The Role of Plant Surface Bacteria in the Hygienic and Market Quality of Minimally Processed Vegetables

  • Cindy E. Morris
  • Christophe Nguyen-The


In the past 20 years fresh and “fresh-like” vegetables have assumed a greater place in the diet of Americans and western Europeans. In the US, for example, per capita consumption of fresh vegetables increased by 26% from 1978 to 1988 (Schlimme, 1995). The introduction of minimally processed (MP) — pre-cut, washed, ready-to-use — products to the retail market responded to the growing demand for “fresh-like” vegetables. Since 1992, the retail sales of MP salads, for example, grew by 95% a year in the US, reaching a total sales volume of $600 million in 1994 (Shapiro, 1995). In France, Europe’s largest market for MP salads, 35,000 tonnes of MP salads were sold in 1993 representing 5% of the total fresh salad consumption (Harzig, 1994). It has been estimated that, by the year 2000, 50% of the sales volume of supermarket produce sections will be generated by MP products (Graziano, 1993).


Lactic Acid Bacterium Listeria Monocytogenes Minimally Process Foodborne Pathogen Fresh Vegetable 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdul-Raouf, U.M., Beuchat, L.R. and Ammar, M.S. 1993, Survival and growth of Escherichia coli O157:H7 on salad vegetables, Appl. Environ. Microbiol. 59:1999–2006.PubMedGoogle Scholar
  2. Adams, M.R., Hartley, A.D. and Cox, L.J. 1989, Factors affecting the efficacy of washing procedures used in the production of prepared salads, Food Microbiol. 6:69–77.Google Scholar
  3. Alghisi, P. and Favaron, F. 1995, Pectin-degrading enzymes and plant-parasite interactions, Eur. J. Plant Pathol. 101:365–375.Google Scholar
  4. Anon. 1988, Guide des bonnes pratiques hygièniques concernant les produits végétaux dits de la 4ème gamme, Bull. Offic. Concurr. Consomm. Repress. Fraud. 48:221–232.Google Scholar
  5. Anon. 1992a, Provisional microbiological guidelines for some ready-to-eat foods samples at point of sale, PHLS Microbiology Digest 9(3):98–99.Google Scholar
  6. Anon. 1992b, Conseil Supérieur d’Hygiène Publique de France, Section Alimentation, Séance du 8 Septembre 1992, Avis relatif à Listeria monocytogenes et l’alimentation, Cah. Nutr. Diét 27(6):325.Google Scholar
  7. Baldwin, E.A., Nisperos-Carriedo, M.O. and Baker, R.A. 1995, Edible coatings for lightly processed fruits and vegetables, HortScience 30:35–38.Google Scholar
  8. Barriga, M.I., Trachy, G., Willemot, C. and Simard, R.E. 1991, Microbial changes in shredded iceberg lettuce stored under controlled atmospheres, J. Food Sci. 56:1586–1599.Google Scholar
  9. Bean, N.H. and Griffin, P.M. 1990, Foodborne disease outbreaks in the United States, 1973–1987: pathognes, vehicles, and trends, J. Food Prot. 53:804–817.Google Scholar
  10. Beaufort, A., Poumeyrol, G. and Rudelle, S. 1992, Fréquence de contamination par listeria et yersinia d’une gamme de produits de 4ème gamme, Rev. Gen. Froid 82(3):28–31.Google Scholar
  11. Berge, O., Heulin, T., Achouak, W., Richard, R. and Balandreau, J. 1991, Rahnella aquatilis, a nitrogen fixing enteric bacterium associated with the rhizosphere of wheat and maize, Can. J. Microbiol. 37:195–203.Google Scholar
  12. Beuchat, L.R. and Brackett, R.E. 1990a, Survival and growth of Listeria monocytogenes on lettuce as influenced by shredding, chlorine treatment, modified atmosphere packaging and temperature J. Food Sci. 55:755–758,870.Google Scholar
