The leaf surface constitutes the interface between the external environment and the plant tissues. It is limited by a thin layer (about 1.0 µm), the cuticle, composed of non soluble lipid polymers (the cutin) in which soluble lipid waxes are embedded. The function of the cuticle is to protect the leaf from external (biotic and abiotic) aggressions and to regulate the passage of water from the plant to its environment (Schönherr, 1976), of inorganic ions (Ferrandon and Chamel, 1989), and organic solutes (Tukey, 1970; Mengel et al., 1990) coming from tissues and particularly from the extracellular matrix and intercellular air spaces (apoplast). Under natural conditions many factors may cause injury to leaf surfaces: indirectly such as physiological disorders, nutrient and moisture deficiencies, adverse temperatures, poor aeration, deficient light and leaching and directly such as invasion of micro-organisms, attack by insects, wind and air pollution, (Tukey, 1963).


Free Amino Acid Leaf Surface Carbon Chain Length Leaf Position Alkanoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alenas, I. and Skärby, L. 1988, Throughfall of plant nutrients in relation to crown thinning in a Swedish coniferous forest. Water, Air, Soil Poll. 38: 223–237.Google Scholar
  2. Baker, E.A. and Hunt, G.M. 1981, Developmental changes in leaf epicuticular waxes in relation to foliar penetration. New Phytol. 88: 731–747.Google Scholar
  3. Baker, E.A. and Hunt, G.M. 1986, Erosion of waxes from leaf surfaces by simulated rain. New Phytol. 102:161–173.CrossRefGoogle Scholar
  4. Bernays, E.A. and Chapman, R.F. 1994, Chemicals in plants pp. 15–59 In: Bernays E.A. and Chapman, R.F., Host Plant Selection by Phytophagous Insects. Chapman and Hall, New York.Google Scholar
  5. Blaker, T.W. and Greyson, R.I. 1988, Developmental variation of leaf surface wax of maize. Zea mays. Can. J. Bot. 66: 839–847.Google Scholar
  6. Bucovac, M.J, Flore, J.A. and Baker, E.A. 1979, Peach leaf surfaces: changes in wettability, retention, cuticular permeability, and epicuticular wax chemistry during expansion with special reference to spray application. J. Am. Soc. Hort. Sci. 104(5): 611–617.Google Scholar
  7. Chamel, A, Gaillardon, P. and Gauvrit, C. 1991, La pénétration foliaire des herbicides. pp. 7–50 In: Scala, R. (ed.) Les Herbicides. I.N.R.A. éditions Versailles.Google Scholar
  8. Chapman, R.F., and Bernays, E.A. 1989, Insect behaviour at the leaf surface and learning as aspect of host plant selection. Experientia 45: 215–222.CrossRefGoogle Scholar
  9. Derridj, S., Gregoire, V., Boutin, J.P., and Fiala, V. 1989, Plant growth stages in the interspecific oviposition preference of European corn borer and relation with chemicals present on leaf surface. Entomol. Exp. Appli. 53: 267–276.CrossRefGoogle Scholar
  10. Derridj, S., Anglade, P., Fiala, V., and Panouillé, A. 1990, Perspectives d’utilisation de critères biochimiques de la feuille dans la sélection de maïs défavorable à la ponte de pyrale (Ostrinia nubilalis Hbn.), pp. 1209–1216 In: A.N.P.P., 2nd International Conference on Pests in Agriculture, Versailles 1990.Google Scholar
  11. Derridj, S., Boutin, J.P., Fiala, V., and Soldaat, L.L. 1996, Composition en métabolites primaires de la surface foliaire du poireau: étude comparative, incidence sur la sélection de la plante-hôte pour pondre par un insecte. Acta Bot. Gallica (in press).Google Scholar
  12. Derridj, S., Wu, B.R., Stammitti, L., Garrec, J.P. and Derrien, A. 1996, Chemicals on the leaf surface, information about the plant available to the insect. Entomol. Exp. Appl. 80: 197–201.CrossRefGoogle Scholar
