA. Verapamil and myocardial preservation in patients undergoing coronary artery bypass surgery. Ann Thorac Surg. 1986;41:587.PubMedGoogle Scholar
  15. 15.
    Brown PS, Parenten GL, Holland FW, Clark RE. Pretreatment with nicardipine preserves ventricular function after hypothermic ischemic arrest. Ann Thorac Surg. 1991;51:739.PubMedCrossRefGoogle Scholar
  16. 16.
    Mechant FJ, Feinberg H, Levitsky S. Reversal of myocardial depression by dipyridamole following aortic cross-clamping. Surg Forum. 1972;23:162.Google Scholar
  17. 17.
    Hirt SW, Wahlers T, Jurmann M, Fieguth HG, Dammenhayn LA. Improvement of currently used methods of lung preservation with prostacyclin and University of Wisconsin solution. J Heart Lung Transplant. 1992;11:656.PubMedGoogle Scholar
  18. 18.
    Puskas JD, Cardoso PF, Mayer E et al. Equivalent eighteen-hour lung preservation with low-potassium dextran or Euro-Collins solution after prostaglandin El infusion. J Thorac Cardiovasc Surg. 1992;104:83.PubMedGoogle Scholar
  19. 19.
    Fremes SE, Zhang J, Furukawa RD, Mickle DAG, Weisel RD. Adenosine pretreatment for prolonged cardiac storage. An evaluation with St. Thomas’ Hospital and University of Wisconsin solutions. J Thorac Cardiovasc Surg. 1995;110:293.PubMedCrossRefGoogle Scholar
  20. 20.
    Busuttil RW, George WJ, Hewitt RL, Protective effect of methylprednisolone on the heart during ischemic arrest. J Thorac Cardiovasc Surg. 1975;70:955.PubMedGoogle Scholar
  21. 21.
    Bretschneider HJ, Hubner G, Knoll D et al. Myocardial resistance and tolerance to ischemia: physiological and biochemical basis. J Cardiovasc Surg. 1975;16:241.Google Scholar
  22. 22.
    Stowe DF, Habazettl H, Graf BM, Kampine JP, Bosnjak ZJ, Halothane improves coronary flow, cardiac efficiency, and contractile function more than low calcium one day after hypothermic preservation. Anesthesiology. 1994;81:3A.CrossRefGoogle Scholar
  23. 23.
    Decgan R, He HB, Krivoruk Y, Wood AJJ, Wood M. Regulation of norepin-ephrine release by b2-adrenergic receptors during halothane anesthesia. Anesthesiology. 1995;82:1417.CrossRefGoogle Scholar
  24. 24.
    Schmidt U, Schwinger RHG, Mohm M. Halothane restores the altered force-frequency relationship in failing human myocardium. Anesthesiology. 1995;82:1456.PubMedCrossRefGoogle Scholar
  25. 25.
    Novitzky D, Wicomb WN, Cooper DKC, Tjaalgard MA. Improved cardiac function following hormonal therapy in brain-dead pigs: relevance to organ donation. Cryobiology. 1987;24:1.PubMedCrossRefGoogle Scholar
  26. 26.
    Wicomb WN, Novitzky D, Cooper DKC, Wells M, Hill JD. Early extranuclear effect of triodothyronine (T3) on tissue slices: relevance to organ donor viability. Transplant Proc. 1989;21:1263.PubMedGoogle Scholar
  27. 27.
    Orlowski JP, Spees EK. Improved cardiac transplant survival with thyroxine treatment in hemodynamically unstable donors: 95.2% graft survival at 6 and 30 months. Transplant Proc. 1993;25:1535.PubMedGoogle Scholar
  28. 28.
    Randell TT, Hockerstedt KAV. Triiodothyroninc treatment is not indicated in brain-dead multiorgan donors: a controlled study. Transplant Proc. 1993;25:1552.PubMedGoogle Scholar
  29. 29.
