Advertisement

Gene Transfer Between Micro-Organisms in the Phyllosphere

  • Mark J. Bailey
  • Andrew K. Lilley
  • Julian P. Diaper

Abstract

When considering the factors that influence the population biology of micro-organisms in natural environments, such as the surface of plants (the phytosphere), it is reasonable to assume that active gene transfer takes place. But, despite a large number of reports describing the isolation of mobile genetic elements from natural microbial communities no data is currently available that allows the quantification of such events. The ability to predict relative transfer frequencies and determine the ecological significance of changing genotypes is relevant to microbial ecologists and necessary for assessing the potential impact and risk associated with the environmental release of large quantities of bacterial inocula or genetically modified micro-organisms (GMMs) (Tiedje et al., 1989). The growing interest in the population genetics of natural bacterial communities (see Baumberg et al., 1995) has led to an appreciation of the central role that mobile genetic elements play in the dissemination of information necessary for the evolution of microbial communities. Although the rate of assimilation and adaptation of communities varies, variation can be linked to a range of factors which are influenced by immediate and diffuse changes in the local environmental conditions. Examples of immediate adaptation include the rapid rate at which the acquisition of antibiotic drug resistance spreads through microbial populations of medical, veterinary and agricultural importance. It is generally agreed that such resistances are sustained by the imposed selective pressures of chemotherapy or the widespread application of antibiotics and anti-microbial compounds. The rate of response can be attributed to the plethora of mechanisms that have evolved to disseminate genetic information within and between communities.

Keywords

Gene Transfer Sugar Beet Fluorescent Pseudomonad Mobile Genetic Element Plasmid Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albiach, M. R. and Lopez, M. M. 1992, Plasmid heterogeneity in Spanish isolates of Agrobacterium tumefaciens from 13 different hosts. Appl. Environ. Microbiol. 58:2683–2687.PubMedGoogle Scholar
  2. Amabile-Cuevas, C. F. and Chicurel, M. E. 1992, Bacterial plasmids and gene flux. Cell. 7:189–199.CrossRefGoogle Scholar
  3. Bailey, M. J., Kobayashi, N., Lilley, A. K., Powell, B. J. and Thompson, I. P. 1994, Potential for gene transfer in the phytosphere: Isolation and characterisation of naturally occurring plasmids. pp. 77–98. In: Bazin, M. J. and Lynch, J. M., (eds.). Environmental Gene Release. Chapman Hall, London.Google Scholar
  4. Bailey, M. J., Lilley, A. K., Thompson, I. P., Rainey, P. B. and Ellis, R. J. 1995, Site directed chromosomal marking of a fluorescent pseudomonad isolated from the phytosphere of sugar beet; stability and potential for marker gene transfer. Molec. Ecol.. 4:755–764.Google Scholar
  5. Bailey, M. J., Lilley, A. K., Ellis, R. J. Bramwell, P. A., Thompson, I. P. 1996, Microbial ecology, inoclula distribution and gene flux within populations of bacteria colonising the surface of plants: Case study of a GMM field release in the UK. In: Van Elsas, J. D., Wellington, E. M. and Trevors, J. T. (eds.). Modern Soil Microbiology. Marcel Dekker, New York. (in press).Google Scholar