  13. Eigenbrode, S.D. and Espelie, K.E. 1995, Effects of plant epicuticular lipids on insect herbivores. Ann. Rev. Entomol. 40: 171–194.CrossRefGoogle Scholar
  14. Ferrandon, M., and Chamel, A. 1989, Foliar uptake and translocation of iron, zinc, manganese. Influence of chelating agents. Plant Physiol Biochem. 27(5): 713–722.Google Scholar
  15. Fiala, V., Boutin, J.P., Barry, P. and Derridj, S. 1993. Les métabolites de la surface foliaire (phylloplan): présence et rôle dans les relations plante-insecte. Acta Bot. Gallica 140: 207–216.Google Scholar
  16. Fiala, V., Glad, C., Martin, M., Jolivet, E. and Derridj, S. 1990. Occurence of soluble carbohydrates on the phylloplane of maize (Zea mays L.): variations in relation to leaf heterogeneity and position on the plant. New Phytol. 115: 609–615.CrossRefGoogle Scholar
  17. Goatley, J.L. and Lewis, R.W. 1966, Composition of guttation fluid from rye, wheat and barley seedlings. Plant Physiol. 41: 373–375.PubMedCrossRefGoogle Scholar
  18. Harr, J., Guggenheim, R., Boller, TH. and Oertlie, J.J. 1980, High pH-values on the leaf surfaces of commercial cotton varieties. Coton Fibres Trop. XXXV,4: 379–384.Google Scholar
  19. Jeffree, C.E., Grace, J. and Hoad, S.P. 1994, Spatial distribution of sulfate uptake by wind-damaged beech leaves. NATO ASI G 36: 183–193.Google Scholar
  20. Jermy, T. 1993, Evolution of insect plant relationships: a devil’s advocate approach. Entomol. Exp. Appl. 66: 3–12.CrossRefGoogle Scholar
  21. Leece, D.R. 1976, Composition and ultrastucture of leaf cuticles from fruit trees relative to different foliar absorption. Aust. J. Plant Physiol. 3: 833–847.Google Scholar
  22. Leonardi, S. and Flückiger, W. 1987, Short term canopy interactions of beech trees: mineral ion leaching and absorption during rainfall. Tree Physiol. 3: 137–145.PubMedGoogle Scholar
  23. Long, W.G., Sweet, D.V. and Tukey, H.B. 1956, Loss of nutrients from plant foliage by leaching as indicated by radioisotopes. Science. 123: 1039–1040.CrossRefPubMedGoogle Scholar
  24. Lorenzoni, C. and Salamini, F. 1975, Glossy mutants of maize. V. Morphology of the epicuticular waxes, Maydica XX: 5–19.Google Scholar
  25. Mengel, K., Breininger, M.TH., and Lutz, H.J. 1990, Effect of simulated acidic fog on carbohydrates leaching, CO2 assimilation and development of damage symptoms in young spruce trees (Picea abies L. Karst). Environ. Exp. Bot. 30(2): 165–173.CrossRefGoogle Scholar
  26. Morgan, J.V. and Tukey, H.B. 1964, Characterization of leachate from plant foliage. Plant Physiol. 590–593.Google Scholar
  27. Price, C.E. 1982, A review of the factors influencing the penetration of pesticides through plant leaves. pp. 237–252. In: Cutler, D.F, Alvin, K.L, and Price, C.E. (eds.) The Plant Cuticle, Academic Press, London.Google Scholar
  28. Renwik, J.A.A. and Chew, F.S. 1994, Oviposition behaviour in Lepidoptere. Annu. Rev. Entomol. 39: 377–400.CrossRefGoogle Scholar
  29. Schönherr, J. 1976, Water permeability of isolated cuticular membranes: the effect of cuticular waxes on diffusion of water. Planta 131: 159–164.CrossRefGoogle Scholar
  30. Schönherr, J. and Riederer, M. 1989, Foliar penetration and accumulation of organic chemicals in plant cuticles. Rev. Environ. Contam. Toxicol. 108: 1–64.Google Scholar
  31. Schreiber, L. and Schönherr, J. 1993, Determination of foliar uptake of chemicals: influence of leaf surface microflora, Plant Cell Environ. 16: 743–748.CrossRefGoogle Scholar
  32. Soldaat, L.L., Boutin, J.P. and Derridj, S. 1996, Species specific composition of free amino acids on the leaf surface of four Senecio species. J. Chemical. Ecol. 22(2): 1–2.CrossRefGoogle Scholar