    Macoviak JA, McDougall IR. Bayer MF et al. Significance of thyroid dysfunction in human cardiac allograft procurement. Transplantation. 1987;43:824.PubMedGoogle Scholar
  30. 30.
    Gifford RRM, Weaver AS, Burg JE et al. Thyroid heart and kidney cadaver donors. J Heart Transplant. 1986;5:249PubMedGoogle Scholar
  31. 31.
    Novitzky D, Cooper DKC, Reichart B. Hemodynamic and metabolic responses to hormonal therapy in brain-dead potential organ donors. Transplantation. 1987;43:852.PubMedCrossRefGoogle Scholar
  32. 32.
    Bittner HB, Kendall SWH, Chen EP, Davis RD. Vantirigt P. Myocardial performance after graft preservation and subsequent cardiac transplantation from brain-dead donors. Ann Thorac Surg. 1995;60:47.PubMedGoogle Scholar
  33. 33.
    Wheeldon D, Sharples L, Wallwork J, English T. Donor preservation survey. J Heart Lung Transplant. 1992;11:986.PubMedGoogle Scholar
  34. 34.
    Cooper DKC. The donor heart: the present position with regard to resuscitation, storage and assessment of viability. J Surg Res. 1976;21:363.PubMedCrossRefGoogle Scholar
  35. 35.
    Menkis A, Novick RJ, Kostuk WJ et al. Successful use of the unacceptable heart donor. J Heart Lung Transplant. 1991;10:28.PubMedGoogle Scholar
  36. 36.
    Alonso de Begona J, Gundry SR, Razzouk AJ, Boucek MM, Bailey LL. Transplantation of hearts after arrest and resuscitation. J Thorac Cardiovasc Surg. 1993;106:1196.Google Scholar
  37. 37.
    Wicomb WN, Hill DJ, Avery JG, Collins GM. Donor heart preservation limitations of cardioplegia and warm ischemia. Transplantation. 1992;53:947.PubMedGoogle Scholar
  38. 38.
    Illes RW, Asimakis GK, Inners-McBride K, Buckingham ED. Recovery of non beating donor hearts. J Heart Lung Transplant. 1995;14:553.PubMedGoogle Scholar
  39. 39.
    Ferrera R, Marcsek P, Guidollet J, Berthet C, Dufeau G. Lack of successful reanimation of pig hearts harvested more than 10 minutes after death. J Heart Lung Transplant. 1995;14:322.PubMedGoogle Scholar
  40. 40.
    Bove EL, Stammers AH. Recovery of ventricular function after hypothermic global ischemia. Age-related differences in the isolated working rabbit heart. J Thorac Cardiovasc Surg. 1986;91:115.PubMedGoogle Scholar
  41. 41.
    Cooper DKC. Transplantation using donor hearts from patients with circulatory arrest. Ann Thorac Surg. 1993;55:811.PubMedGoogle Scholar
  42. 42.
    Shirakura R, Hirose H, Matsuda H et al. Resuscitation and preservation of agonally arrested hearts for transplantation: a study of 24 hour stored canine hearts. Transplant Proc. 1989;21:1347.PubMedGoogle Scholar
  43. 43.
    Shirakura R, Matsuda H, Nakano S et al. Myocardial energy metabolism in asphyxiated canine hearts preserved for 24 hours. Transplantation. 1992;53:1215.PubMedCrossRefGoogle Scholar
  44. 44.
    Gundry SR, Alonso de Begona JA, Kawauchi M et al. Transplantation and reanimation of hearts removed from donors 30 minutes after warm, asystolic death. Arch Surg. 1993;128:989.PubMedGoogle Scholar
  45. 45.
    Kawauchi M, Gundry SR, Alonso de Begona J. Razzouk AJ, Bailey LL. Utilization of pediatric donors salvaged by cardiopulmonary resuscitation. J Heart Lung Transplant. 1993;12:185.PubMedGoogle Scholar
  46. 46.
    Bolli R. Mechanism of myocardial stunning. Circulation. 1990;82:723.PubMedGoogle Scholar
  47. 47.
