Advertisement

Integrated Control of Botrytis Cinerea on Greenhouse Tomatoes

  • Philippe C. Nicot
  • Alain Baille

Abstract

Tomato (Lycopersicon esculentum) is presently the most produced vegetable, with about 70 million tons per year, representing 17% of total vegetable production (Kraeutler, 1995). In the USA, nearly 80% of tomato production is for processing, while in the European Union, over 50% of the tomatoes are produced for the fresh market. Fresh market tomatoes are typically produced as protected crops, and those for processing are grown in the field (Kraeutler, 1995). A variety of structures may be used for greenhouse production of vegetables, from the most simple, unheated, plastic-covered tunnels, to the most sophisticated high-investment glasshouses where plants are grown year-round in hydroponic systems with computer-controlled fertilisation, climate, and atmosphere composition (Jarvis, 1992). In Europe, glasshouse production is more typical of the northern countries while tunnels are prevalent in the south. Both types of greenhouses are used in France for tomato production, with ca. 850 hectares of minimally or unheated tunnels and 1300 hectares of high-investment, heated glass- or plastic-covered houses (Kraeutler, 1995).

Keywords

Plant Pathol Botrytis Cinerea Integrate Control Fungicide Application Grey Mould 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abreu, P.E. and Meneses, J.F. 1993, Climatic characterization of two plastic covered greenhouses under different natural ventilation methods, with a cool season tomato crop, Acta Horticulturae 366:183–194.Google Scholar
  2. Abreu, P.E., Monteiro, A.A. and Meneses, J.F. 1993, Response of untreated plastic covered greenhouse tomatoes during the cool season and under two different natural ventilation methods, Acta Horticulturae 366:195–200.Google Scholar
  3. Akagi, T., Mitani, S., Komyoji, T. and Nagatani, K. 1995, Quantitative structure-activity relationships of fluazinam and related fungicidal n-phenylpyridinamines: preventive activity against Botrytis cinerea, J. Pestic. Sci. 20:279–290.Google Scholar
  4. Barak, E. and Edgington, L.V. 1984, Cross-resistance of Botrytis cinerea to captan, thiram, chlorothalonil and related fungicides, Can. J. Plant Pathol. 6:318–320.CrossRefGoogle Scholar
  5. Bardinelli, T.R., Butterfield, E.J. and Jones, T.L. 1989, Diagnostic media for the detection of fungi (Botrtyis cinerea) resistant to vinclozolin and benomyl, Phytopathology 79:1212–1213.Google Scholar
  6. Bartharuk, N.N. 1985, A comparative study of radiometric and electronic leaf wetness sensors. Agric. For. Meteorol. 36:83–90.CrossRefGoogle Scholar
  7. Beever, R.E., Pak, H.A., Laracy, E.P. 1991, An hypothesis to account for the behaviour of dicarboximide resistant strains of Botrytis cinereae in vineyards, Plant Pathol. 40:342–346.CrossRefGoogle Scholar
  8. Beever, R.E. and Parkes, S.L. 1993, Mating behavior and genetics of fungicide resistance of Botrytis cinerea in New Zealand. N. Z. J. Crop Hort. Sci. 21:303–310.Google Scholar
  9. Besri, M. and Diatta, F. 1985, Résistance de B. cinerea, agent de la pourriture grise de la tomate, aux benzimidazoles, dicarboximides et sulfamides, EPPO Bulletin 15:379–385.Google Scholar
  10. Besri, M. and Diatta, F. 1992, Effect of fungicide application techniques on the control of Botrytis cinerea and development of fungal resistance, pp. 248–251 In: Verhoeff, K., Malathrakis, N.E. and Williamson, B. (eds.) Recent Advances in Botrytis Research, Pudoc, Wageningen.Google Scholar