  6. Baldani, J. I., Weaver, R. W., Hynes, M. F. and Eardly, B. D. 1992, Utilization of carbon substrates, electrophoretic enzyme patterns and symbiotic performance of a plasmid-cured clover rhizobia. Appl. Environ. Microbiol. 58:2308–2314.PubMedGoogle Scholar
  7. Baumberg, S., Young, J. P. W., Wellington, E. M. H. and Saunders, J. R. (eds.) 1995, Population Genetics of Bacteria. Society for General Microbiology Symposium 52. Cambridge University Press, Cambridge. 348 pp.Google Scholar
  8. Bender, C. L., Malvick, D. K. and Mitchell, E. R. 1989, Plasmid mediated production of the phytotoxin coroatine in Pseudomonas syringae pv. tomato. J. Bacteriol. 171:807–812.PubMedGoogle Scholar
  9. Bender, C. L. and Cooksey, D. A. 1986, Indigenous plasmids in Pseudomonas syringae pv. tomato: Conjugative transfer and role on copper resistance. J. Bacteriol. 165:534–541.PubMedGoogle Scholar
  10. Bender, C. L., Malvick, D. K., Conway, K. E., George, S. and Pratt, P. 1990, Characterization of pXv10A, a copper resistance plasmid in Xanthomonas campestris pv. vesictoria. Appl. Environ. Microbiol. 56:170–175.PubMedGoogle Scholar
  11. Björklöf, K., Suoniemi, A., Haahtela, H. and Romantschuk, M. 1995, High frequency of conjugation verses plasmid segregation of RP1 in epiphytic Pseudomonas syringae populations. Microbiol. 141. 2719–2727.Google Scholar
  12. Boominathan, K. and Mahadevan, A. 1987, Plasmid encoded dissimilation of condensed tannin in Pseudomonas solanacearum. FEMS Microbiol. Ecol. 40:147–150.CrossRefGoogle Scholar
  13. Bouma, J. E. and Lenski, R. E. 1988, Evolution of a bacteria plasmid association. Nature. 335:351–352.PubMedCrossRefGoogle Scholar
  14. Bouzar, H., Ouadah, D., Krimi, K., Jones, J. F., Trovato, M., Petit, A. and Dessaux, Y. 1993, Corretative association between resident plasmids and the host chromosome in a diverse Agrobacterium soil population. Appl. Environ. Microbiol. 59:1310–1317.PubMedGoogle Scholar
  15. Burr, T. J., Katz, B., Hoying, S. A., Wilcox, W. F. and Norelli, J. L. 1988, Streptomycin resistance of Pseudomonas syringae pv. papulans in apple orchards and its association with a conjugative plasmid. Phytopathology. 78:410–413.Google Scholar
  16. Chen, H., Gartner, E. and Rolfe, B. G. 1993, Involvement of genes on a mega plasmid in the acid-tolerant phenotype of Rhizobium leguminosarum biovar trifolii. Appl. Environ. Microbiol. 59:1058–1064.PubMedGoogle Scholar
  17. Clewell, D. B. (ed.) 1993, Bacterial Conjugation. Plenum Press, New York. 413 pp.Google Scholar
  18. Comai, L. and Kosuge, T. 1980, Involvement of plasmid deoxyribonucleic acid in indolacetic acid synthesis in Pseudomonas savastanoi. J. Bacteriol. 143:950–57.PubMedGoogle Scholar
  19. Coplin, D. L. 1985, Characterisation of a conjugative plasmid from Erwinia stewertii. J. Gen. Microbiol. 131:2985–2991.Google Scholar
  20. Coplin, D. L. 1989, Plasmids and their role in the evolution of plant pathogenic bacteria. Annu. Rev. Phytopathol. 27:187–212.CrossRefGoogle Scholar
  21. Coplin, D. L., Chisholm, D. A., Rowan, R. G. and Whitmoyer, R. E. 1981, Characterization of plasmids in Erwinia-stewartii. Appl. Environ. Microbiol. 42:599–604.PubMedGoogle Scholar