    Portnoy VF, Kharnas SS, Dvortsin GF et al. Cardiac function after cardioplegia and heart transplantation. Herald of the USSR Academy of Medical Science (Vestnik Akademii Meditsinskich Nauk USSR, Moskva). 1973;8:33 [in Russian].Google Scholar
  48. 48.
    Reitz BA, Brody WR, Hickey PR, Michaelis LL. Protection of the heart for 24 hours with intracellular (high K+) solution and hypothermia. Surg Forum. 1974;25:149.PubMedGoogle Scholar
  49. 49.
    Baumgartner WA, Reitz BA, Stinson KB. Cardioplegia in human heart transplantation. In: Engelman RN, Levitsky S, editors. A textbook of clinical cardioplegia. Mount Kisco, NY: Futura: 1982:373.Google Scholar
  50. 50.
    Gay WA, Ebert PA. Functional metabolic and morphologic effect of potassium-induced cardioplegia. Surgery. 1973;74:284.PubMedGoogle Scholar
  51. 51.
    Demmy TL, Haggerty SP, Boley TM, Curtis JJ. Lack of cardioplegia uniformity in clinical myocardial preservation. Ann Thorac Surg. 1994;57:648.PubMedGoogle Scholar
  52. 52.
    Kloner RA, Przyklenk K, Patel B. Altered myocardial states. The stunned and hibernating myocardium. Am J Med. 1989;86(Suppl. IA):14.PubMedCrossRefGoogle Scholar
  53. 53.
    Hearse DJ, Stewart DA, Braimbridge MV. Cellular protection during myocardial ischemia. Circulation. 1976;54:193.PubMedGoogle Scholar
  54. 54.
    Bigelow WG, Mustard WT, Evans JG. Some physiological concepts of hypothermia and their application to cardiac surgery. J Thorac Surg. 1954;28:480.Google Scholar
  55. 55.
    Buckberg GD. Normothermic blood cardioplegia. Alternative of adjunct? J Thorac Cardiovasc Surg. 1994;107:860.PubMedGoogle Scholar
  56. 56.
    Standeven JW, Jellinek M, Menz LJ, Hahn JW, Barner HB. Cold-blood potassium cardioplegia. Evaluation of glutathione and postischemic cardioplegia. J Thorac Cardiovasc Surg. 1979;78:893.PubMedGoogle Scholar
  57. 57.
    Shlafer M, Kane PF, Kirsh MM Superoxide dismutase plus catalase enhances the efficacy of hypothermic cardioplegia to protect the globally ischemic, reperfused heart. J Thorac Cardiovasc Surg. 1982;83:830.PubMedGoogle Scholar
  58. 58.
    Menashe P, Grousset C, Ganduel Y, Piwnica A. A comparative study of free radical scavengers in cardioplegic solutions. Improved protection with peroxidase. J Thorac Cardiovasc Surg. 1986;92:264.Google Scholar
  59. 59.
    Rosenkranz ER, Okamoto F, Buckberg GD, Vinten-Johansen J. Robertson JM. Safety of prolonged aortic clamping with blood cardioplegia. II-Glutamate enrichment in energy-depleted hearts. J Thorac Cardiovasc Surg. 1984;88:402.PubMedGoogle Scholar
  60. 60.
    Pisarenko OL, Portnoy VF, Studneva IM, Arapov AD, Korostylev AN. Glutamate-blood cardioplegia improves ATP preservation in human myocardium. Biomed Biochim Acta. 1987;46:499.PubMedGoogle Scholar
  61. 61.
    Weldner PW, Miller CA, Arenas JD, Waldausen JA. Improved recovery of immature myocardium with L-glutamate blood cardioplegia. Ann Thorac Surg. 1993;55:102.PubMedGoogle Scholar
  62. 62.
    Levitsky S, Feinberg H, Protection of the myocardium with high-energy solutions. Ann Thorac Surg. 1975;20:86.PubMedGoogle Scholar
  63. 63.
