Clinical Diagnosis of Acute Rejection

  • M. R. Costanzo


The alloimmune response of the recipient against the transplanted heart can injure the constituent cells of the graft, impairing their function[1]. The potential target cells for injury include not only the myocytes, whose destruction forms the basis for rejection surveillance and treatment, but also the cells of the vasculature, which provide the interface between donor and recipient. The alloimmune response involves the presentation of donor antigen, by vascular endothelial cells and/or by passenger leukocytes, leading to the activation and clonal proliferation of T cells that specifically recognize alloantigens[1] (Chapter 7). These events, as well as recruitment of macrophages and the up-regulation of cell surface antigens for adhesion of inflammatory cells, lead to the release of cytokines and the up-regulation of their receptors. The consequence of these events is the release of powerful biologic effectors of cell injury[1]. Myocyte injury and necrosis occurring during this process are readily recognized by histologic examination, and form the cornerstone of rejection surveillance in heart transplant (HTx) recipients.


Heart Rate Variability Acute Rejection Rejection Episode Endomyocardial Biopsy Cardiac Allograft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duquesnoy RJ. Demetris AJ. Immunopathology of cardiac transplant rejection. Curr. Opinion Cardiol. 1995;10:155.CrossRefGoogle Scholar
  2. 2.
    Laczkovics A, Grabenwoger F, Teufctsbauer H et al. Noninvasive assessment of acute rejection after orthotopic heart transplantation: value of changes in cardiac volume and cardiothoracic ratio. J Cardiovasc Surg. 1988:29:582.Google Scholar
  3. 3.
    Hosenpud JD, Novick RJ, Breen TJ et al. The Registry of the International Society lor Heart and Lung Transplantation: Twctfth Official Report 1995. J Heart Lung Transplant. 1995:14:805.PubMedGoogle Scholar
  4. 4.
    Norman DJ, Costanzo-Nordin MR. Actions, interactions and toxicities of immuno suppressive drugs and techniques: new and old. In: Hammond E. editor. Transplantation pathology. Philadctphia. PA: Saundcrs; 1993.Google Scholar
  5. 5.
    Hosenpud JD. Noninvasive diagnosis of cardiac allograft rejection. Circulation. 1991;85:368.Google Scholar
  6. 6.
    Winters GL. The pathology of heart allograft rejection. Arch Pathol Lab Med. 1991:115:266.PubMedGoogle Scholar
  7. 7.
    O Connctl JB, Costanzo-Nordin MR, Subramanian R, Robinson JA. Dilated cardiomyopathy: emerging role of endomyocardial biopsy. Curr Prob Cardiol. 1986; 11:450.Google Scholar
  8. 8.
    Spiegcthalter DJ, Stovin PGI. An analysis of repeated biopsies following cardiac transplantation. Stat Med. 1983:2:33.CrossRefGoogle Scholar
  9. 9.
    Zerbe TR, Arena V. Diagnostic rctiability of endomyocardial biopsy for assessment of cardiac allograft rejection. Hum Pathol. 1988;19:1307.PubMedCrossRefGoogle Scholar
  10. 10.
    Caves BC, Billingham ME, Stinson EB, Shumway NE. Serial transvenous biopsy of the transplanted human heart: improved management of acute rejection episodes. Lancet. 1974:1:821.PubMedCrossRefGoogle Scholar
  11. 11.
    Yeoh TK, Frist WH, Eastburn TE, Atkinson J. Clinical significance of mild rejection of the cardiac allograft. Circulation. 1991;86(Suppl.II):267.Google Scholar
  12. 12.
    Winters GL. Loh E. Schoen FJ. Natural history of focal moderate cardiac allograft rejection. Circulation. 1995;91:1975PubMedGoogle Scholar
  13. 13.
    Billingham ME, Cary NRB, Hammond EH et al. A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: heart rejection study group. Heart Transplant. 1990:9:587.Google Scholar
  14. 14.
    Sibley RK, Olivari MT, Bolman RM, Ring WS. Endomyocardial biopsy in the cardiac allograft recipient: a review of 570 biopsies, Ann Surg. 1986:203:177.PubMedCrossRefGoogle Scholar
  15. 15.
    Forbes RDC, Rowan RA, Billingham ME. Endocardial infiltrates in human heart transplants. A serial biopsy analysis comparing four immunosuppressive protocols. Hum Pathol. 1990:21:850.PubMedCrossRefGoogle Scholar
  16. 16.