  22. Croes, C., van Bastelaere, E., Declercq, E., Eyers, M., van Derleyden, J. and Michiels, K. 1991, Identification and mapping of loci involved in mobility, adsorption to wheat roots, colony morphology, growth in minimal medium on the Azospirillum brasilense Sp7 90-MDa plasmid. Plasmid 26:83–93.PubMedCrossRefGoogle Scholar
  23. Curiale, M. S. and Mills, D. 1983, Molecular relatedness among cryptic plasmids in Pseudomonas syringae pv. glycinea. Genetics 73:1440–1444.Google Scholar
  24. Datta, N. and Hughes, V. M. 1983, Plasmids in the same Inc groups in Enterobacteria before and after the medical use of antibiotics. Nature. 306:616–617.PubMedCrossRefGoogle Scholar
  25. Davies, D. L., Binns, M. M. and Hardy, K. G. 1982, Sequence rearrangements in the plasmid colv, I-K94. Plasmid. 8:55–72.PubMedCrossRefGoogle Scholar
  26. Don, R. H. and Pemberton, J. M. 1985, Genetic and physical map of the 2–4-dichlorophenoxyacetic acid degradative plasmid pjp4. J. Bacteriol. 16:466–468.Google Scholar
  27. Falkenstein, C., Bellemann, P., Walter, S., Zeller, W. and Geider, K. 1988, Identification of Erwinia amylovora, the fireblight pathogen, by colony hybridization with DNA from plasmid pEA29. Appl. Environ. Microbiol. 54:2798–2802.PubMedGoogle Scholar
  28. Farrand, S. K. 1989, Conjugal transfer of bacterial genes on plant, pp.261–285 In: Levy, S.B. and Miller, R.V. (eds.), Gene Transfer in the Environment. McGraw-Hill, New York.Google Scholar
  29. Farrand, S.K. 1992, Conjugal gene transfer on plants, pp. 345–362 In: Levin, M. A. Seidler, R. J. and Gogul, R. (eds.), Microbial Ecology: Principles, Methods and Applications. McGraw-Hill, New York.Google Scholar
  30. Farrand, S. K. 1993, Conjugal transfer of agrobacterium plasmids. pp. 255–285 In: Clewell, D.R. (ed.), Bacterial Conjugation, Plenum Press, New York.Google Scholar
  31. Fry, J. C. and Day, M. J. (eds.) 1992, Release of Genetically Engineered and Other Micro-organisms. Cambridge University Press, Cambridge. 178 pp.Google Scholar
  32. Gaffney, T. D. and Lessie, T. G. 1987, Insertion-sequence-dependent rearrangements of Pseudomonas cepacia plasmid pTGL1. J. Bacteriol. 169:224–230.PubMedGoogle Scholar
  33. Gajendiran N. and Mahadevan, A. 1990, Plasmid borne catechol dissimilation in Rhizobium sp. FEMS Microbiol. Ecol. 73:125–130.Google Scholar
  34. Gantotti, B. V. and Beer, S. V. 1982, Plasmid borne determinants of pigmentation and thiamine prototrophy in Erwinia herbicola. J. Bacteriol. 151:1627–1629.PubMedGoogle Scholar
  35. Gras, M.H., Druet-Michaud, C. and Cerf, O. 1994, La flore bactérienne des feuilles des salades fraiches. Science des Aliments 14:173–188.Google Scholar
  36. Helling, R. B., Adams, J. and Kinney, T. 1981, The maintenance of plasmid-containing organisms in populations of Escherichia coli. J. Gen. Microbiol. 123:129–141.PubMedGoogle Scholar
  37. Hozore, E. and Alexander, M. 1991, Bacterial characteristics important to rhizosphere competence. Soil Biol Biochem. 23:717–723.CrossRefGoogle Scholar
  38. Hwang, I., Cook, D. M. and Farrand, S. K. 1995, A new regulatory element modulates homoserine lactone-mediated autoinduction of Ti plasmid conjugal transfer. J. Bacteriol. 177: 449–458.PubMedGoogle Scholar
  39. Jones, C. and Stanley, J. 1992, Salmonella plasmids of the pre-antibiotic era. J. Gen. Microbiol. 138:189–197.PubMedGoogle Scholar
  40. Jones, D. A., Ryder, M. H., Clare, B. G., Farrand, S. K. and Kerr, A. 1988, Construction of a tra deletion mutant of pAgK84 to safeguard the biological control of crown gall. Mol. Gen. Genet. 212:207–14.CrossRefGoogle Scholar