  11. Blakeman, J.P. 1980, Behaviour of conidia on aerial plant surfaces, pp. 115–151 In: Coley-Smith, J.R., Verhoeff, K. and Jarvis, W.R. (eds.) The Biology of Botrytis, Academic Press, London.Google Scholar
  12. Boland, G.J., Melzer, M.S. and Zhou, T. 1995, Hypovirulence in Sclerotinia species, p. 48 In: Proc. 6th Int. Symp. Microbiology of Aerial Plant Pathogens, Bandol, France.Google Scholar
  13. Boland, G. J., Mould, M.J.R. and Robb, J. 1993, Ultrastructure of a hypovirulent isolate of Sclerotinia sclerotium, Physiol. Mol. Plant Pathol. 43:21–32.CrossRefGoogle Scholar
  14. Boulard, T. and Baille, A. 1995, Modelling of air exchange rate in a greenhouse equiped with continuous roof vents, J. agric. Engng. Res. 61:37–48.CrossRefGoogle Scholar
  15. Boulard, T. and Draoui, B., 1995, Natural ventilation of a greenhouse with continuous roof vents: measurements and data analysis, J. agric. Engng. Res. 61:37–48.CrossRefGoogle Scholar
  16. Broome, J.C., English, J.T., Marois, J.J., Latorre, B.A. and Aviles, J.C., 1995, Development of an infection model for Botrytis bunch rot of grapes based on wetness duration and temperature, Phytopathology 85:97–102.CrossRefGoogle Scholar
  17. Campbell, C.L. and Madden, L.V. 1990, Introduction to Plant Disease Epidemiology, John Wiley and Sons, New York.Google Scholar
  18. Chraibi, A., Jaffrin, A., Makhlouf, S. and Bentounes, N. 1995, Déhumidificatin de l’air d’une serre par contact direct à courants croisés avec une solution hygroscopique organique, J. Phys. III France 5:1055–1074.CrossRefGoogle Scholar
  19. Cluzeau, S., 1995, Index Phytosanitaire 1995, ACTA, Paris, France.Google Scholar
  20. Decognet, V., Minuto, G., Nicot, P.C. and Mezzalama, M. 1995, Biocontrol of Botrytis cinerea on tomato crops in Italy and France with Pseudomonas fluorescens and Trichoderma harzianum, p. 70 In: Proc. 6th Int. Symp. Microbiology of Aerial Plant Pathogens, Bandol, France.Google Scholar
  21. Dik, A. J. and Buitelaar, K. 1995, Voorlopig niet breken maar snijden of knippen, Groenten en Fruit / Glasgroenten 5(3):14–15.Google Scholar
  22. Dik, A.J., Köhl, J., Fokkema, N.J., Elad, Y. and Shtienberg, D. 1995, Biological control of Botrytis cinerea in cucumber and tomato, p. 71 In: Proc. 6th Int. Symp. Microbiology of Aerial Plant Pathogens, Bandol, France.Google Scholar
  23. Droby, S., Chalupovicz, L., Chalutz, E., Wisniewski, M.E. and Wilson, C.L. 1995, Inhibitory activity of yeast cell wall materials against postharvest fungal pathogens, Phytopathology 85:1123.Google Scholar
  24. Dubos, B. 1992, Biological control of Botrytis: State of the art, pp. 169–178 In: Verhoeff, K., Malathrakis, N.E. and Williamson, B. (eds.) Recent Advances in Botrytis Research, Pudoc, Wageningen.Google Scholar
  25. Elad, Y. and Evensen, K. 1995, Physiological aspects of resistance to Botrytis cinerea, Phytopathology 85:637–643.Google Scholar
  26. Elad Y., Gullino M.L., Shtienberg D. and Aloi C. 1995, Managing Botrytis cinerea on tomatoes in greenhouses in the Mediterranean, Crop Protect. 14:105–109.CrossRefGoogle Scholar
  27. Elad, Y. and Kirshner, B. 1993, Survival in the phylloplane of an introduced biocontrol agent (Trichoderma harzianum) and populations of the plant pathogen Botrytis cinerea as modified by abiotic conditions, Phytoparasitica 21:303–313.Google Scholar
  28. Elad, Y., Köhl, J. and Fokkema, N.J. 1994a, Control of infection and sprulation of Botrytis cinerea on bean and tomato by saprophytic yeasts, Phytopathology 84:1193–1200.CrossRefGoogle Scholar