    Robinson LA, Braimbridge MV, Hearse DJ. Creatine phosphate: an additive myocardial protective and antiarrhythmic agent in cardioplegia. J Thorac Cardiovasc Surg. 1984;87:190.PubMedGoogle Scholar
  64. 64.
    Elgebaly SA, Wei Z, Tyles E et al. Enhancement of the recovery of rat hearts after prolonged cold storage by cyclocrcatine phosphate. Transplantation. 1994;57:803.PubMedCrossRefGoogle Scholar
  65. 65.
    Christukis G, Weisel RD, Michle DAG et al. Calcium antagonist for myocurdial protection. In: Roberts AJ. editor. Myocardial protection in cardiac surgery. New York and Basel: Dekker; 1987:413.Google Scholar
  66. 66.
    Robinson LA, Schwarz GD, Goddard DB. Gleming WH, Galbraith TA. Myocardial protection for acquired heart disease surgery: results of a national survey. Ann Thorac Surg. 1995;59:361.PubMedCrossRefGoogle Scholar
  67. 67.
    Rebeyka IM. Hanan SA. Borges MR et al. Rapid cooling contracture of the myocardium. The adverse effect of pre-arrest cardiac hypothermia. J Thorae Cardiovasc Surg. 1990;100:240.Google Scholar
  68. 68.
    Pridjian AK, Levitsky S, Krukenkamp I, Silverman NA, Feinberg H. Developmental changes in reperfusion injury. A comparison of intracellular cation accumulation in the newborn, neonatal and adult heart. J Thorac Cardiovasc Surg. 1987;93:428.PubMedGoogle Scholar
  69. 69.
    Saydjari R. Asimakis G. Conti VR. Effect of increasing volume of cardioplegic solution on postischemic myocardial recovery. J Thorac Cardiovasc Surg. 1987;94:234.PubMedGoogle Scholar
  70. 70.
    Jeevanandam V, Burr ML, Auteri JS et al. University of Wisconsin solution versus crvstalloid cardioplegia for human donor heart preservation. J Thorac Cardiovasc Surg. 1992;103:194.PubMedGoogle Scholar
  71. 71.
    Hirt SW, Wahlers T, Jurmann MJ. University of Wisconsin versus moditied Euro-Collins solution for lung preservation. Ann Thorac Surg. 1992;53:74.PubMedGoogle Scholar
  72. 72.
    Payne ME. Murray KD, Watson KM. Permanent pacing in heart transplant recipients: underlying causes and long term results. J Heart Lung Transplant. 1991;111:738.Google Scholar
  73. 73.
    Wahlberg J, Jacobson J, Tufveson G. Relevance of additive components of the University of Wisconsin cold-storage solution. Transplantation. 1989;48:400.PubMedCrossRefGoogle Scholar
  74. 74.
    Hoffman RM, Stratta RJ, D’Alessandro AM. Combined cold storage perfusion preservation with a new synthetic perfusate. Transplantation. 1989;47:32.CrossRefGoogle Scholar
  75. 75.
    Wolkowicz PE, Caulfield JB. Cardioplegia with aged UW solution induces loss of cardiac collagen. Transplantation. 1991;51:898.PubMedGoogle Scholar
  76. 76.
    Astier A, Paul P. Instability of reduced glutathione in commercial Belzer cold storage solution. Lancet. 1989;8653:556.CrossRefGoogle Scholar
  77. 77.
    Fischer JH, Jeschkeit S. Effectivity of freshly prepared or refreshed solution for heart preservation versus commercial Eurocollins, Bretsehneider’s HTK. or University of Wisconsin solution. Transplantation. 1995;59:1259.PubMedGoogle Scholar
  78. 78.
    Melrose DG, Dreyer B, Bentall HH, Baker JBE. Elective cardiac arrest. Lancet. 1955;2:21.CrossRefGoogle Scholar
  79. 79.
    Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994;368:850.PubMedCrossRefGoogle Scholar
  80. 80.