  41. Kelly, W. J. and Reanney, D. C. 1984, Mercury resistance among soil bacteria: ecology and transferability of genes encoding resistance. Soil. Biol. Biochem. 16:1–8.CrossRefGoogle Scholar
  42. Kerr, A. 1969, Transfer of virulence by non-pathogenic isolates of Agrobacterium. Nature (London) 223:1175–1176.CrossRefGoogle Scholar
  43. Kerr, A., Manigault, P. and Tempé, J. 1977, Transfer of virulence in vivo and in vitro in Agrobacterium. Nature (London) 265:560–561.CrossRefGoogle Scholar
  44. Kidambi, S. P., Ripp, S. and Miller, R. V. 1994, Evidence for phage-mediated gene transfer among Pseudomonas aerugenosa strains on the phylloplane. Appl. Environ Microbiol. 60:496–500.PubMedGoogle Scholar
  45. Kinkle, B. K. and Schmidt, E. L. 1991, Transfer of a pea symbiotic plasmid pJB5JI in nonsterile soil. Appl. Environ. Microbiol. 57:3264–3269PubMedGoogle Scholar
  46. Klingmüller, W. 1991, Plasmid transfer in natural soil — a case by case-study with nitrogen-fixing Enterobacter. FEMS Microbiol. Letts. 85:107–115.CrossRefGoogle Scholar
  47. Klingmüller, W., Dally, A., Fentner, C. and Stienlein, M. 1990, Plasmid transfer between soil bacteria. pp 133–151 In: Fry, J.C. and Day, M.J. (eds.), Bacterial Genetics in Natural Environments. Chapman and Hall, London.Google Scholar
  48. Klingmüller, W. 1993, Plasmid transfer in a natural soil, as stimulated by sucrose, wheat rhizosphere and ground sugar beets: a study with nitrogen fixing Enterobacter. Microb. Rel. 1:229–235.Google Scholar
  49. Knudsen, G. R., Armstrong, J. L., Porteous, L. A., Prince, V. J. Seidler, R. J. and Walter, M. V. 1988, Predictive model of conjugative plasmid transfer in the rhizosphere and phyllosphere. App. Environ. Microbiol. 52:343–347.Google Scholar
  50. Kobayashi, N. and Bailey, M. J. 1994, Plasmids isolated from the sugar beet phyllosphere show little or no homology to molecular probes currently available for plasmid typing. Microbiol. 140:289–296.Google Scholar
  51. Kokjohn, T. A. and Miller, R. V. 1992, Gene transfer in the environment: transduction. pp. 54–81 In: Fry, J. C. and Day, M. J., (eds.), Release of Genetically Engineered and Other Micro-organisms. Cambridge University Press, Cambridge.Google Scholar
  52. Lacy, G. H. 1978, Genetic studies with plasmid RP1 in Erwinia chrysanthemi strains pathogenic on maize. Phytopathology. 68:1323–1330.Google Scholar
  53. Lacy, G. H. and Leary, J. V. 1975, Transfer of antibiotic resistance plasmid RP1 into Pseudomonas glycinea and Pseudomonas phaseolicola in vitro and in planta. J. Gen. Microbiol. 88:49–57.PubMedGoogle Scholar
  54. Lacy, G. H., Stromberg, V. K. and Cannon, M. P. 1984, Erwinia amylovora mutants and in planta derived transconjugants resistant to oxytetracyclin. Can J. Plant Path. 6:33–39.Google Scholar
  55. Laguerre, G., Mazurier, S. I. and Amarger, N. 1993, Plasmid profiles and restriction-fragment-length-polymorphism of Rhizobium-leguminosarum bv. viciae in field populations. FEMS Microbiol. Letts. 101:17–26.Google Scholar
  56. Lazo, G. R. and Gabriel, D. W. 1987, Conservation of plasmid DNA sequences and pathovar indentification of strains of Xanthomonas campestris. Phytopathology 77:448–453.Google Scholar