  29. Elad, Y., Köhl, J. and Fokkema, N.J. 1994b, Control of infection and sprulation of Botrytis cinerea on bean and tomato by saprophytic bacteria and fungi, Eur. J. Plant Pathol. 100:315–336.CrossRefGoogle Scholar
  30. Elad, Y., Malathrakis, N.E. and Dik, A.J. 1996, Biological control of Botrytis-incited diseases and powdery mildews in greenhouse crops, Crop Protect. (in press).Google Scholar
  31. Elad, Y. and Shtienberg, D. 1995. Botrytis cinerea in greenhouse vegetables: chemical, cultural, physiological and biological controls and their integration, Integrated Pest Management Reviews, 1:15–29.CrossRefGoogle Scholar
  32. Elad, Y. and Volpin, H. 1993, Reduced development of grey mould (Botrytis cinerea) in bean and tomato plants by calcium nutrition, J. Phytopathol. 139:146–156.Google Scholar
  33. Elad, Y. and Zimand, G. 1992, Integration of biological and chemical control for grey mould, pp. 272–276 In: Verhoeff, K., Malathrakis, N.E. and Williamson, B. (eds.) Recent Advances in Botrytis Research, Pudoc, Wageningen.Google Scholar
  34. Elad, Y., Zimand, G., Zaqs, Y., Zuriel, S. and Chet, I, 1993. Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions, Plant Pathol. 42:324–332.CrossRefGoogle Scholar
  35. Epton, H.A.S. and Richmond, D.V., 1980, Formation, structure and germination of conidia; pp. 41–83 In: Coley-Smith, J.R., Verhoeff, K. and Jarvis, W.R. (eds.) The Biology of Botrytis, Academic Press, London.Google Scholar
  36. Fernandez, J.E. and Bailey, B.J. 1992, Measurement and prediction of greenhouse ventilation rates. Agric. For. Meteorol. 58:229–245.CrossRefGoogle Scholar
  37. Germeier C., Hedke K. and Vontiedemann, A. 1994, The use of pH-indicators in diagnostic media for acid-producing plant pathogens, Z. PflKrankh. PflSchutz 101:498–507.Google Scholar
  38. Gouot, J.M. 1988, Characteristics and population dynamics of Botrytis cinerea and other pathogens resistant to dicarboximides, pp. 53–55 In: Delp, C.J. (ed.) Fungicide Resistance in North America., American Phytopathological Society, St Paul, MN.Google Scholar
  39. Groen, J. 1988, Temperatuurverschillen in de kas motor van luchtstroming. Vakblad voor de Bloemisterij 43:36–37.Google Scholar
  40. Guinebretière, M.H., Voiblet, C., Nguyen-Thé, C. and Nicot, P.C. 1993, Inhibitory and physiological properties of 12 yeasts and bacteria antagonistic to Botrytis cinerea on strawberry fruits, IOBC WRS Bull. 16(11):123–126.Google Scholar
  41. Gullino, M.L., 1992, Chemical control of Botrytis spp. pp. 217–222 In: Verhoeff, K., Malathrakis, N.E. and Williamson, B. (eds.) Recent Advances in Botrytis Research, Pudoc, Wageningen.Google Scholar
  42. Gullino, M.L. 1995, Biological control of Botrytis spp.: overview and future approaches, IOBC WPRS Bull. 18(3):125–130.Google Scholar
  43. Gullino, M.L., Aloi, C., Benzi, D. and Garibaldi, A. 1991, Biological and integrated control of grey mould in vegetable crops. Petria 1:149–150.Google Scholar
  44. Gullino, M.L., Aloi, C. and Garibaldi, A. 1989, Influence of spray schedules on fungicide resistant populations of Botrytis cinerea Pers. on grapevine, Neth. J. Plant Pathol. 95(supplement 1):87–94.CrossRefGoogle Scholar
  45. Gullino, M.L. and Garibaldi, A. 1982, Use of mixture or alternation of fungicides with the aim of reducing the risk of appearance of strains of Botrytis cinerea resistant to dicarboximides. EPPO Bulletin, 12:151–156.Google Scholar
  46. Gullino, M.L. and Garibaldi, A. 1986, Fungicide resistance monitoring as an aid to tomato grey mould management, Proc. Brighton Crop Prot. Conf. 2:499–505.Google Scholar
  47. Gullino, M.L. and Kuijpers, L.A.M. 1994, Social and political implications of managing plant diseases with restricted fungicides in Europe, Annu. Rev. Phytopathol. 32:559–579.CrossRefPubMedGoogle Scholar
  48. Hajlaou, M.R., Traquair, J.A., Jarvis, W.R. and Bélanger, R.R. 1994, Antfungal activity of extracellular metabolites produced by Sporothrix flocculosa, Biocontrol Sci. Technol. 4:229–237.Google Scholar
  49. Hammer, P.E. and Evenson, K.B. 1994, Differences between rose cultivars in susceptibility to infection by Botrytis cinerea, Phytopathology 84:1305–1312.CrossRefGoogle Scholar
  50. Hannusch, D.J. and Boland, G.J. 1996, Interactions of air temperature, relative humidity and biological control agents on grey mold of bean, Eur. J. Plant Pathol. 102:133–142.CrossRefGoogle Scholar
  51. Hausbeck, M.K. and Pennypacker, S.P. 1991, Influence of time intervals among wounding, inoculation, and incubation on stem blight of geranium caused by Botrytis cinerea, Plant Dis. 75:1168–1172.CrossRefGoogle Scholar
  52. Hite, R.E. 1973, The effect of irradiation on the growth and asexual reproduction of Botrytis cinera, Plant Dis. Rep. 57:131–135.Google Scholar
  53. Honda, Y., Toki T. and Yunoki, T, 1977, Control of gray mold of greenhouse cucumber and tomato by inhibiting sporulation, Plant Dis. Rep. 61:1041–1044.Google Scholar
  54. Howitt, R.L.J., Beever, R.E., Pearson, M.N. and Forster, R.L.S. 1995, Presence of double-stranded RNA and virus-like particles in Botrytis cinerea. Mycol. Res. 99:1472–1478.Google Scholar
  55. Huber, L. and Gillespie, T.J. 1992, Modeling leaf wetness in relation to plant disease epidemiology, Annu. Rev. Phytopathol. 30:553–577.CrossRefGoogle Scholar
  56. Jaffrin, A., Charibi A. and Blondeau, P. 1992, Greenhouse humidity control with enthalpy recovery, pp. 441–456 In: Proc. CEC Thermie European Seminar “Business Opportunities for Energy Technologie in the Field of Greenhouse Horticulture in Southern Europe”, Heraklion, Greece.Google Scholar
  57. Janisiewicz, W.J., Yourman, L., Roitman, J and Mahoney, N. 1991, Postharvest control of blue mold of apples and pears by dip treatment with pyrrolnitrin, a metabolite of Pseudomonas cepacia, Plant Dis. 75:490–494.CrossRefGoogle Scholar
  58. Jarvis, W.R 1977, Botryotinia and Botrytis species: Taxonomy, Physiology and Pathology, Monogr. 15, Research Branch, Canada Department of Agriculture, Ottawa.Google Scholar
  59. Jarvis, W.R. 1980a. Taxonomy, pp. 1–18 In: Coley-Smith, J.R., Verhoeff, K. and Jarvis, W.R. (eds.) The Biology of Botrytis, Academic Press, London.Google Scholar
  60. Jarvis, W.R. 1980b. Epidemiology, pp. 219–250 In: Coley-Smith, J.R., Verhoeff, K. and Jarvis, W.R. (eds.) The Biology of Botrytis, Academic Press, London.Google Scholar
  61. Jarvis, W.R. 1989, Managing diseases in greenhouse crops. Plant Dis. 73:190–194.CrossRefGoogle Scholar
  62. Jarvis, W.R. 1992, Managing Diseases in Greenhouse Crops. American Phytopathological Society, St Paul, MN.Google Scholar
  63. Johnson, K.B., Sawyer, T.L. and Powelson, M.L, 1994, Frequency of benzimidazole-and dicarboximide-resistant strains of Botrytis cinerea in western Oregon small fruit and snap bean plantings. Plant Dis. 78:572–577.CrossRefGoogle Scholar
  64. Kerssies, A. 1990, A selective medium to be used in a spore trap. Neth. J. Plant Pathol. 96:247–250.CrossRefGoogle Scholar
  65. Kerssies, A. 1993, Influence of environmental conditions on dispersal of Botrytis cinerea conidia and on postharvest infection of gerbera flowers grown under galss. Plant Pathol. 42:754–762.CrossRefGoogle Scholar
