Phyllosphere Ecology

Past, Present, and Future
  • John H. Andrews


In a session at the 6th International Symposium on the Microbiology of Aerial Plant Parts (from which this book issues), all participants were asked to consider three things: 1) the most important successes in phyllosphere research to date (that is, facts or subject matter considered to be known or largely known); 2) the most important areas for research over the next five years; and 3) creative visions for the future. Discussions were held in multiple small groups, each under the direction of a moderator, and subsequently in an assembled body.


Biological Control Biocontrol Agent Fungal Endophyte Aerial Plant Part Epiphytic Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, J. H. 1991, Future research directions in phyllosphere ecology, pp. 467–479, In: Andrews, J. H. and Hirano, S. S. (eds.) Microbial Ecology of Leaves Springer-Verlag, NY.Google Scholar
  2. Andrews, J. H. and Hirano, S. S. (eds). 1991, Microbial Ecology of Leaves. Springer-Verlag, NY.Google Scholar
  3. Beattie, G.A. and Lindow, S.E. 1995, The secret life of foliar bacterial pathogens on leaves, Annu. Rev. Phytopathol. 33:145–172.CrossRefPubMedGoogle Scholar
  4. Blakeman, J. P. (ed). 1981, Microbial Ecology of the Phylloplane. Academic Press, NY.Google Scholar
  5. Braam, J. and Davis, R. W. 1990, Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364.PubMedCrossRefGoogle Scholar
  6. Caldwell, D. E., Korber, D. R., and Lawrence, J. E. 1992, Confocal laser microscopy and digital image analysis in microbial ecology. Adv. Microb. Ecol. 12:1–67.Google Scholar
  7. Diamond, J. 1986, Overview: laboratory experiments, field experiments, and natural experiments, pp. 3–22, IN: Diamond, J. and Case, T. J. (eds), Community Ecology. Harper and Row, NY.Google Scholar
  8. Dickinson, C. H. and Preece, T. F. (eds). 1976, Microbiology of Aerial Plant Surfaces. Academic Press, NY.Google Scholar
  9. Fisher, R. F. and Long, S. R. 1992, Rhizobium-plant signal exchange. Nature 357:655–660.PubMedCrossRefGoogle Scholar
  10. Fokkema, N. J. and van den Heuvel, J. (eds). 1986, Microbiology of the Phylloplane. Cambridge Univ Press, NY.Google Scholar
  11. Hamdan, H., Weller, D. M. and Thomashow, L. S. 1991, Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R. Appl. Envir. Microbiol. 57:3270–3277.Google Scholar
  12. Hirano, S. S. and Upper, C. D. 1989, Diel variation in population size and ice nucleation activity of Pseudomonas syringae on snap bean leaflets. Appl. Environ. Microbiol. 55:623–630.PubMedGoogle Scholar
  13. Hwang, I., Li, P.-L., Zhang, L., Piper, K., Cook, D., Tate, M. and Farrand, S. K. 1994, TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. Proc. Nat. Acad. Sci. USA 91:4639–43.PubMedCrossRefGoogle Scholar
  14. Javois, L. C. (ed). 1994, Immunocytochemical Methods and Protocols. Methods in Molecular Biology vol. 34. Humana Press, Totowa, NJ.Google Scholar
  15. Juniper, B. E. and Jeffree, C.E. 1983, Plant Surfaces, Edward Arnold, London.Google Scholar
  16. Kinkel, L. L., Andrews, J. H., and Nordheim, E. V. 1989, Fungal immigration dynamics and community development on apple leaves. Microb. Ecol. 18:45–58.CrossRefGoogle Scholar
  17. Kombrink, E. and Somssich, I. E. 1995. Defense responses of plants to pathogens. Adv. Bot. Res. 21:1–34.CrossRefGoogle Scholar
  18. Li, S., Spear, R., and Andrews, J. H. 1994, Detection and quantification of fungal cells on leaves by in situ hybridization based on 18S rRNA-targeted fluorescent oligonucleotide probes. Abstracts, Fifth Inter. Mycol. Congr. Vancouver, B.C., August 1994, p. 125.Google Scholar
  19. Lindow, S. E. 1991, Determinants of epiphytic fitness in bacteria, pp. 295–314. IN: Andrews, J. H. and Hirano, S. S. (eds). Microbial Ecology of Leaves, Springer-Verlag, NY.Google Scholar
  20. Linton, A. H., Handley, B., and Osborne, A. D. 1978, Fluctuations in Escherichia coli O-serotypes in pigs throughout life in the presence and absence of antibiotic treatment. J. Appl. Bact. 44:285–298.Google Scholar
  21. Mechaber, W. L., Marshall, D. B., Mechaber, R. A., Jobe, R. T., and Chew, F. S. 1996, Mapping leaf surface landscapes. Proc. Natl. Acad. Sci. USA 93:4600–4603.PubMedCrossRefGoogle Scholar
  22. Meighen, E. A. 1991, Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55:123–142.PubMedGoogle Scholar
  23. Preece, T. F. and Dickinson, C. H. (eds). 1971, Ecology of Leaf Surface Micro-organisms. Academic Press, NY.Google Scholar
  24. Reid, P. H., Pont-Lezica, R. F., and del Campillo, E. and Taylor, R. (eds.). 1992, Tissue printing: Tools for the Study of Anatomy, Histochemistry, and Gene Expression. Academic Press, NY.Google Scholar
  25. Savka, M. A., and Farrand S. K. 1992, Mannityl opine accumulation and exudation by transgenic tobacco. Plant Physiol. 98:784–789.PubMedCrossRefGoogle Scholar
  26. Shotton, D. (ed). 1993, Electronic light microscopy. Wiley-Liss, NY.Google Scholar
  27. Weising, K., Schell, J. and Kahl, G. 1988, Foreign genes in plants: transfer, structure, expression, and applications. Annu. Rev. Genet. 22:421–477.PubMedCrossRefGoogle Scholar
  28. Weller, D. M. and Thomashaw, L. S. 1990, Antibiotics: Evidence for their production and sites where they are produced, pp. 703–711, IN: Baker, R. R. and Dunn, P. E. (eds.) New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases, Liss, NY.Google Scholar
  29. Wilson, M., Savka, M. A., Hwang, I., Farrand, S. K., and Lindow, S. E. 1995, Altered epiphytic colonization of mannityl opine-producing transgenic tobacco plants by a mannityl opine-catabolizing strain of Pseudomonas syringae. Appl. Environ. Microbiol. 61:2151–2158.PubMedGoogle Scholar
  30. Wilson, M. and Lindow, S. E. 1994, Ecological similarity and coexistence of epiphytic ice-nucleating (Ice+) Pseudomonas syringae strains and a non-ice-nucleating (Ice) biological control agent. Appl. Environ. Microbiol. 60:3128–3137.PubMedGoogle Scholar
  31. Wilson, M. and Lindow, S. E. 1995, Enhanced epiphytic coexistence of near-isogenic salicylate-catabolizing and non-salicylate-catabolizing Pseudomonas putida strains after exogenous salicylate application. Appl. Environ. Microbiol. 61:1073–1076.PubMedGoogle Scholar
  32. Winans, S. C. 1992, Two-way chemical signalling in Agrobacterium-plant interactions. Microbiol. Rev. 56:12–31.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • John H. Andrews
    • 1
  1. 1.Department of Plant PathologyUniversity of Wisconsin-MadisonMadison

Personalised recommendations