  57. Lereclus, D., Delecluse, A. and Lecadet, M. M. 1993, Diversity of Bacillus thuringiensis toxins and genes, pp. 37–70 In: Entwistle, P., Cory, J. S., Bailey, M. J., Higgs, S. (eds.), Bacillus thuringiensis, an Environmental Biopesticide: Theory and Practice. Wiley and Sons, New York.Google Scholar
  58. Lee, S. C., Cleary, P. P. and Gerding, D. N. 1984, Plasmid macroevolution in a nosocomial environment — demonstration of a persistent molecular polymorphism and construction of a cladistic phylogeny on the basis of restriction data. Mol. Gen. Genet. 194:173–178.PubMedCrossRefGoogle Scholar
  59. Lenski, R. E. 1994, Evolution in experimental populations of bacteria. pp. 193–215 In: Baumberg, S., Young, J.P.W., Wellington, E.M.H and Saunders, J.R. (eds.), Population Genetics of Bacteria. Society for General Microbiology Symposium 52. Cambridge University Press, Cambridge.Google Scholar
  60. Levy, S. B. 1985, Ecology of plasmids and unique DNA sequences. pp 56–88 In: Halvorson, H.O., Pramer, D. and Rogul, M. (eds), Engineered Organisms in the Environment: Scientific Issues. American Society for Microbiology, Washington D.C.Google Scholar
  61. Levy, S. B. and Miller, R. V. (eds). 1989, Gene Transfer in the Environment. McGraw-Hill Publishing Company, New York. 434 pp.Google Scholar
  62. Lilley, A. K., Fry, J. C., Day, M. J. and Bailey, M. J. 1994, In situ transfer of an exogenously isolated plasmid between Pseudomonas spp. in sugar beet rhizosphere. Microbiol. 140:27–33.CrossRefGoogle Scholar
  63. Lilley, A. K., Bailey, M. J., Day, M. J., and Fry, J. C. 1996, Diversity of mercury resistance plasmids obtained by exogenous isolation from the bacteria of sugar beet in three successive seasons. FEMS Microbiol. Ecol. 20: 211–228.CrossRefGoogle Scholar
  64. Lim, C. K. and Cooksey, D. A. 1993, Characterisation of chromosomal homologs of plasmid borne copper resistance in Pseudomonas syringae. J. Bacteriol. 175:4492–4498.PubMedGoogle Scholar
  65. Lindow, S. E. and Panopoulos, N. J. 1988, Field tests of recombinant ice Pseudomonas syringae for biological frost control in potato. pp. 121–138 In: Sussman, M., Collins, C.H., Skinner, F.A. and Stewart-Tull, D.E.S. (eds.), The Release of Genetically Engineered Micro-organisms. Academic Press, London.Google Scholar
  66. Lorenz, M. G. and Wackernagel W. 1994, Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58:563–602.PubMedGoogle Scholar
  67. Macdonald, R. M. 1986, Sampling soil microfloras-problems in estimating concentration and activity of suspensions of mixed populations of soil-micro-organisms. Soil Boil. Biochem. 18:411–416.CrossRefGoogle Scholar
  68. Manceau, C., Devaux, M. and Gardan, L. 1986, Dynamics of RP4 plasmid transfer between Xanthomonas campestris pv. corylina and Erwinia herbicola in hazelnut tissues, in planta. Can. J. Microbiol. 32:835–841.CrossRefGoogle Scholar
  69. Mergeay, M, Lejeune, P., Sadouk, A., Gerits, J. and Fabry, L. 1987, Shuttle transfer (or retrotransfer) of chromosomal markers mediated by plasmid pULB113. Mol. Gen. Genet. 209: 61–70.PubMedCrossRefGoogle Scholar
  70. Michel, M.-F., Brasileiro, A. C. M., Depierreux, C., Otten, I., Delmotte F. and Jouanin, L. 1990, Identification of different Agrobacterium strains isolated from the same forest nursery. Appl. Environ. Microbiol. 56:3537–3545.PubMedGoogle Scholar
  71. Modi, R. I. and Adams, J. 1991, Coevolution in bacterial-plasmid populations. Evol. 45:656–667.CrossRefGoogle Scholar
  72. Mogen B. D., Oleson, A. F., Sparks, R. B., Gudmestad, N. C. and Secor, G. A. 1988, Distribution and partial characterisation of pCS1, a highly conserved plasmid present in Clavibacter michiganense subsp. sepedonicum. Phytopathology 78:1381–1386.Google Scholar
  73. Morris, C. E., Jacques, M-A. and Nicot, P. 1994, Microbial aggregates on leaf surfaces: Characterisation and implications for the ecology of epiphytic bacteria. Mol. Ecol. 6:613.Google Scholar
  74. Nesme, N., Ponsonnet, C., Picard, C. and Normand, P. 1992, Chromosomal and pTi genotypes of Agrobacterium strains isolated from Populus tumors in two nurseries. FEMS Microbiol. Ecol. 101:189–196.CrossRefGoogle Scholar
  75. Newman, E. I. and Bowen, H. J. 1974, Patterns of distrbution of bacteria on root surfaces. Soil Biol. Biochem. 6:205–209.CrossRefGoogle Scholar
  76. Obukowicz, M. and Shaw, P. D. 1985, Construction of Tn3-containing plasmids from plant-pathogenic pseudomonads and an examination of their biological properties. Appl. Environ. Microbiol. 49:468–473.PubMedGoogle Scholar
  77. Osborn, A. M., Bruce, K. D., Strike, P. and Ritchie, D. A. 1993, Polymerase chain reaction-restriction fragment length polymorphism analysis shows diversity among mer determinants from Gram-negative soil bacteria indistinguishable by DNA-DNA hybridisation. Appl. Environ. Microbiol. 59:4024–4030.PubMedGoogle Scholar
  78. Paulus, F., Ride, M. and Otten, L. 1989, Distribution of two Agrobacterium tumefaciens insertion elements in natural isolates: Evidence for stable association between Ti plasmids and their bacterial hosts. Mol. Gen. Genet. 219:145–152.CrossRefGoogle Scholar
  79. Piper, K. R., Beck von Bodman, S. and Farrand, S. K. 1993, Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by auto induction. Nature. 362:448–450.PubMedCrossRefGoogle Scholar
  80. Powell, B. J., Purdy, K. J., Thompson, I. P. and Bailey, M. J. 1993, Demonstration of tra+ plasmid activity in bacteria indigenous to the phyllosphere of sugar beet; gene transfer to a genetically modified pseudomonad. FEMS Microbiol. Ecol. 12:195–207.CrossRefGoogle Scholar
  81. Quant, R. L. and Mills, D. 1984, An integrative plasmid and multiple-sized plasmids of Pseudomonas syringae pv. phaseolicola have extensive homology. Mol. Gen. Genet. 193:459–466.CrossRefGoogle Scholar
  82. Rainey, P. B., Bailey, M. J. and Thompson, I. P. 1994, Phenotypic and genotypic diversity of fluorescent pseudomonads isolated from field grown sugar beet. Microbiol. 140: 2315–2331.Google Scholar
  83. Rainey, P. B. and Bailey, M. J. 1996, Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome. Molec. Microbiol. 19:521–533.CrossRefGoogle Scholar
  84. Ramos-Gonzalez, M. I., Duque, E. and Ramos, J. L. 1991, Conjugational transfer of recombinant-DNA in cultures and in soils — host range of Pseudomonas-putida tol plasmids. Appl. Environ. Microbiol. 57:3020–3027.PubMedGoogle Scholar
  85. Reanney, D. C. 1978, Coupled evolution: adaptive interactions among the genomes of plasmids, viruses and cells. Int. Rev. Cytol. (Suppl.) 8:1–68.Google Scholar
  86. Richaume, A., Smit, E., Faurie, G. and van Elsas, J. D. 1992a, Influence of soil type on the transfer of plasmid-Rp4(p) from Pseudomonas fluorescens to introduced recipient and to indigenous bacteria. FEMS Microbiol. Ecol. 101:281–292.CrossRefGoogle Scholar
  87. Richaume, A., Bernillon, D. and Faurie, G. 1992b, Role of the intraspecific competition in the regulation of Agrobacterium tumefaciens transconjugant population-level in soil experiments. FEMS Microbiol. Ecol. 86:321–329.CrossRefGoogle Scholar
  88. Rochelle, P. A., Fry, J. C. and Day, M. J. 1988, Structural rearrangements of a broad host range plasmid encoding mercury resistance from an epilithic isolate of Pseudomonas cepacia. FEMS Microbiol. Letts. 52:245–250.CrossRefGoogle Scholar
  89. Rovira, A. D., Newman, E. I., Bowen, H. J. and Campbell, R. 1974, Quantitative assessment of the rhizoplane microflora by direct microscopy. Soil Biol. Biochem. 6:211–216CrossRefGoogle Scholar
  90. Sasakawa, C., Kamata, K., Makino, S., Murayama, S. Y., Sakai, T. and Yoshikawa, M. 1986, Molecular alteration of the 140-megadalton plasmid associated with loss of virulence and congo-red binding-activity in Shigella flexneri. Infect. Immun. 51:470–475.PubMedGoogle Scholar
  91. Schofield, P. R., Dudman, W. F., Gibson, A. H. and Watson, J. M. 1987, Evidence for genetic exchange and recombination of Rhizobium symbiotic plasmids in a soil population. Appl. Environ. Microbiol. 53:2942–2947.PubMedGoogle Scholar
  92. Silver, S. and Walderhaug, M. 1992, Gene regulation of plasmid determined and chromosome determined inorganic ion transport in bacteria. Microbiol. Rev. 56:195–228.PubMedGoogle Scholar
  93. Simonsen, L. 1991, The existence conditions for bacterial plasmids: Theory and reality. Microb. Ecol. 22:187–205.CrossRefGoogle Scholar
  94. Smets, B. F., Rittmann, B. E. and Stahl, D. A. 1993, The specific growth rate of Pseudomonas putida PAW1 influences the conjugal transfer rate of the TOL plasmid. Appl. Environ. Microbiol. 59:3430–3437.PubMedGoogle Scholar
  95. Smit, E., van Elsas, J. D., van Veen, J. A. and Devos, W. M. 1991, Detection of plasmid transfer from Pseudomonas fluorescens to indigenous bacteria in soil by using bacteriophage Phi-R2F for donor counter selection. Appl. Environ. Microbiol. 57:3482–3488.PubMedGoogle Scholar
  96. Steck, T. R. and Kado, C. I. 1990, Virulence genes promote conjugative transfer of the Ti plasmid between Agrobacterium strains. J. Bact. 172:2191–2193.PubMedGoogle Scholar
  97. Steinberger, E. M., Cheng, G. Y. and Beer, S. V. 1990, Characterisation of a 56 Kb plasmid of Erwinia amylovora Ea322: its non-involvement in pathogenicity. Plasmid. 24:12–24.PubMedCrossRefGoogle Scholar
  98. Sundin, G. W., Jones, A. L. and Fulbright, D. W. 1989, Copper resistance in Pseudomonas syringae pv. syringae from cherry orchards and its associated transfer in vitro and in planta with a plasmid. Phytopathology 79:861–865.Google Scholar
  99. Sundin, G. W., Demezas, D. H. and Bender, C. L. 1994, Genetic and plasmid diversity within natural populations of Pseudomonas syringae with various exposures to copper and streptomycin bactericides. Appl. Environ. Microbiol. 60:4421–4431.PubMedGoogle Scholar
  100. Sundin, G. W. and Bender, C. L. 1993, Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 59:1018–1024.PubMedGoogle Scholar
  101. Sykora, P. 1992, Macroevolution of plasmids: A model for plasmid speciation. J. Theor. Biol. 159:53–65.PubMedCrossRefGoogle Scholar
  102. Tenning, P., Vanrijsbergen, R., Zhao, Y. and Joos, H. 1993, Cloning and transfer of genes for antifungal compounds from Erwinia herbicola to Escherichia coli. Molec. Plant-Microb. Interact. 6:474–480.Google Scholar
  103. Thompson, I. P., Bailey, M. J., Fenlon, J. S., Fermor, T. R., Lilley, A. K., Lynch, J. M., McCormack, P. J., McQuilken, M., Purdy, K. J., Rainey, P. B. and Whipps, J. M. 1993, Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris). Plant. Soil. 150:177–191.CrossRefGoogle Scholar
  104. Thompson, I. P., Bailey, M. J., Ellis, R. J., Lilley, A. K., McCormack, P. J. Purdy and Rainey, P. B. 1995a, Short term community dynamics in the phyllosphere microbiology of field grown sugar beet. FEMS Microbiol. Ecol., 16:205–211.CrossRefGoogle Scholar
  105. Thompson, I. P., Lilley, A. K., Ellis, R. J., Bramwell, P. A. and Bailey, M. J. 1995b, Survival, colonisation and dispersal of genetically modified Pseudomonas fluorescens SBW25 in the phytosphere of field grown sugar beet. Biotechnology 13:1493–1497.CrossRefGoogle Scholar
  106. Tiedje, J. M., Colwell, R. K., Grossman, Y. L., Hodgson, R. E., Lenski, R. E., Mack, R. N. and Regal, P. J. 1989, The planned introduction of genetically modified organisms: ecological considerations and recommendations. Ecology 70:298–315.CrossRefGoogle Scholar
  107. Top, E. M., Holben, W. E. and Forney, L. J. 1995, Characterisations of diverse 2,4-dichlorophenoxyacetic acid degradative plasmids isolated from soil by complementation. Appl. Environ. Microbiol. 61:1691–1698.PubMedGoogle Scholar
  108. van Elsas, J. D., Starodub, M. E. and Trevors, J. T. 1988, Bacterial conjugation between pseudomonads in the rhizosphere of wheat. FEMS Microbiol. Ecol. 53:299–306.CrossRefGoogle Scholar
  109. van Elsas, J. D., van Overbeek, L. S. and Nikkel, M. 1989, Detection of plasmid RP4 transfer in soil and rhizosphere and the occurrence of homology to RP4 in soil bacteria. Curr. Microbiol. 19:375–381.CrossRefGoogle Scholar
  110. van Elsas, J. D., Trevors, J. T., Starodub, M. E. and van Overbeek, L. S. 1990, Transfer of plasmid RP4 between pseudomonads after introduction into soil — influence of spatial and temporal aspects of inoculation. FEMS Microbiol. Ecol. 73:1–11.CrossRefGoogle Scholar
  111. Weatcroft, R. and Williams, P. A. 1981, Rapid method for the study of both stable and unstable plasmids in Pseudomonas. J. Gen. Microbiol. 12:4433–437.Google Scholar
  112. Wilkins, B. M. 1995, Gene transfer by bacterial conjugation: Diversity of systems and functional specialisations. pp. 59–88 In: Baumberg, S., Young, J.P.W., Wellington, E. M. H. and Saunders, J. R. (eds.), Population Genetics of Bacteria. Society for General Microbiology Symposium 52. Cambridge University Press, Cambridge.Google Scholar
  113. Young J. P. W. and Wexler, M. 1988, Sym plasmid and chromosomal genotypes are correlated in field populations of Rhizobium leguminosarum. J. Gen. Microbiol. 134:2731–2739.Google Scholar
  114. Zhang, L., Murphy, P. J., Kerr, A. and Tate, M. E. 1993, Agrobacterium conjugaton and gene regulation by N-acyl-homoserine lactones. Nature. 362:446–448.PubMedCrossRefGoogle Scholar
  115. Zhang, L. and Kerr, A. 1991, A diffusible compound can enhance conjugal transfer of the Ti plasmid in Agrobacterium tumefaciens. J. Bacteriol. 173:1867–1872.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Mark J. Bailey
    • 1
  • Andrew K. Lilley
    • 1
  • Julian P. Diaper
    • 1
  1. 1.NERC, Institute of Virology and Environmental MicrobiologyMolecular Microbial Ecology GroupOxfordUK

Personalised recommendations