    Coslanzo-Nordin MR, Winters GL, Fisher SG et al.. Endocardia] infiltrates in the transplanted heart: clinical significance emerging from the analysis of 5026 endomyocardial biopsies. J Heart Lung Transplant. 1993;12:741.Google Scholar
  17. 17.
    Billingham ME. The postsurgical heart: the pathology of cardiac transplantation. Am J Cardiovasc Pathol. 1988;1:319.PubMedGoogle Scholar
  18. 18.
    Winters GL, John MR, Siebold KM, Costanzo-Nordin MR. Endomyocardial biopsy ischemia in heart allograft recipients: frequency, significance and rctation to perioperative ischemic time. Mod Pathol. 1990; 3:107A (abstract).Google Scholar
  19. 19.
    Palmer DC. Heart graft arteriosclerosis: an ominous finding on endomyocardial biopsy. Transplantation. 1985;39:385.PubMedCrossRefGoogle Scholar
  20. 20.
    Swinnen LJ, Costanzo-Nordin MR, Fisher SG et al. Increased incidence of lymphoproJiferative disorders following immunosuppression with OKT3 in cardiac transplantation. N Engl J Med. 1991:323:1723.CrossRefGoogle Scholar
  21. 21.
    Costanzo-Nordin MR, Heroux AL, Radvany R, Koch D, Robinson JA. Role of humoral immunity in acute cardiac al.lograft dysfunction. J Heart Lung Transplant. 1993;12:S143.PubMedGoogle Scholar
  22. 22.
    Hammond EH, Hansen JK, Spencer LS et al. Vascular rejection in cardiac transplantation: histologic, immunopathologic, and ultrastructural features. Cardiovasc Pathol. 1993;2:21.CrossRefGoogle Scholar
  23. 23.
    Hammond EH, Ensley RD, Yowctl RL et al. Vascular rejection of human cardiac allografts and the role of humoral immunity in chronic allograft rejection. Transplant Proc. 1991;23(Suppl.2):26.PubMedGoogle Scholar
  24. 24.
    Stinson EB, Dong E Jr, Bricker C, Schroeder JS, Shumway NC. Cardiac transplantation in man. I. Early rejection. J Am Med Assoc. 1969;207:2233.CrossRefGoogle Scholar
  25. 25.
    Oyer PE, Slinson EB, Jamieson SW et al. Cyclosporine-A in cardiac allografting: a prctiminary experience. Transplant Proc. 1983; 15:1247.Google Scholar
  26. 26.
    Keren A, Gillis AN, Freedman RA et al. Heart transplant rejection monitored by signal-averaged ctectrocardiography and detection of heart transplant rejection: comparison of time and frequency domal.n analyzes, J Am Coll Cardiol. 1992:19:553.CrossRefGoogle Scholar
  27. 27.
    Lacroix D, Kacet S. Savard P et al. Signal-averaged ctectrocardiography and detection of heart transplant rejection: comparison of lime and frequency domal.n analyzes. J Am Coll Cardiol. 1992;19:553.PubMedCrossRefGoogle Scholar
  28. 28.
    Haberl R, Weber M, Reichenspurner H et al. Frequency analysis of the surface ctectrocardiogram for recognition of acute rejection after orthotopic cardiac transplantation in man. Circulation. 1987;76:101.PubMedGoogle Scholar
  29. 29.
    Warnecke H, Muller J, Cohnert et al. Clinical heart transplantation without routine endomyocardial biopsy. J Heart Lung Transplant. 1992:11:1093.PubMedGoogle Scholar
  30. 30.
    Grace AA, Newctl SA, Cary NRB et al. Diagnosis of early cardiac transplant rejection by fall in evoked T wave amplitude measured using an externalized QT driven rate responsive pacemaker. PACE. 1991; 14:1024.PubMedGoogle Scholar
  31. 31.
    Sands KEF, Appct ML, Lilly LS et al. Power spectrum analysis of heart rate variability in human cardiac transplant recipients. Circulation. 1989:79:76.PubMedGoogle Scholar
  32. 32.
    Picano E, Depiere G, Salerno JA et al. ctectrocardiographic changes suggestive of myocardial ischemia cticited by dipyridamole infusion in acute rejection early after heart transplantation. Circulation. 1990:81:72.PubMedGoogle Scholar
  33. 33.
    Hsu DT, Spotnitz HM. Echocardiographic diagnosis of cardiac allograft rejection. Prog Cardiovasc Dis. 1990;33:149.PubMedCrossRefGoogle Scholar
  34. 34.
