Skip to main content
  • 216 Accesses

Abstract

It is likely that organ size is a more important issue in lung transplantation than in transplantation of any other solid organ. Lungs must fit within the confines of the thoracic cage. This space has the capacity to change its size and shape with time; indeed, the very act of ventilation changes the volume of the thorax substantially by the amount of forced vital capacity. Because lungs are easily distensible, they have the ability to change their size and shape, and can frequently fill the space made available to them. In fact, the safe limits with respect to size mismatching between donors and recipients have not yet been established for lung transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knudson RJ, Lebowitz MD, Holberg CJ, Burrows B. Changes in the normal maximal expiratory flow-volume curve with growth and aging. Am Rev Respir Dis. 1983;127:725–34.

    PubMed  CAS  Google Scholar 

  2. Goldman HI, Becklake MR. Respiratory function tests: normal values at median altitudes and the prediction of normal results. Am Rev Tuberc. 1959;79:457–67.

    PubMed  CAS  Google Scholar 

  3. Egan TM, Thompson JT, Detterbeck FC et al. Effect of size (mis)matching in clinical double lung transplantation. Transplantation. 1995;59:707–13.

    Article  PubMed  CAS  Google Scholar 

  4. Starnes VA, Barr ML, Cohen RG. Lobar transplantation: indications, technique, and outcome. J Thorac Cardiovasc Surg. 1994;108:403–11.

    PubMed  CAS  Google Scholar 

  5. Lloyd KS, Barnard P, Holland VA, Noon GP, Lawrence EC. Pulmonary function after heart-lung transplantation using larger donor organs. Am Rev Respir Dis. 1990;142:1026–9.

    PubMed  CAS  Google Scholar 

  6. Stames VA, Barr ML, Cohen FA, Schenkel FA. Barbers RG and the USC Transplant Group. Bilateral living-related lobar transplantation for cystic fibrosis: initial experience. J Heart Lung Transplant. 1994;13(Suppl.):S57 (abstract).

    Google Scholar 

  7. Egan TM, Kaiser LR, Cooper JD. Lung transplantation. Cuit Probl Surg. 1989;26:675–751.

    Article  Google Scholar 

  8. Otulana BA, Mist BA. Scott JP, Wallwork J, Higenbottam T. The effect of recipient lung size on lung physiology after heart-lung transplantation. Transplantation. 1989;48:625–9.

    PubMed  CAS  Google Scholar 

  9. Miyoshi S, Schaefers H-J, Trulock EP et al. Donor selection for single and double lung transplantation: chest size matching and other factors influencing posttransplantation vital capacity. Chest. 1990;98:308–13.

    PubMed  CAS  Google Scholar 

  10. Massard G, Badier M, Guillot C et al. and the Joint Marseille-Montreal Lung Transplant Program. Lung size matching for double lung transplantation based on the submammary thoracic perimeter: accuracy and functional results. J Thorac Cardiovasc Surg. 1993;105:9–14.

    PubMed  CAS  Google Scholar 

  11. Crombleholme TM, Adzick NS, Hardy K et al. Pulmonary lobar transplantation in neonatal swine: a model for treatment of congenital diaphragmatic hernia. S Pediatr Surg. 1990;25:11–18.

    CAS  Google Scholar 

  12. Crombleholme TM, Adzick NS, Longaker MT et al. Reduced-size lung transplantation in neonatal swine: technique and short-term physiological response. Ann Thorac Surg. 1990;49:55–60.

    Article  PubMed  CAS  Google Scholar 

  13. Kern JA, Tribble CG, Chan BBK, Flanagan TL, Kron IL. Reduced-size porcine lung transplantation: long-term studies of pulmonary vascular resistance. Ann Thorac Surg. 1992;53:583–9.

    Article  PubMed  CAS  Google Scholar 

  14. Kern JA, Tribble CG, Flanagan TL et al. Growth potential of porcine reduced-size mature pulmonary lobar transplants. J Thorac Cardiovasc Surg. 1992;104:1329–32.

    PubMed  CAS  Google Scholar 

  15. Rannels DE, Russo LA. Compensatory growth. In: Crystal RG, West JB, editors. The lung: scientific foundations, Vol. I. New York: Raven Press; 1991;699–709.

    Google Scholar 

  16. Burri PH. Postnatal development and growth. In: Crystal RG, West JB, editors. The lung: scientific foundations, Vol. I. New York: Raven Press; 1991:677–87.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Egan, T.M. (1996). Lung Size and Impact on Transplantation. In: Cooper, D.K.C., Miller, L.W., Patterson, G.A. (eds) The Transplantation and Replacement of Thoracic Organs. Springer, Dordrecht. https://doi.org/10.1007/978-0-585-34287-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-34287-0_51

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-8898-2

  • Online ISBN: 978-0-585-34287-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics