Microbial Attachment to Plant Aerial Surfaces

  • Martin Romantschuk
  • Elina Roine
  • Katarina Björklöf
  • Tuula Ojanen
  • Eeva-Liisa Nurmiaho-Lassila
  • Kielo Haahtela


Plant aerial surfaces are colonised by a variety of microbes, including bacteria, fungi and yeasts. Some of these microbes are opportunistic pathogens, whereas others are specialised epiphytes. The outcome of the interaction between the microbe and the plant host is dependent on the plant-microbe combination. Often the host range for disease is more narrow than that for epiphytic colonisation.


Fungal Spore Plant Surface Xanthomonas Campestris Plant Associate Bacterium Pellicle Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beattie, G.A. and Lindow, S.E. 1994a, Survival, growth, and localization of epiphytic fitness mutants of Pseudomonas syringae on leaves. Appl. Environ. Microbiol. 60:3790–3798.PubMedGoogle Scholar
  2. Beattie, G.A. and Lindow, S.E. 1994b, Comparison of the behavior of epiphytic fitness mutants of Pseudomonas syringae under controlled and field conditions. Appl. Environ. Microbiol. 60:3799–3808.PubMedGoogle Scholar
  3. Bell, G.I. 1978, Models for the specific adhesion of cells to cells. Science 200:618–627.PubMedCrossRefGoogle Scholar
  4. Björklöf, K. Suoniemi, A. Haahtela, K., Romantschuk, M. 1995a, High frequency of conjugation versus plasmid segregation of RP1 in epiphytic Pseudomonas syringae populations. Microbiology 141:2719–2727.PubMedGoogle Scholar
  5. Björklöf, K., Nurmiaho-Lassila, E.L., Haahtela, K., Romantschuk, M. 1995b, Plasmid transfer of RP1 from Pseudomonas syringae CIT7 on the leaf surface of bean, p. 6 In: Proc. 6th Inter. Symp. Microbiol. Aerial Plant Surfaces. 11–15 September 1995, Bandol, France.Google Scholar
  6. Braun, E.J. and Howard, R.J. 1994a, Adhesion of fungal spores and germlings to host plant surfaces. Protoplasma 181:202–212.CrossRefGoogle Scholar
  7. Braun, E.J. and Howard, R.J. 1994b, Adhesion of Cochliobolus heterostrophus conidia and germlings to leaves and artificial surfaces. Exp. Mycol. 18:211–220.CrossRefGoogle Scholar
  8. Butterworth, J. and McCartney, H.A. 1991, The dispersal of bacteria from leaf surfaces by water splash. J. Appl. Bacteriol. 71:484–496.Google Scholar
  9. Clement, J.A., Butt, T.M. and Beckett, A. 1993a, Characterization of the extracellular matrix produced in vitro by urediniospores and sporelings of Uromyces viciae-fabae. Mycol. Res. 97:594–602.Google Scholar
  10. Clement, J.A., Martin, S.G., Porter, R., Butt, T.M. and Beckett, A. 1993b, Germination and the role of extracellular matrix in adhesion of urediniospores of Uromyces viciae-fabae to synthetic surfaces. Mycol. Res. 97:585–593.Google Scholar
  11. Clement, J.A., Porter, R., Butt, T.M. and Beckett A. 1994, The role of hydrophobicity in attachment of urediniospores and sporelings of Uromyces viciae-fabae. Mycol. Res. 98:1217–1228.Google Scholar
  12. Darzins, A. 1994, Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics an the gliding bacterium Myxococcus xanthus. Mol. Microbiol. 11:137–153.PubMedCrossRefGoogle Scholar
  13. Deising, H., Nicholson, R.L., Haug, M. Howard, R.J. Mendgen, K. 1992, Adhesion pad formation and the involvement of cutinase and esterase in the attachment of urediniospores to the host cuticle. Plant Cell 4:1011–1111.CrossRefGoogle Scholar
  14. van Doorn, J., Boonekamp, P. M. and Oudega, B. 1994, Partial characterization of fimbriae of Xanthomonas campestris pv. hyacinthi. Mol. Plant Microbe Interact. 7:334–344.PubMedGoogle Scholar
  15. Epstein, L., Kwon, Y.H., Almond, D.E., Schached, L.M. and Jones, M.J. 1994, Genetic and biochemical characterization of Nectria haematococca strains with adhesive and adhesion-reduced macroconidia. Appl. Environ. Microbiol. 60:524–530.PubMedGoogle Scholar