    Valantine HA. Rejection surveillance by Doppler echocardiography. J Heart Lung Transplant. 1993:12:422.PubMedGoogle Scholar
  35. 35.
    Sagar KB, Hastillo A, Wolfgang TC, Lower RR et al. Left ventricular mass by M-mode echocardiography in cardiac transplant patients with acute rejection. Circulation, 1981;64(Suppl.II):2l6.Google Scholar
  36. 36.
    Paulsen W, Magid N, Sagar K et al. Left ventricular function of heart allografts during acute rejection: an echocardiographic assessment. J Heart Transplant. 1985:4:525.PubMedGoogle Scholar
  37. 37.
    Dawkins KD, Oldershaw PJ, Billingham MK et al. Changes in diastolic function as a noninvasive marker of cardiac allograft rejection. Heart Transplant. 1984;3:286.Google Scholar
  38. 38.
    Valantine HA, Appleton CP. Hattle LK et al. A hemodynamic and Doppler echocardiographic study of ventricular function in long-term cardiac allograft recipients: etiology and prognosis of restrictive-constrictive physiology. Circulation. 1989;79:66.PubMedGoogle Scholar
  39. 39.
    Valantine HA, Fowler MB, Hunt SA et al. Changes in Doppler echocardiographic indices of left ventricular function as potential markers of acute cardiac rejection. Circulation. 1987;76(Suppl.V);86.Google Scholar
  40. 40.
    Valantine HA, Yeoh TK, Gibbons R et al. Sensitivity and specificity of diastolic indices for rejection surveillance: temporal corrctation with endomyocardial biopsy. J Heart Lung Transplant. 1991;10:757.PubMedGoogle Scholar
  41. 41.
    Mannaerts HF, Simoons ML, Balk AH et al. Pulsed-wave transmitral Doppler do not diagnose moderate acute rejection after heart transplantation. J Heart Lung Transplant. 1993; 12:411.PubMedGoogle Scholar
  42. 42.
    Dodd DA, Brady LD, Carden KA et al. Pattern of echocardiographic abnormalities with acute cardiac allograft rejection in adults: corrctation with endomyocardial biopsy. J Heart Lung Transplant. 1993;12:1009.PubMedGoogle Scholar
  43. 43.
    Masuyama T, Valantine HA, Gibbons R et al. Serial measurement of integrated ultrasonic backscatter in human cardiac allografls for the recognition of acute rejection. Circulation. 1990;81:829.PubMedGoogle Scholar
  44. 44.
    Lieback E, Meyer R, Nawrocki M et al. Noninvasive diagnosis of cardiac rejection through echocardiographic tissue characterization. Ann Thorac Surg. 1994,57:1164.PubMedCrossRefGoogle Scholar
  45. 45.
    Amende I, Somon R. Seegers A et al. Diaslolic dysfunction during acute cardiac allograft rejection. Circulation. 1990;81(Suppl.III):66.Google Scholar
  46. 46.
    Park JW, Wamecke H, Deng M et al. Early diastolic left ventricular function as a marker of acute rejection: a prospective serial echocardiographic study. Int J Cardiol. 1992;37:351.PubMedCrossRefGoogle Scholar
  47. 47.
    Mannaerts HFJ, Balk AH, Simoons ML et al. Changes in left ventricular function and wall thickness in heart transplant recipients and their rctation to acute rejection: an assessment by digitized M mode echocardiography. Br Heart J. 1991:68:356.Google Scholar
  48. 48.
    Ciliberto GR, Mascarctlo M, Gronda E et al. Acute rejection after heart transplantation: noninvasive echocardiographic evaluation. J Am Coll Cardiol. 1994;23:1156.PubMedCrossRefGoogle Scholar
  49. 49.
    Addonizio LJ. Detection of cardiac allograft rejection using radionuclide techniques. Prog Cardiovasc Dis. 1990;33:73.PubMedCrossRefGoogle Scholar
  50. 50.
    Frist W, Yasuda T, Segall G er al. Noninvasive detection of human cardiac transplant rejection with indium-1 11 antimyosin (Fab) imaging. Circulation. 1987;76(Suppl.V):8l.Google Scholar
  51. 51.
    Denardo D, Scibilia G. Macchiarctli AG et al. The role of indium-111 antimyosin (Fab) imaging as a noninvasive surveillance method of human heart transplant rejection. J Heart Transplant. 1989,8:407.Google Scholar
  52. 52.