    Leaf A. Maintenance of concentration gradients and regulation of cell volume. Ann NY Acad Sci. 1959;72:396.PubMedCrossRefGoogle Scholar
  81. 81.
    Kuroda Y, Kawamura T, Tanioka Y et al. Heart preservation using a cavitary two-layer (University of Wisconsin solution perfluorochemical) cold storage method. Transplantation. 1995;59:699.PubMedCrossRefGoogle Scholar
  82. 82.
    Hendry PJ, Anstadt MP, Plunkett MD et al. Improved donor myocardial recovery with a new lazaroid lipid antiperoxidant in the isolated canine heart. J Heart Lung Transplant. 1992;11:636.PubMedGoogle Scholar
  83. 83.
    Belzer FO, Southard JH, Principles of solid-organ preservation by cold storage. Transplantation. 1988;45:673.PubMedCrossRefGoogle Scholar
  84. 84.
    Tokunaga Y. Wicomb WN, Concepction W et al. Successful 24-hour rat liver preservation with chlorpromazine in sodium lactobionate sucrose solution. Surgery. 1991;110:80.PubMedGoogle Scholar
  85. 85.
    Menasche P, Termignon JL, Pradier F. Experimental evaluation of Celsior, a new heart preservation solution. Eur J Cardiolhorac Surg. 1994;8:207.CrossRefGoogle Scholar
  86. 86.
    Schouten VJA, Keurs HEDJ. Quaegebeur JM. Influence of electrogenic Na/Ca exchange on the action potential in human heart muscle. Cardiovasc Res. 1990;24:758.PubMedCrossRefGoogle Scholar
  87. 87.
    Wicomb WN, Hill JD, Avery J, Collins GM. Optimal cardioplegia and 24-hour heart storage with simplified UW solution containing polyethylene glycol. Transplantation. 1990;49:261.PubMedCrossRefGoogle Scholar
  88. 88.
    Hearse DJ, Braimbridge MV, Jynge P. Protection of the ischemic myocardium: cardioplegia. New York: Raven Press; 1981:341.Google Scholar
  89. 89.
    Reichenspurner H, Russ C, Uberfuhr P et al. Myocardial preservation using HTK solution for heart transplantation. A multicenter study. Eur J Cardiothorac Surg. 1993;7:414.PubMedCrossRefGoogle Scholar
  90. 90.
    Southard JH, Belzer FO. The University of Wisconsin organ preservation solution: components, comparisons, and modifications. Transplant Rev. 1993;7:176.CrossRefGoogle Scholar
  91. 91.
    Jeevanandam V, Auteri JS, Sanchez JA et al. Cardiac transplantation after prolonged graft preservation with the Universitv of Wisconsin solution. J Thorac Cardiovasc Surg. 1992;104:224.PubMedGoogle Scholar
  92. 92.
    Collins GM, Wicomb WN. Levin BS et al. Heart preservation solution containing polyethylene glycol: an immunosuppressive effect? Lancet. 1991;338:890.PubMedCrossRefGoogle Scholar
  93. 93.
    Coulombe A, Lefevre 1A, Deroubaix E, Thuringer D, Coraboeuf E. Effect of 2, 3-butanedione 2-monoximc on slow inward and transient outward currents in rat ventricular myocyles. J Mol Cell Cardiol. 1990;22:921PubMedCrossRefGoogle Scholar
  94. 94.
    Krystyna HC, Majszak WG. Nisoldipine inhibits lipid peroxidation induced by coronary occlusion in pig myocardium. Cardiovasc Res. 1990;24:683.Google Scholar
  95. 95.
    Stringhum JC, Southard JH. Fields BL. Improved myocardial preservation with 2.3-butanedione monoxime. calcium and the UW solution. Transplant Proc. 1993;25:1625.Google Scholar
  96. 96.
    Fuller BJ, Busza AL. Glucose-containing organ preservation solutions and intracellular acidosis. Transplantation. 9988;46:925.Google Scholar
  97. 97.