  33. Städler, E. 1986, Oviposition and feeding stimuli in leaf surface waxes, pp. 105–121, In: Juniper, B.E. and Southwood, T.R.E. (eds.) Insects and Plant Surface. Edward Arnold, London.Google Scholar
  34. Städler, E. 1992, Behavioral responses of insects to plant secondary compounds. pp. 45–88. In: Rosenthal, G. A., Berebaum, M.R.(eds.) Herbivores: Their Interaction with Secondary Plant Metabolites, San Diego Academic.Google Scholar
  35. Städler, E. and Roessingh, P. 1990, Perception of surface chemicals by feeding and ovipositing insects. Symp. of Biol. of Hungary 39: 71–86.Google Scholar
  36. Stammitti, L., Garrec, J.P. and Derridj, S. 1995, Permeability of isolated cuticles of Prunus laurocerasus to soluble carbohydrates. Plant Physiol. Biochem. 33(3): 319–326.Google Scholar
  37. Stephanou, M. and Manetas, Y. 1995. Allelopathic and water concerning functions of leaf epicuticular exudates in the Mediterranean shrub Dittrichia viscosa. Aust. J. Plant Physiol. 22: 755–9.CrossRefGoogle Scholar
  38. Taylor, F.E., Davies, L.G. and Cobb, A.H. 1980, An analysis of the epicuticular wax of Chenopodium album leaves in relation to environmental change, leaf wettability and the penetration of the herbicide bentazon. Ann. Rev. Appl. Biol. 98: 471–478.CrossRefGoogle Scholar
  39. Tukey, H.B., Jr. 1970 The leaching of substances from plants. Ann. Rev. Plant Physiol. 21: 305–324.CrossRefGoogle Scholar
  40. Tukey, H.B., Jr., and Morgan, J.V. 1963, Injury to foliage and its effects upon the leaching of nutrients from above-ground plant parts. Physiol. Plant. 16: 557–564.CrossRefGoogle Scholar
  41. Tukey, H.B., Jr., Tukey, H.B. and Wittwer, S.H. 1958. Loss of nutrients by foliar leaching as determined by radioisotopes. Proc. Am. Soc. Hortic. Sci. 71: 496–506.Google Scholar
  42. Turner, D.P., Broekhuizen, H.J. Van 1992, Nutrient leaching from conifer needles in relation to foliar apoplast cation exchange capacity. Environ. Pollut. 75: 259–263.PubMedCrossRefGoogle Scholar
  43. Van der Meijden, E., Van Zoelen, A.M. and Soldaat, L.L. 1989, Oviposition by the cinnabar moth, Tyria jacobaeae, in relation to nitrogen, sugars and alkaloids of ragwort, Senecio jacobaea. Oikos 54: 337–344.CrossRefGoogle Scholar
  44. Von Kunert, R., and Libbert, E. 1972, Beziehungen zwischen Planzen und epiphytischen Bacterien hinsichtlich ihres Auxinstoffwechsels. X. Die Exudation von Aminosäuren und Kohlenhydraten durch Maissprosse als Ernärungdlage für epiphytische Bakterien. Biochem. Physiol. Pflanz. 163: 524–535.Google Scholar
  45. Von Scheffer, F., Stricker, G. and Kickuth, R. 1965, Organische Verbindungen in der Guttationsflüssigkeit einiger Wild und Kultur. Pflanzenernaehr. Bodenkd. 240–248.Google Scholar
  46. Wollenweber, E. and Dietz, V.H. 1981, Occurence and distribution of free flavonoid aglycones in plants. Phytochemistry 20: 869–932.CrossRefGoogle Scholar
  47. Woodhead, S. and Chapman, R.F. 1986. Insect behaviour and the chemistry of plant surface waxes pp. 123–135. IN: Juniper, B. and Southwood, T.R.E. (eds.) Insects and the Plant Surface, Edward Arnold, London.Google Scholar
  48. Wu, B.R., Derrien, A. and Derridj, S. 1995, Possible role of fatty acids in the permeability of the leaf cuticule to water soluble carbohydrates, p. 100 In: Proc. 6th Inter. Symp. Microbiol. Aerial Plant Surface September 1995, Bandol, France.Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Sylvie Derridj
    • 1
  1. 1.INRA, Unité de Phytopharmacie et des Médiateurs Chimiques Route de Saint CyrVersailles cedexFrance

Personalised recommendations