  16. Epstein, L., Laccetti, L. Staples, R.C. and Hoch, H.C. 1987, Cell-substratum adhesive proteins involved in surface contact responses of the bean rust fungus. Physiol. Mol. Plant Pathol. 30:373–388.CrossRefGoogle Scholar
  17. Goochee, C. F., Hatch, R. T. and Cadman, T. W., 1987, Some observations on the role of type 1 fimbriae in Escherichia coli autoflocculation. pp. 1024–1034. In: Biotechnology and Bioengineering, vol. XXIX,. New York: Wiley and Sons.Google Scholar
  18. Gupta, S.K., Berk, R.S., Masinick, S., Hazlett, L.D. 1994, Pili and LPS of Pseudomonas aeruginosa bind to the glycolipid asialo GM1. Infec. Immun. 62:4572–4579.Google Scholar
  19. Håkansson, S., Bergman, T., Vanooteghem, J.C., Cornelis, G. and Wolf-Watz, H. 1993, YopB and YopD constitute a novel class of Yersinia Yop proteins. Infec. Immun. 61:71–80.Google Scholar
  20. Hamer, J.E. Howard, R.J., Chumley, F. G. and Valent, G. 1988. A mechanism for surface attachment in spores of a plant pahtogenic fungus. Science 239:288–290.CrossRefPubMedGoogle Scholar
  21. Hazlett, L., Rudner, X., Masinick, S., Ireland, M. and Gupta, S. 1995, In the immature mouse, Pseudomonas aeroginosa pili bind a 57-kd (α2–6) sialylated corneal epithelial cell surface protein: a first step in infection. Investigative Ophtalmology and Visual Science 36, 634–643.Google Scholar
  22. Henrichsen, J. 1983, Twitching motility. Annu. Rev. Microbiol. 37:81–93.PubMedCrossRefGoogle Scholar
  23. Hirano, S.S., and Upper, C.D. 1990. Population biology and epidemiology of Pseudomonas syringae. Annu. Rev. Phytopathol. 28:155–177.CrossRefGoogle Scholar
  24. Howard, R.J., Roach, D.H., Money, N.P. 1991, Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci USA 88:11281–11284.PubMedCrossRefGoogle Scholar
  25. Jones, E.B.G. 1994, Fungal adhesion. Mycol. Res. 9:961–981.CrossRefGoogle Scholar
  26. Kado, C.I. 1994, Promiscuous DNA transfer system of Agrobacterium tumefaciens: Role of the virB operon in sex pilus assembly and synthesis. Mol. Microbiol. 12:17–22.PubMedCrossRefGoogle Scholar
  27. Korhonen, T.K., Haahtela, K., Romantschuk, M., and Bamford, D.H. 1986, The role of fimbriae and pili in the attachment of Klebsiella, Enterobacter and Pseudomonas to plant surfaces pp. 229–241. In: Lugtenberg, B. (ed.), NATO ASI Series, Vol. H4, Recognition in Microbe-Plant Symbiotic and Pathogenic Interaction Springer-Verlag Berlin, Heidelberg.Google Scholar
  28. Kwon, Y.H. and Epstein, L. 1993, A 90 kDa glycoprotein associated with adhesion of Nectria haematococca macroconidia to substrata. Mol. Plant-Microbe Interact. 6:481–487.Google Scholar
  29. Leben, C. and Whitmoyer, R.E. 1979, Adherence of bacteria to leaves. Can. J. Microbiol. 25:896–901.PubMedCrossRefGoogle Scholar
  30. Lindemann, J. Cosntantinidou, H.A., Barchett, W.R. and Upper, C.D. 1982, Plants as sources of airborne bacteria, including ice nucleation-active bacteria. Appl. Environ. Microbiol. 44:1059–1063.PubMedGoogle Scholar
  31. Lindow, S.E. 1991. Determinants of epiphytic fittness in bacteria. pp. 295–314. In: Andrews, J.H. and Hirano, S.S. (eds.) Microbial Ecology of Leaves, New York: Springer-Verlag.Google Scholar
  32. Lindow, S.E., Knudsen, G.R., Seidler, R.J., Walter, M.V., Lambou, V.W. Amy, P.S. Schmedding, D. Prince, V. and Hern, S. 1988, Aerial dispersal and epiphytic survival of Pseudomonas syringae during a pretest for the release of genetically engineered strains in the environment. Appl. Environ. Microbiol. 54:1557–1563.PubMedGoogle Scholar
  33. Lindow, S.E., Arny D.C. and Upper C.D. 1978, Distribution of ice nucleation-active bacteria on plants in nature. Appl. Environ. Microbiol. 36:831–838.PubMedGoogle Scholar