  13. Beuchat, L.R. and Brackett, R.E. 1990b, Inhibitory effect of raw carrots on Listeria monocytogenes, Appl. Environ. Microbiol. 56:1734–1742.PubMedGoogle Scholar
  14. Beuchat, L.R., Brackett, R.E., Hao, D.Y.-Y. and Conner, D.E. 1986, Growth and thermal inactivation of Listeria monocytogenes in cabbage and cabbage juice, Can. J. Microbiol. 32:791–795.PubMedGoogle Scholar
  15. Brandl, M., Clark, E.M. and Lindow, S.E. 1996, Characterization of the indole-3-acetic acid biosynthesis pathway in an epiphytic strain of Erwinia herbicola and IAA production in vitro, Can. J. Microbiol. 42: 586–592.Google Scholar
  16. Brecht, J.K. 1995, Physiology of lightly processed fruits and vegetables, HortScience 30:18–22Google Scholar
  17. Breer, C. and Baumgartner, A. 1992, Vorkomen und Verhalten von Listeria monocytogenes auf Salaten und Gemüsen sowie in Frischgepressten Gemüsesäften, Archiv. für Lebensmittelhygiene 43:108–110.Google Scholar
  18. Brocklehurst, T.F. and Lund, B.M. 1981, Properties of pseudomonads causing spoilage of vegetables stored at low temperature, J. Appl. Bacteriol. 50:259–266.Google Scholar
  19. Brocklehurst, T.F., Zaman-Wong, C.M. and Lund, B.M. 1987, A note on the microbiology of retail packs of prepared salad vegetables, J. Appl. Bacteriol. 63:409–415.PubMedGoogle Scholar
  20. Brown, K.L. and Oscroft, C.A. 1989, Guidelines for the hygienic manufacture, distribution and retail sale of sprouted seeds with particular reference to mung beans, Technical Manual n o 25. Campden Food and Drink Research Association, Chipping Campden, 25 pp.Google Scholar
  21. Buchanan, R.L. and Klatwitter, L.A. 1991, Effect of temperature history on the growth of Listeria monocytogenes Scott A at refrigeration temperatures, Int. J. Food Microbiol. 12:235–246.PubMedGoogle Scholar
  22. Buchanan, R.L. and Phillips, J.G. 1990, Response surface model for predicting the effects of temperature, pH, sodium chloride content, sodium nitrite concentration and atmosphere on the growth of Listeria monocytogenes. J. Food Prot. 53:370–376,381.Google Scholar
  23. Bunster, L., Fokkema, N.J. and Schippers, B. 1989, Effect of surface-active Pseudomonas spp. on leaf wetability, Appl. Environ. Microbiol. 55:1340–1345.PubMedGoogle Scholar
  24. Carlin, F. and Nguyen-the, C. 1994, Fate of Listeria monocytogenes on four types of minimally processed green salads, Lett. Appl. Microbiol. 18:222–226.Google Scholar
  25. Carlin, F., Nguyen-the, C. and Abreu da Silva, A. 1995, Factors affecting the growth of Listeria monocytogenes on minimally processed fresh endive, J. Appl. Bacteriol. 78:636–646.PubMedGoogle Scholar
  26. Carlin, F., Nguyen-the, C., Chambroy, Y. and Reich, M. 1990, Effects of controlled atmospheres on microbial spoilage, electrolyte leakage and sugar content of fresh “ready-to-use” grated carrots. Int. J. Food Sci. Technol. 25:110–119.Google Scholar
  27. Carlin, F., Nguyen-the, C., Cudennec P. and Reich, M. 1989, Microbial spoilage of fresh ready-to-use grated carrots. Sci. Alim. 9:371–386.Google Scholar
  28. Carlin, F., Nguyen-the, C. and Morris, C.E. 1996, The influence of the background microflora on the fate of Listeria monocytogenes on minimally processed fresh broad leaved endive (Cichorium endivia var. latifolia), J. Food Prot. 59: 698–703.Google Scholar
  29. Clark, E. and Lindow, S.E. 1989, Indoleacetic acid production by epiphytic bacteria associated with pear fruit russetting, Phytopathology 79:1191.Google Scholar