    Rousou JA, Engelman RM, Anisimowicz L et al. Metabolic enhancement of myocardial preservation during cardioplegic arrest. J Thorac Cardiovasc Surg. 1986;91:270.PubMedGoogle Scholar
  98. 98.
    Coetzee A, Kotze J, Louw J, Lochner A. Effect of oxygenated crystalloid curdioplegia on the functional and metabolic recovery of the isolated perfused rat heart. J Thorac Cardiovasc Surg. 1986;91:259.PubMedGoogle Scholar
  99. 99.
    Wicomb WN, Cooper DKC, Nuvitzky D, Barnard CN. Cardiac transplantation following storage of the donor heart by a portable hypothermic perlusion system. Ann Thorac Surg. 1984;37:243.PubMedGoogle Scholar
  100. 100.
    Suzuki S, Sasaki H, Tomita E et al. Successful preservation of canine hearts for 24 hours by retrograde coronary sinus microperfusion. Heart Transplant 1984;3(Suppl. 2):189.Google Scholar
  101. 101.
    Wicomb WN, Collins GM. 24-hour rabbit heart storage with UW solution. Effects of low-flow perfusion, colloid, and shelf storage. Transplantation. 1989;48:6.PubMedCrossRefGoogle Scholar
  102. 102.
    Ferrera R. Marcsek P. Larese A et al. Comparison of continuous microperfusion and cold storage for pig heart preservation. J Heart Lung Transplant. 1992;12:463Google Scholar
  103. 103.
    Ferrera R. Larese A, Marcsek P et al. Comparison of different techniques of hypothermic pig heart preservation. Ann Thorac Surg. 1994;57:1233.PubMedGoogle Scholar
  104. 104.
    Wicomb WN, Cooper DKC, Barnard CN, Cardiac transplantation following storage of the donor heart by a portable hypothermic perfusion system. Ann Thorac Surg. 1984;37:243.PubMedGoogle Scholar
  105. 105.
    Wicomb WN, Cooper DKC, Novitzky D. An airlift pump device for low pressure perfusion storage on the isolated heart. Cryobiology. 1985;22:401.PubMedCrossRefGoogle Scholar
  106. 106.
    Snyder SH, Bredt DS, Biological role of nitric oxide. Sci Am. 1992;266:68.PubMedCrossRefGoogle Scholar
  107. 107.
    Wicomb WN, Levy JV, Holdefer M, Collins GM. Functional integrity of vascular endothelium correlates with myocardial function in stored rabbit hearts. Transplant Proc. 1993;25:1639.PubMedGoogle Scholar
  108. 108.
    Killinger WA, Doroti DB, Keagy BA, Johnson G. Endothelial cell preservation using organ storage solutions. Transplantation. 1992;53:979PubMedGoogle Scholar
  109. 109.
    Jeremy JY, Stansby G, Fuller B, Rolles K, Hamilton G. The effect of cold storage of rat thoracic aortic rings in organ preservation solutions: a study of receptor-linked vascular prostacyclin synthesis. Transplantation. 1992;53:999.PubMedCrossRefGoogle Scholar
  110. 110.
    Munkad P, Slavik Z, Yacoub M. Endothelial dysfunction caused by University of Wisconsin preservation solution in the rat heart. J Thorac Cardiovasc Surg. 1992;104:1618.Google Scholar
  111. 111.
    Uchinn T, Belboul A, El-Gatit A et al. Assessment of myocardial damage by circulating cardiac Myosin light chain I after heart transplantation. J Heart Lung Transplant. 1994;13:418.Google Scholar
  112. 112.
    Carrier M, Solymoss BC, Cartier R, Leclerc Y, Pelletier LC. Cardiac troponin T and creatine kinase MB isoenzyme as biochemical markers of ischemia after heart preservation and transplantation. J Heart Lung Transplant. 1994;13:696.PubMedGoogle Scholar
  113. 113.