  34. Loosdrecht, M.C.M., Lycklema, J. Norde, W., Schraa, G. and Zehnder, J.B. 1987. The role of bacterial cell wall hydrophobicity in adhesion. Appl. Environ. Microbiol. 53:1893–1897.PubMedGoogle Scholar
  35. Martin, P. R., M. Hobbs, P. D. Free, Y. Jeske, and J. S. Mattick. 1993. Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol. Microbiol. 9:857–868.PubMedCrossRefGoogle Scholar
  36. Martin, P. R., Watson, A. A., McCaul, T. F. and Mattick, J. S. 1995, Characterization of a five-gene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol. Microbiol. 16:497–508.PubMedCrossRefGoogle Scholar
  37. Matthysse, A.G. 1983, Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J. Bacteriol. 154:905–915.Google Scholar
  38. Matthysse, A.G. 1995. Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J. Bacteriol. 177:1076–1081.PubMedGoogle Scholar
  39. McCartney, H.A. 1991, Airborne dissemination of plant fungal pathogens. J. Appl. Bacteriol. 70: 39S–48S.Google Scholar
  40. O’Connell, K.P. and Handelsman, J. 1989, chvA locus may be involved in export of neutral cyclic β-1,2-linked D-glucan from Agrobacterium tumefaciens. Mol. Plant-Microbe Interact. 2:11–16.PubMedGoogle Scholar
  41. Paranchych, W. and Frost, L. S. 1988, The physiology and biochemistry of pili. Adv. Microb. Physiol. 29:53–114.PubMedGoogle Scholar
  42. Persson, C., Nordfelth, R., Holmström, A., Håkansson, S., Rosqvist, R. and Wolf-Watz, H. 1995, Cell-surface-bound Yersinia translocate the protein tyrosine phophatase YopH by a polarized mechanism into the target cell. Molecular Microbiology. 18:135–150.PubMedCrossRefGoogle Scholar
  43. Roine, E., Nunn, D., Paulin, L. and Romantschuk, M. 1996. Characterization of genes required for pilus expression in Pseudomonas syringae pathovar phaseolicola. J. Bacteriol. (in press).Google Scholar
  44. Romantschuk, M. 1992, Attachment of plant-pathogenic becteria to the surface of plants. Annu. Rev. Phytopatol. 30:225–243.CrossRefGoogle Scholar
  45. Romantschuk, M., and D. H. Bamford. 1985. Function of pili in bacteriophage ϕ6 penetration. J. Gen. Virol. 66:2461–2469.PubMedCrossRefGoogle Scholar
  46. Romantschuk, M., and D. H. Bamford. 1986. The causal agent of halo blight in bean, Pseudomonas syringae pv. phaseolicola, attaches to stomata via its pili. Microb. Pathogen. 1:139–148.CrossRefGoogle Scholar
  47. Romantschuk, M., E.-L. Nurmiaho-Lassila, E. Roine, and A. Suoniemi. 1993. Pilus-mediated adsorption of Pseudomonas syringae to host and non-host plant leaves. J. Gen. Microbiol. 139:2251–2260.Google Scholar
  48. Rosenberg, M. and Kjelleberg, S. 1986, Hydrophobic interactions: role in bacterial adhesion. Adv. Microbiol. Ecol. 9:353–393.Google Scholar
  49. Rosqvist, R., Håkansson, S., Forsberg, A. and Wolf-Watz, H. 1995, Functional conservation of the secretion and translocation machinery for virulence proteins of Yersiniae, Salmonellae, and Shigellae. EMBO J. 14:4187–4195.PubMedGoogle Scholar
  50. Rouse, D.I., Nordheim, E.V., Hirano, S.S. and Upper, C.D. 1985, A model relating the probability of foliar disease incidence to the population frequencies of bacterial plant pathogens. Phytopathology 75:505–509.Google Scholar
  51. Rudolph, K.W.E, Gross, M., Ebrahim-Nesbat, F., Nöllenburg, M., Zomorodian, A., Wydra, K., Neugebauer, M., Hettwer, U., El-Shouny, W., Sonnenberg, B., Klement, Z. 1994, The role of extracellular polysaccharides as virulence factors for phytopathogenic pseudomonads and xanthomonads. pp 357–378. In: Kado, C.I. and Crosa, J.H. (eds.) Molecular Mechanisms of Bacterial Virulence. Kluwer Academic Publishers, Dordrecht.Google Scholar
  52. Salmond, G.P.C. 1994, Secretion of extracellular virulence factors by plant pathogenic bacteria. Annu. Rev. Phytopatol. 32:139–148.Google Scholar