  30. Cooper, D.G. 1986, Biosurfactants, Microbiol. Sci. 3:145–149.PubMedGoogle Scholar
  31. Davis, H., Taylor, P., Perdue, J.N., Stelma, G.N., Humphrey, J.M., Rowntree, R. and Greene K.D. 1988, A shigellosis outbreak traced to commercially distributed shredded lettuce, Am. J. Epidemiol. 128:1312–1321.PubMedGoogle Scholar
  32. Denis, C. and Picoche, B. 1986, Microbiologie des légumes frais prédécoupés, Ind. Agr: Alim. 103:547–553.Google Scholar
  33. Denis, F., Veillet, L. and Michel, M. 1988, Détermination des Leuconsostocs dans les produits alimentaires: comparaison de milieux pour leur identification — Microbiologie des légumes de la quatrième gamme, Microbiol. Alim. Nutr. 6:185–192.Google Scholar
  34. DGCCRF. 1993, Qualité microbiologique des produits végétaux dits de 4ème gamme, p. 54. In: Rapport d’activité 1993 des laboratoires de la Direction Générale de la Consommation de la Concurrence et des Fraudes, Paris.Google Scholar
  35. Doyle, M.P. 1990, Fruit and vegetable safety — Microbiological considerations, HortScience 25:1478–1482.Google Scholar
  36. Ercolani, G.L. 1976, Bacteriological quality assesment of fresh marketed lettuce and fennel, Appl. Environ. Microbiol. 31: 847–852.PubMedGoogle Scholar
  37. Farrag, S.A. and Marth, E.H. 1989, Growth of Listeria monocytogenes in the presence of Pseudomonas fluorescens at 7 or 13°C in skim milk. J. Food Prot. 52:852–855.Google Scholar
  38. Farber, J.M. 1991, Microbiological aspects of modified-atmosphere packaging technology — a review, J. Food Protect. 54:58–70.Google Scholar
  39. Farber, J.M. 1993, Current research on Listeria monocytogenes: an overview. J. Food Prot. 56:640–646.Google Scholar
  40. Fernando, M. and Stevenson, G. 1952, Studies in the physiology of parasitism. XVI. Effects of the condition of potato tissue, as modified by temperature and water content, upon attack by certain organisms and their pectinanse enzymes, Ann. Bot. Lond. N.S. 16:103–114.Google Scholar
  41. Freedman, D.J., Kondo, J.K. and Willrett, D.L. 1989, Antagonism of foodborne bacteria by Pseudomonas spp.: a possible role for iron, J. Food Prot. 52:484–489.Google Scholar
  42. Garcia-Villanova Ruiz, B., Galvez Vargas, R. and Garcia-Villanova R. 1987, Contamination of fresh vegetables during cultivation and marketing, Int. J. Food Microbiol. 4: 285–291.Google Scholar
  43. Garg, N., Churey, J.J. and Splittstoesser, D.F. 1990, Effect of processing conditions on the microflora of fresh-cut vegetables, J. Food Prot. 53:701–703.Google Scholar
  44. Geiges, O., Stählin, B. and Baumann, B. 1990, Mikobiologische Beurteilung von Schnittsalat und Sprossgemüse, Mitt. Gebiete Lebensm. Hyg. 81:684–721.Google Scholar
  45. George, S.M. and Lund, B.M. 1992, The effect of culture medium and aeration on growth of Listeria monocytogenes at pH 4.5. Lett. Appl. Microbiol. 15:49–52.Google Scholar
  46. Gouet, P., Labadie, J. and Serratore, C. 1978, Development of Listeria monocytogenes in monoxenic and polyxenic beef minces, Zbl. Bakt. Hyg., I. Abt. Orig. B. 166:87–94.Google Scholar
  47. Gras, M. H., Druet-Michaud, C. and Cerf, O. 1994, La flore bactérienne des feuilles de salade fraîche, Sciences des Aliments 14:173–188.Google Scholar
  48. Graziano, J. 1993, Fresh-cut at a glance, Produce Business 9(10):42–48.Google Scholar