    Carteaux JP, Mertes PM, Pinelli G et al. Left ventricular contractility after hypothermic preservation: predictive value of phosphorus 31-nuclear magnetic resonance spectroscopy. J Heart Lung Transplant. 1994;13:661.PubMedGoogle Scholar
  114. 114.
    Harman LS, Carrer DK, Schreiber J, Mason RP. One-and two-electron oxidation of reduced glutauthione by peroxidases. J Biol Chem. 1986;261:1642.PubMedGoogle Scholar
  115. 115.
    Wicomb WN, Perey R, Portnoy V, Collins GM. The role of reduced glutathione in heart preservation using a polyethylene glycol solution Cardiosol. Transplantation. 1992;54:181.PubMedCrossRefGoogle Scholar
  116. 116.
    Wicomb WN, Cooper DKC, Novitzky D. Loss of myocardial viability following hypothermic perfusion storage from contaminating trace elements in the perfusate. Transplantation. 1987;43:23.PubMedCrossRefGoogle Scholar
  117. 117.
    Mack JA, Kerr PK. Vreugdenhil PK, Belzer FO, Southard JH. Effect of polyethylene glycol on lipid peroxidation in cold-stored rat hepatocytes. Cryohiology. 1991;28:1.CrossRefGoogle Scholar
  118. 118.
    Malhotra D, Zhou HZ, Kong YL, Shapiro JI, Chun L. Improvements in experimental cardiac preservation based on metabolic considerations. Transplantation. 1991;52:1004.CrossRefGoogle Scholar
  119. 119.
    Schmid T, Landry G, Fields BL et al. The use of myocytes as a model for developing successful heart preservation solutions. Transplantation. 1991;52:20.PubMedCrossRefGoogle Scholar
  120. 120.
    Minotti G, Aust SD. The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J Biol Chem. 1986;262:1098.Google Scholar
  121. 121.
    Miller DM, Aust SD. Studies of ascorbute-dependent iron-catalyzed lipid peroxidation. Arch Biochem Biophys. 1989;271:113.PubMedCrossRefGoogle Scholar
  122. 122.
    Ferreira R, Burgos M, Milei J et al. Effect of supplementing cardioplegic solution with deferoxamine on reperfused human myocardium. J Thorac Cardiovasc Surg. 1990;100:708.PubMedGoogle Scholar
  123. 123.
    Tien M, Bucher JR, Aust SD. Thiol-dependent lipid peroxidation. Biochem Biophys Res Commun. 1982;107:279.PubMedCrossRefGoogle Scholar
  124. 124.
    Borg DC, Schaich KM, Prooxidant action of desferrioxamine: Fenton-like production of hydroxyl radicals by reduced ferrioxamine. J Free Radical Biol Med. 1986;2:237.CrossRefGoogle Scholar
  125. 125.
    Itasaka H, Wicomb WN, Burns W. Effect of polyethylene glycol on rat small bowel rejection. Transplant Proc. 1992;24:1179.PubMedGoogle Scholar
  126. 126.
    Katre NV. Immunogenicity of recombinant IL-2 modified by covalent attachment of polyethylene glycol. J Immunol. 1990;144:209.PubMedGoogle Scholar
  127. 127.
    Downey JM, Yellon DM. Do free radicals contribute to myocardial cell death during ischemia-reperfusion? In: Yellon DM, Jennings RB, editors. Myocardial protection: the pathophysiology of reperfusion and reperfusion injury. New York: Raven Press; 1992:35.Google Scholar
  128. 128.
    Jennings RB, Murry CE, Reimer KA. Preconditioning the myocardium with ischemia. Cardiovasc Drug Ther. 1991;5:933.CrossRefGoogle Scholar
  129. 129.
    Schaper W. Molecular mechanisms in a stunned myocardium. Cardiovasc Drug Ther. 1991;5:925.CrossRefGoogle Scholar
  130. 130.