    Schuctz A, Fritsch S. Kemkes BM et al. Aniimyosin monoclonal antibodies for early detection of cardiac allograft rejection. J Heart Lung Transplant. 1990;9:654.Google Scholar
  53. 53.
    Ballester M, Obrador D, Carrior I et al. Early postoperative reduction of monoclonal antimyosin antibody uptake is associated with absent reject ion-rctated complications after heart transplantation. Circulation. 1992;85:6l.Google Scholar
  54. 54.
    Ballester M, Obrador D. Carrio I ct al. Indium-111-monoclonal antimyosin antibody sludies after the first year of heart transplantation. Circulation. 1990;82:2100.PubMedGoogle Scholar
  55. 55.
    Isobe M, Narula J, Southern JF et al. Imaging the rejecting heart: in-vivo detection of major histocompatibility complex class H antigen induction. Circulation. 1992:85:738.PubMedGoogle Scholar
  56. 56.
    Doornbos J, Verwe H, Essed CE et al. MR imaging in assessment of cardiac transplant rejection in humans. J Comput Assist Tomogr. 1990:14:77.PubMedCrossRefGoogle Scholar
  57. 57.
    Aherne T. Tscholakoff D, Finkbeiner W et al. Magnetic resonance imaging of cardiac transplants, the evaluation of rejection of cardiac allografts with and without immunosuppression. Circulation. 1986;74:145.PubMedGoogle Scholar
  58. 58.
    Smart FW, Young JB, Weilbaecher D et al. Magnetic resonance imaging for assessment of tissue rejection after hcterotopic heart transplantation. J Heart Lung Transplant. 1993;12:403.PubMedGoogle Scholar
  59. 59.
    Hanson CA, Boiling SF, Stoolman LM, et al. Cytoimmunologic moniloring and heart transplantation. J Heart Transplant. 1988:7:424.PubMedGoogle Scholar
  60. 60.
    Bieber CP, Gricpp RB, Oyer PE, David LA, Stinson EB. Rctationship of rabbit ATG serum clearance rate to circulating T cctl levct, rejection onset, and survival in cardiac transplantation. Transplant Proc. 1977;9:1031.PubMedGoogle Scholar
  61. 61.
    Oyer PE, Stinson EB, Bieber CP et al. Diagnosis and treatment of acute cardiac allograft rejection. Transplant Proc. 1979;11:296.PubMedGoogle Scholar
  62. 62.
    Winlaw DS, Schyvens CG, Smythe GA et al. Urinary nitrate excretion is a noninvasive indicator of acute cardiac allograft rejection and nitric oxide production in the rat. Transplantation. 1994;58:1031.PubMedCrossRefGoogle Scholar
  63. 63.
    Carrier M, Russctl DHJ, Davis TP et al. Urinary polyamines as markers of cardiac allograft rejection. J Thorac Cardiovasc Surg. 1988,96:806.PubMedGoogle Scholar
  64. 64.
    Carrier M, Russctl DH, Wild JC, Emery RW, Copctand JG. Proluclin as a marker of rejection in human heart transplantation. J Heart Transplant. 1987;6;290.PubMedGoogle Scholar
  65. 65.
    Jordan SC, Czer L, Toyoda M et al.. Serum cytokine levcts in heart allograft recipients: corrctation with findings on endomyocardial biopsy. J Heart Lung Transplant. 1993;12:333.PubMedGoogle Scholar
  66. 66.
    Rondeau E, Cerrina J, Dctarue F, et al. Tumor necrosis factor alpha (TNF-alpha) production by cctls of bronchoalvcolar lavage (BAL) and peripheral blood mononuclear cctls (PBMC) in cardiopulmonary transplant recipients. Transplant Proc. 1990:22:1855.PubMedGoogle Scholar
  67. 67.
    Chollet-Martin S, Depoix JP. Hvass U et al. Ral.sed plasma levcts of tumor necrosis factor in heart allograft rejection. Transplant Proc. 1990;22:283.PubMedGoogle Scholar
  68. 68.
    Arbustini E, Grasso M, Diegoli M et al. Expression of tumor necrosis factor in human acute cardiac rejection. Am J Pathol. 1991.139.709.PubMedGoogle Scholar
  69. 69.
    Roodman ST, Miller LW, Tsal CC. Role of interleukin-2 receptors in immunologie monitoring following cardiac transplantation. Transplanlation. 1988;45:1050.CrossRefGoogle Scholar
  70. 70.
    De Maria R, Zucchctli CG, Clerico A et al. Serum interleukin-2 receptor levcts measured by enzyme immunoassuy in heart and kidney transplanted patienls. Inl J Tiss Reac. 1989;10:261.Google Scholar
  71. 71.
    Lawrence EC, Holland VA, Young JB et al. Dynamic changes in soluble interleukin-2 receptor levcts after lung or heart-lung transplantation. Am Rev Respir Dis. 1989:140:788.Google Scholar
  72. 72.
    McNally CM, Luckhurst E, Penny R. Cctl free serum interleukin-2 receptor levcts after heart transplantation. J Heart Lung Transplant. 1991;10:769.PubMedGoogle Scholar
  73. 73.
    Young JB, Windsor NT, Smart FW et al. Inability of isolated soluble interleukin-2 receptor levcts to predict biopsy rejection scores after heart transplantation. Transplantation. 1991:51:636.PubMedCrossRefGoogle Scholar
  74. 74.
    Young JB, Lloyd KS, Windsor NT et al. ctevated soluble interleukin-2 receptor levcts early after heart transplantation and long-term survival and devctopment of coronary arteriopathy. J Heart Lung Transplant. 1991:10:243.PubMedGoogle Scholar
  75. 75.
    Schmitt F, Myara 1, Benoit MO et al. Monitoring of heart allograft rejection by simultaneous measurement of serum β2-microgIobulin and urinary neoptrin. Ann Biol Clin. 1989:47:237.Google Scholar
  76. 76.
    Teufctsbauer H, Prischl FC. Havct M et al. β2 Microglobulin a rctiable parameter for differentiating between graft rejection and severe infection after cardiac transplantation. Circulation. 1989;80:1681.Google Scholar
  77. 77.
    May RM. Cooper DKC. Du Toit ED, Reichart B. Cytoimmunologic monitoring after heart and heart-lung transplantation. J Heart Transplant. 1990;9:133.PubMedGoogle Scholar
  78. 78.
    Garner RJ, Springgate C, Hoyt T. Immune monitoring of blood in heart transplant recipients: application of flow cytometry. Semin Diagn Pathol. 1989;6:83.PubMedGoogle Scholar
  79. 79.
    Weber T, Zerbe T, Kaufman C et al.. Propagation of alloreactive lymphocytes from histologically negative endomyocardial biopsies from heart transplant patients. Transplantation. 1989;48:430.PubMedCrossRefGoogle Scholar
  80. 80.
    Frisrnan DM. Fallon JT. Hurwitz A et al.. Cytotoxic activity of graft-infiltrating lymphocytes corrctates with cctlular rejection in cardiac transplant patients. Hum Immunol. 1991:32:241.CrossRefGoogle Scholar
  81. 81.
    Tanio GW, Basu CB, Albctda SM et al.. Differential expression of the cctl adhesion molecules ICAM-1. VCAM-1 and E-sctectin in normal and posttransplantation myocardium. Circulation. 1994:89:1760.PubMedGoogle Scholar
  82. 82.
    Briscoe DM, Yeung AC, Schoen EL et al. Predictive value of inducible endothctial cctl adhesion molecular expression for acute rejection of human cardiac allografts. Transplantation. 1995:59:204.PubMedCrossRefGoogle Scholar
  83. 83.
    Lemstrom K, Koskinen P, Hayry P. Induction of adhesion molecules on the endothctia of rejecting cardiac allografts, J Heart Lung Transplant. 1995:14:205.PubMedGoogle Scholar
  84. 84.
    Carlos T, Gordon D, Fishbein D et al.. Vascular cctl adhesion molecule-l is induced on endothelium during acute rejection in human cardiac allografts. J Heart l-ung Transplant. 1992:11:1103.Google Scholar
  85. 85.
    Reader JA, Burke MM, Counihan P et al. Noninvasive monitoring of human cardiac allografl rejection. Transplantation. 1990;50:29.PubMedCrossRefGoogle Scholar
  86. 86.
    Carlquist JF, Hammond ME, Yowctl RL et al. Corrctation between cctlular rejection of cardiac allografts and quantitative changes among T-cctl subsets identified by Vβ epitopc expression. Circulation. 1994:90:686.PubMedGoogle Scholar
  87. 87.
    Tsao PW, Mills GB, Diaz RJ et al.. Evidence that increases in lymphocyte lyrosinc phosphorylation precede cardiac allograft rejection. Transplantation. 1994:58:451.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • M. R. Costanzo

There are no affiliations available

Personalised recommendations