  53. Sheth, H.B., Lee, K.K., Wong, W.Y., Srivastava, G., Hindsgaul, O., Hodges, R.S., Paranchych, W. and Irvin, R.T. 1994, The pili of Pseudomonas aeruginosa strains PAK and PAO bind specifically to the carbohydrate sequence βGalNac(1–4)βGal found in glycosphingolipids asialo GM1 and asialo GM2. Mol. Microbiol. 11:715–723.PubMedCrossRefGoogle Scholar
  54. Smit, G., Logman, T.J.J., Boerrigter, M.E.T.I., Kijne, J.W. and Lugtenberg, B.J.J. 1989, Purification and partial characterization of the Ca2+ dependent adhesin from Rhizobium leguminosarum biovar viciae, which mediates the first step in attachment of Rhizobiaceae cells to plant root hair tips. J. Bacteriol. 171:4054–4062.PubMedGoogle Scholar
  55. Strom, M. S. and S. Lory. 1993. Structure-function and biogenesis of the type IV pili. Annu. Rev. Microbiol. 47:565–596.PubMedCrossRefGoogle Scholar
  56. Suoniemi, A., Björklöf, K., Haahtela, K. and Romantschuk, M. 1995, The pilus of Pseudomonas syringae pathovar syringae enhances initiation of bacterial epiphytic colonization of bean. Microbiology 141, 497–503.Google Scholar
  57. Sule, S. and Seemuller, E. 1987, The role of ice formation on the infection of sour cherry leaves by Pseudomonas syringae. Phytopathology, 77:173–177.Google Scholar
  58. Swart, S., Smit, G., Lugtenberg, B.J.J. and Kijne, J.W. 1993, Restoration of attachment, virulence and nodulation of Agrobacterium tumefaciens chvB mutants by rhicadhesin. Mol. Microbiol. 10:597–605.PubMedCrossRefGoogle Scholar
  59. Swart, S; Logman, T.J.J.; Smith, G., Lugtenberg, B.J.J., Kijne, J.W. 1994a, Purification and partial characterization of a glycoprotein from pea (Pisum sativum) with receptor activity for rhicadhesin, an attachment protein of Rhizobiaceae. Plant Molecular Biology 24:171–183.PubMedCrossRefGoogle Scholar
  60. Swart, S., Lugtenberg, B.J.J., Smit, G. and Kijne, J.W. 1994b, Rhicadhesin-mediated attachment and virulence of an Agrobacterium tumefaciens chvB mutant can be restored by growth in a highly osmotic medium. J. Bacteriol. 176:3816–3819.PubMedGoogle Scholar
  61. Tukey Jr, H.B. 1970. The leaching of substances from plants. Annu. Rev. Plant. Physiol. 21, 305–24.CrossRefGoogle Scholar
  62. Vidaver, A. K., R. K. Koski, and J. L. Van Etten. 1973, Bacteriophage ϕ6: A lipid-containing virus of Pseudomonas phaseolicola. J. Virol. 11:799–805.PubMedGoogle Scholar
  63. Viret, O., Toti, L., Chapela, I.H. and Petrini, O. 1994, The role of the extracellular sheath in recognition and attachment of conidia of Discula umbrinella (Berk and Br.) Morelet to the host surface. New Phytol. 127:123–131.CrossRefGoogle Scholar
  64. Wagner, V.T. and Matthysse, A.G. 1992, Involvement of vitronectin-like protein in attachment of Agrobacterium tumefaciens to carrot suspension culture cells. J. Bacteriol. 174:5999–6003.PubMedGoogle Scholar
  65. Wilson, M. and Lindow, S.E. 1994, Inoculum density-dependent mortality and colonization of the phyllosphere by Pseudomonas syringae. Appl. Environ. Microbiol. 60:2232–2237.PubMedGoogle Scholar
  66. Yang, Y.N. and Gabriel, D.W. 1995, Xanthomonas avirulence/pathogenicity gene family encoses functional plant nuclear targeting signals. Molec. Plant-Microbe Interact. 8:627–631.Google Scholar
  67. Young, D. H. and Kauss, H. 1984, Adhesion of Colletotrichum lindemutianum spores to Phaseolus vulgaris hypocotyls and to polystyrene. Appl. Environ. Microbiol. 47:616–619.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Martin Romantschuk
    • 1
  • Elina Roine
    • 1
  • Katarina Björklöf
    • 1
  • Tuula Ojanen
    • 1
  • Eeva-Liisa Nurmiaho-Lassila
    • 1
  • Kielo Haahtela
    • 1
  1. 1.Department of Biosciences Division of General MicrobiologyUniversity of HelsinkiFinland

Personalised recommendations