    Hearse DJ, Tosaki A. Free radicals and reperfusion-induccd arrhythmias: Protection by spin trap agent PBN in the rat heart. Circ Res. 1987;60:375.PubMedGoogle Scholar
  131. 131.
    Engler RL, Schmid-Schombein GW, Pavelec RS. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol. 1983;111:98.PubMedGoogle Scholar
  132. 132.
    Forman MB, Velasco CE. Role of adenosine in the treatment of myocardial stunning. Cardiovasc Drug Ther. 1991;5:901.CrossRefGoogle Scholar
  133. 133.
    Byrne JG. Appleyard RF, Sun S, Couper OS, Cohn LH. Thromboxane A2 mediates reperfusion injury after heart preservation. J Heart Lung Transplant. 1993;12:256.PubMedGoogle Scholar
  134. 134.
    Feinberg H, Rosenbaum DS, Levitsky S et al. Platelet deposition after surgically induced myocardial ischemia. J Thorac Cardiovasc Surg. 1982;84:815.PubMedGoogle Scholar
  135. 135.
    Sawa Y, Schaper J. Roth M et al. Platelet-activating factor plays an important role in reperfusion injury in the myocardium. J Thorac Cardiovasc Surg. 1984;108:953.Google Scholar
  136. 136.
    Pillai R, Bando K, Schueler S et al. Leucocyte depletion results in excellent heart-lung function after 12 hours of storage. Ann Thorac Surg. 1990:50:211.PubMedGoogle Scholar
  137. 137.
    Fukushima N, Shirakura R, Nakata S et al. Effects of terminal cardioplegia with leukocyte-depleted blood on heart grafts preserved for 24 hours. J Heart Lung Transplant. 1992:11:676.PubMedGoogle Scholar
  138. 138.
    Bolli R, Triana JE, Jeroudi MO. Prolonged impairment of coronary vasodilation after reversible ischemia: evidence for microvascular stunning. Circ Res. 1990;67:332.PubMedGoogle Scholar
  139. 139.
    Vishnevsky AA, Portnoy VF, Grishkevich VM et al. A search of the optimal technique of orthotopic heart transplantation. Exper Surg Anaesth. 1970;5:3 [in Russian].Google Scholar
  140. 140.
    Swanson DK, Dufek J. Barber TA. Kahn DR, Improving function of hearts preserved for 24 hours by controlling reperfusion. Transplantation 1979;28:476.PubMedGoogle Scholar
  141. 141.
    Milliken JC, Billingsley AM, Laks H. Modified reperfusion after long-term heart preservation. Ann Thorac Surg. 1989;47:725.PubMedGoogle Scholar
  142. 142.
    Stein DG, Bhuta SM, Drinkwater DC et al. Myocardial reperfusion: ullrastructural evidence of damage in clinical transplantation with modified reperfusion. J Heart Lung Transplant. 1991;10:157.Google Scholar
  143. 143.
    Holdefer MM, Wicomb WN, Levy JV, Collins GM. Cardiotonic effects of reduced sulfhydryl amines after preservation of rabhit hearts. J Heart Lung Transplant. 1994;13:157.PubMedGoogle Scholar
  144. 144.
    Lazar HL, Buckberg GD, Manganaro AJ, Becker H. Reversal of ischemic damage with secondary blood cardioplegia. J Thorac Cardiovasc Surg, 1979;78:688.PubMedGoogle Scholar
  145. 145.
    Pearl JM, Drinkwater DC, Laks H, Capouya ER, Cates RN. Leucocyte-depleted reperfusion of transplanted human hearts: a randomised, double-blind clinical trial. J Heart Lung Transplant. 1992;11:1082.PubMedGoogle Scholar
  146. 146.
    Wallace A, Nose P, Bellows W. and the McSPEI Research Group. Substrate enriched, warm induction, warm reperfusion cardioplegia improves left ventricular systolic function post-bypass in man. Anesth Analg. 1994;78:S463.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • W. N. Wicomb
  • V. F. Portnoy
  • G. M. Collins

There are no affiliations available

Personalised recommendations