  49. Harzig, J. 1994, 4ème gamme: l’optimisme est de retour, L’echo des MIN. Feb. 1994, pp. 52–54.Google Scholar
  50. Hirano, S.S. and Upper, C.D. 1991, Bacterial community dynamics, pp. 271–294. In: Andrews, J.H. and Hirano, S.S. (eds.) Microbial Ecology of Leaves. Springer Verlag, New York, 499 pp.Google Scholar
  51. Hurst, W.C. 1995, Sanitation of lightly processed fruits and vegetables, HortScience 30:22–24.Google Scholar
  52. Hyodo, H., Kuroda, H. and Yang, S.F. 1978, Induction of phenylalanine ammonium-lyase and increase in phenolics in lettuce in relation to the development of russet spotting caused by ethylene, Plant Physiol. 62:31–35.PubMedGoogle Scholar
  53. Jacques, M.-A. 1994, Ecologie quantitative et physiologie de la communauté bactérienne épiphylle de Cichorium endivia var. latifolia L, Thesis (Docteur en Sciences), Université Paris XI Orsay, 125 pp.Google Scholar
  54. Jacques, M.-A., Kinkel, L.L. and Morris, C.E. 1995, Population sizes, immigration, and growth of epiphytic bacteria on leaves of different ages and positions of field-grown endive (Cichorium endivia var. latifolia), Appl. Environ. Microbiol. 61:899–906.PubMedGoogle Scholar
  55. Jacques, M.A. and Morris, C.E. 1994, Diversity of bacteria contributing to the decay of ready-to-use salads, Proc. 8th Int. Conf. on Plant Pathogenic Bacteria. 9–12 June 1992, Versailles, pp. 165–171.Google Scholar
  56. Jacques, M.-A. and Morris, C.E. 1995, Bacterial population dynamics and decay on leaves of different ages of ready-to-use broad-leaved endive, Int. J. Food Sci. Technol. 30:221–236.Google Scholar
  57. Jeong, D.K. and Frank, J.F. 1994. Growth of Listeria monocytogenes at 10°C in biofilms with microorganisms from meat and dairy processing environments, J. Food Prot. 57:576–586.Google Scholar
  58. Jones, K. 1970, Nitrogen fixation in the phyllosphere of Douglas fir Pseudotsuga douglasii, Annals of Botany 34:239–244.Google Scholar
  59. Kallender, K.D., Hitchins, A.D., Lancette, G.A., Schmieg, J.A., Garcia, G.R., Solomon, H.M. and Sofos, J.N. 1991, Fate of Listeria monocytogenes in shredded cabbage stored at 5°C and 25°C under a modified atmosphere J. Food Prot. 54:302–304.Google Scholar
  60. Kapperud, G., Rorvik, L.M., Hasseltvedt, V., Hoiby, E.A., Iversen, B.G., Staveland, K., Johnsen, G., Leitao, J., Heriskstad, H., Andersson, Y., Langeland, G., Gondrosen, B. and Lassen, J. 1995, Outbreak of Shigella sonnei infection traced to imported iceberg lettuce, J. Clin. Microbiol. 33:609–614.PubMedGoogle Scholar
  61. Ke, D. and Saltveit, M.E. Jr. 1989, Wound-induced ethylene production, phenolic metabolism and susceptibility to russet spotting in iceberg lettuce, Physiol. Plant. 76:412–418.Google Scholar
  62. King, A.D.Jr., Magnuson, J.A., Török, T. and Goodman, N. 1991, Microbial flora and storage quality of partially processed lettuce, J. Food Sci. 56:459–461.Google Scholar
  63. Klaenhammer, T.R. 1988, Bacteriocins of lactic acid bacteria, Biochimie 70:337–349.PubMedGoogle Scholar
  64. Kramer, J.M. and Gilberts, R.J. 1989, Bacillus cereus and other Bacillus species, pp. 21–70, In: Foodborne Bacterial Pathogens, Doyle, M.P. (ed), Marcel Dekker Inc., New York.Google Scholar
  65. Lainé, K, and Michard, J. 1988, Fréquence et abondance des Listeria dans les légumes frais découpés prêts à l’emploi. Microbiol. Alim. Nutr. 6:329–335.Google Scholar
  66. Laycock, M.V., Hildebrand, P.D., Thibault, P., Walter, J.A. and Wright, J. L. C. 1991, Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens, J. Agric. Food Chem. 39:483–489.Google Scholar
  67. Liao, C.H. and Wells, J.M. 1987a, Diversity of pectolytic, fluorescent pseudomonads causing soft rots of fresh vegetables at produce markets, Phytopathology 77:673–677.Google Scholar
  68. Liao, C.H. and Wells, J.M. 1987b, Association of pectolytic stains of Xanthomonas campestris with soft rots of fruits and vegetables at retail markets, Phytopathology 77:418–422.Google Scholar
  69. Liao, C.H. and Wells, J.M. 1986, Properties of Cytophaga johnsonae strains causing spoilage of fresh produce at food markets, Appl. Environ. Microbiol. 52:1261–1265.PubMedGoogle Scholar
  70. Lojkowska, E. and Holubowska, M. 1992, The role of polyphenol oxidase and peroxidase in potato tuber resistance to soft rot caused by Erwinia carotovora, J. Phytopathol. 136:319–328.Google Scholar
  71. Lund, B.M. 1983, Bacterial spoilage, pp. 219–257, In: Dennis, C. (ed.) Post-Harvest Pathology of Fruits and Vegetables, Academic press, London.Google Scholar
  72. Lund, B.M. 1988, Bacterial contamination of food crops, Aspects of Appl. Biol. 17:71–81.Google Scholar
  73. Lund, B.M. 1992, Ecosystems in vegetable foods, J. Appl. Bacteriol. Symposium Suppl. 73:115S–126S.Google Scholar
  74. Marchetti, R., Casadei, M.A. and Guerzoni, M.E. 1992, Microbial population dynamics in ready-to-use vegetable salads, Ital. J. Food Sci. 2:97–108.Google Scholar
  75. Marshall, D.L. and Schmidt, R.H. 1989, Growth of Listeria monocytogenes at 10°C in milk preincubated with selected pseudomonads. J. Food Prot. 51:277–282.Google Scholar
  76. Marshall, D.L. and Schmidt, R.H. 1991, Physiological evaluation of stimulated growth of Listeria monocytogenes by Pseudomonas species in milk, Can J. Microbiol. 37:594–599.PubMedGoogle Scholar
  77. Mattila-Sandhom, T. and Skyttä, E. 1991, The effect of spoilage flora on the growth of food pathogens in minced meat stored at chilled temperature. Lebensm.-Wiss.-Technol. 24:116–121.Google Scholar
  78. MMWR. 1994, Foodborne outbreaks of enterotoxigenic Escherichia coli — Rhode Island and New Hampshire, 1993, JAMA 271:652–654.Google Scholar
  79. Morris, C.E., Guinebretiere, M.H. and Mazollier, J. 1990, Identity and distribution of bacteria contributing to the decay of ready-to-use salads, In: SFP (eds), Compte-rendus du 2ème congrès de la Société Française de Phytopathologie, Montpellier, France. Thème 5, Posters.Google Scholar
  80. Morris, C.E., Jacques, M.-A. and Nicot, P.C. 1994, Microbial aggregates on leaf surfaces: characterization and implications for the ecology of epiphytic bacteria, Molec. Ecol. 3:613.Google Scholar
  81. Morris, C.E. and Lucotte, T. 1993, Dynamics and variability of bacterial population density on leaves of field-grown endive destined for ready-to-use processing, Int. J. Food Sci. Technol. 28:201–209.Google Scholar
  82. Morris, C.E. and Rouse, D.I. 1984, The role of nutrients in regulating epiphytic bacterial populations, pp. 63–82 In: Windels, C.E. and Lindow, S.E. (eds.) Biological Control in the Phylloplane, American Phytopathological Society, St. Paul, MN.Google Scholar
  83. Mundt, J.O. and Hammer, J.L. 1968, Lactobacilli on plants, Appl. Microbiol. 16:1326–1330.PubMedGoogle Scholar
  84. Mundt, J.O., Beattie, W.G. and Wieland, F.R. 1969, Pediococci residing on plants, J. Bacteriol. 98:938–942.PubMedGoogle Scholar
  85. Nguyen-the, C. and Carlin, F. 1994, The microbiology of minimally processed fresh fruits and vegetables, Crit. Rev. Food Sci. Nutr. 34:371–401.PubMedGoogle Scholar
  86. Nguyen-the, C. and Lund, B. 1991, The lethal effect of carrot on Listeria species, J. Appl. Bacteriol. 70:479–788.PubMedGoogle Scholar
  87. Nguyen-the, C. and Lund, B. 1992, An investigation of the lethal effect of carrot on Listeria monocytogenes, J. Appl. Bacteriol. 73:23–30.PubMedGoogle Scholar
  88. Nguyen-the, C. and Prunier, J.P. 1989, Involvement of pseudomonads in deterioration of “ready-to-use” salads, Int. J. Food Sci. Technol. 24:47–58.Google Scholar
  89. Notermans, S.H.W. 1993, Control in fruits and vegetables, pp. 233–260, In: Hauschild, A.H.W. and Dodds, K.L. (eds.) Clostridium botulinum, Ecology and Control in Foods, Marcel Dekker Inc., New York.Google Scholar
  90. O’Mahony, M., Cowden, J., Smyth, B., Lynch, D., Hall, M., Rowe, B., Teare, E.L., Tettmar, R.E., Rampling, A.M., Coles, M., Gilbert, R.J., Kingcott, E., and Bartlett, C.L.R. 1990, An outbreak of Salmonella Saint-Paul infection associated with beansprouts, Epidemiol. Infect. 104:229–235.PubMedGoogle Scholar
  91. Ono, K. 1969, Occurrence of Bacillus polymyxa (Praz.) Migula causing rot of harvested tobacco leaves, Bull. Morioka Tob. Exp. Stn. 4:77–83.Google Scholar
  92. Park, C.E. and Sanders, G.W. 1992, Occurrence of thermotolerant camplylobacters in fresh vegetables sold at farmers’ outdoor markets and supermarkets, Can. J. Microbiol. 38: 313–316.PubMedGoogle Scholar
  93. Piard, J.C. and Desmazeaud, M. 1991, Inhibiting factors produced by lactic acid bacteria. I. Oxygen metabolites and catabolism end-products, Lait 71:525–541.Google Scholar
  94. Portnoy, B.J., Goepfert, J.M. and Harmon, S.M. 1976, An outbreak of Bacillus cereus food poisoning resulting from contaminated vegetables sprouts, Am. J. Epidempiol. 103:589–594.Google Scholar
  95. Premaratne, R.J., Wei-Jen Lin and Johnson, E.A. 1991, Development of an improved chemically defined minimal medium for Listeria monocytogenes. Appl. Environ. Microbiol. 57:3046–3048.PubMedGoogle Scholar
  96. Roberts, D., Watson G.N. and Gilbert, R.J. 1982, Contamination of food plants and plant products with bacteria of public health significance, pp. 169–195, In: Rhodes-Roberts, M. and Skinner, F.A. (eds.) Bacteria and Plants, Academic Press, London.Google Scholar
  97. Ryser, E.T. and Marth, E.A., 1991, Listeria, listeriosis and food safety, Marcel Dekker Inc., New York 632 pp.Google Scholar
  98. Sasahara, K.C. and Zottola, E.A. 1993, Biofilm formation by Listeria monocytogenes utilizes a primary colonizing microorganism in flowing systems, J. Food Prot. 56:1022–1028.Google Scholar
  99. Scandella, D. 1989, Maîtrise de la qualité des produits de IVe gamme dans la filière de production et de distribution, Rev. Gén. Froid 1989no3: 94–101.Google Scholar
  100. Schlech, W.F., Lavigne, P.M., Bortolussi, R.A., Allen, A.C., Haldane, E.V., Wort, A.J., Hightower, A.W., Johnson, S.E., King, S.H., Nicholls, E.S. and Broome, C.V. 1983, Epidemic listeriosis — Evidence for transmission by food. New Engl. J. Med. 308:203–206.PubMedGoogle Scholar
  101. Schlemmer, A.F., Ware, C.F. and Keen, N.T. 1987, Purification and characterization of a pectin lyase produced by Pseudomonas fluorescens W51, J. Bacteriol. 169:4493–4498.PubMedGoogle Scholar
  102. Schlimme, D.V. 1995, Marketing lightly processed fruits and vegetables, HortScience 30:15–17.Google Scholar
  103. Shapiro, L. 1995, The lazy man’s leafy greens, Newsweek 75(25):46.Google Scholar
  104. Shuval, H.I., Yekutiel, P. and Fattal, B. 1984, Epidemiological evidence for helminth and cholera transmission by vegetables irrigated with wastewater: Jerusalem — a case study. Wat. Sci. Tech. 17:433–442.Google Scholar
  105. Simon, N., Coulanges, V., André, P. and Vidon, D.J.-M. 1995, Utilization of exogenous siderophores and natural catechols by Listeria monocytogenes, Appl. Environ. Microbiol. 61:1643–1645.PubMedGoogle Scholar
  106. Solomon, H.M., Kauter, D.A., Lilly, T. and Rhodehamel, E.J. 1990, Outgrowth of Clostridium botulinum in shredded cabbage at room temperature under a modified atmosphere, J. Food Prot. 53:831–833.Google Scholar
  107. Stanley, D.W. 1991, Biological membrane deterioration and associated quality losses in food tissues, Crit. Rev. Food Sci. Nutr. 30:487–553.PubMedGoogle Scholar
  108. Steinbruegge, E.G., Maxcy, R.B. and Liewen, M.B. 1988, Fate of Listeria monocytogenes on ready to serve lettuce, J. Food Prot. 51:596–599.Google Scholar
  109. Stewart, A.W., Langford, A.F., Hall, C. and Johnson, M.G. 1978, Bacteriological survey of raw “soulfoods” available in South Carolina, J. Food Prot. 41:364–366.Google Scholar
  110. Tamminga, S.K., Beumer, R.R. and Kampelmacher, E.H. 1978, The hygienic quality of vegetables grown in or imported into the Netherlands: a tentative survey, J. Hyg., Camb. 80:143–154.Google Scholar
  111. Todd, E.C.D. 1992, Foodborne disease in Canada — a 10 years summary from 1975 to 1984, J. Food Prot. 55:123–132.Google Scholar
  112. van Gijsegem, F., Somssich, I.E. and Scheel, D. 1995, Activation of defense-related genes in parsley leaves by infection with Erwinia chrysanthemi, Eur. J. Plant Pathol. 101:549–559.Google Scholar
  113. Vantomme, R., Sarrazyn, R., Goor, M., Verdonck, L., Kersters, K. and De Ley, J. 1989, Bacterial rot of whitloof chicory caused by strains of Erwinia and Pseudomonas: symptoms, isolation and charaterization, J. Phytopathology 124:337–365.Google Scholar
  114. Varoquaux, P. 1990, Connaissances de la matière première et transformation des légumes de quatrième gamme, Agoral, Nantes, 7p.Google Scholar
  115. Vescovo, M., Orsi, C., Scolari, G. and Torriana, S. 1995, Inhibitory effect of selected lactic acid bacteria on microflora associated with ready-to-use vegetables, Lett. Appl. Microbiol. 21:121–125.PubMedGoogle Scholar
  116. Wang, J.S. and Kelman, A. 1982, Injury to potato tissue by protease of Pseudomonas fluorescens (Biotype A), Phytopathology 72:936.Google Scholar
  117. Wilson, M. and Lindow, S.E. 1994, Inoculum density-dependent mortality and colonization of the phyllosphere by Pseudomonas syringae, Appl. Environ. Microbiol. 60:2232–2237.PubMedGoogle Scholar
  118. Wilson, M. and Lindow, S.E. 1994, Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning, Appl. Environ. Microbiol. 60:4468–4477.PubMedGoogle Scholar
  119. Zottola, E.A. and Sasahara, K.C. 1994, Microbial biofilms in the food processing industry — Should they be a concern?, Int. J. Food Microbiol. 23:125–148.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Cindy E. Morris
    • 1
  • Christophe Nguyen-The
    • 2
  1. 1.INRA Station de Pathologie VégétaleCentre de Recherches d’AvignonFrance
  2. 2.INRA Station de Technologie des Produits VégétauxCentre de Recherches d’AvignonFrance

Personalised recommendations