  66. Kerssies, A., Bosker-van Zessen, A.I. and Frinking, H.D. 1995, Influence of environmental conditions in a glasshouse on conidia of Botrytis cinerea and on post-harvest infection of rose flowers. Eur. J. Plant Pathol. 101:201–216.CrossRefGoogle Scholar
  67. Klijnstra, J.W., Brueren, G.J. and de Vlieger, J.J. 1993, Formulation research for biocontrol preparations, pp. 93–98 In: Lepoivre, P. (ed.) Proc. Eur. Com. Workshop “Biological control of fruit and foliar diseases”, Gembloux, Belgium.Google Scholar
  68. Köhl, J., Molhoek, W.M.L., van der Plas, C.H. and Fokkema, N.J. 1995a, Effect of Ulocladium atrum and other antagonists on sporulation of Botrytis cinerea on dead lily leaves exposed to field conditions, Phytopathology 85:393–401.CrossRefGoogle Scholar
  69. Köhl, J., Molhoek, W.M.L., van der Plas, C.H. and Fokkema, N.J. 1995b, Suppression of sporulation of Botrytis spp as a valid biocontrol strategy, Eur. J. Plant Pathol. 101:251–259.CrossRefGoogle Scholar
  70. Köhl, J., Molhoek, W.M.L., van der Plas, C.H., Kessel, G.J.T. and Fokkema, N.J. 1992, Biological control of Botrytis leaf blight of onions: significance of sporulation suppression, pp. 192–196 In: Verhoeff, K., Malathrakis, N.E. and Williamson, B. (eds.) Recent Advances in Botrytis Research, Pudoc, Wageningen.Google Scholar
  71. Koning, G.P. and Köhl, J. 1994, Wound protection by antagonists against Botrytis stem rot in cucumber and tomato, In: Environmental Biotic Factors in Integrated Plant Disease Control, Proc. 3rd IFPP Conference, Poznan, Poland.Google Scholar
  72. Kraeutler, E. 1995, Production et échanges de tomates, Infos CTIFL 111: 16–21.Google Scholar
  73. Lagier, J., Henry, B., Reich, P. and Baille, A. 1995, “Serriste”, système d’aide à la décision, Culture Légumière 29:21–24.Google Scholar
  74. Lagier, J., Mermier, M. and Reich, P. 1996, “Serriste”, un logiciel d’aide au choix des consignes climatiques pour la tomate sous serre: présentation et résultats d’essais, PHM-Revue horticole (in press).Google Scholar
  75. Laterrot, H. 1990, Situation de la lutte génétique contre les parasites de la tomate dans les pays méditerranéens, P.H.M. Revue Horticole 303:53–56.Google Scholar
  76. Leifert, C., Li, H., Chidburee, S., Hampson, S., Workman, S., Sigee, D., Epton, H.A.S. and Harbour, A. 1995, Antibiotic production and biocontrol activity by bacillus subtilis CL27 and bacillus pumilus CL45, J. Appl. Bacteriol. 78:97–108.PubMedGoogle Scholar
  77. Leroux, P. 1994, Effect of pH, amino acids and various organic compounds on the fungitoxicity of pyrimethanil, glufosinate, captafol, cymoxanil and fenpiclonil in Botrytis cinerea, Agronomie 14:541–554.CrossRefGoogle Scholar
  78. Leroux, P. and Clerjeau, M, 1985, Resistance of Botrytis cinerea Pers. and Plasmopara viticola (Berk. & Curt.) Berl. and de Toni to fungicides in French vineyards, Crop Protect. 4:137–160.CrossRefGoogle Scholar
  79. Leroux, P. and Gredt, M. 1981, Méthode de détection de la résistance de B. cinerea Pers. aux fongicides, à partir d’échantillons prélevés dans le vignoble, Phytiatrie-Phytopharmacie 30:57–68.Google Scholar
  80. Lin, M.W., Watson, J.F. and Baggett, J.R. 1995, Inheritance of resistance to neck-rot disease incited by Botrytis allii in bulb onions, J. Am. Soc. Hort. Sci. 120:297–299.Google Scholar
  81. Löcher, F.J., Lorenz, G. and Beetz, K.J. 1987, Resistance management strategies for dicarboximides in grapes: Results of six year’s trial work. Crop Protect.. 6:139–147.CrossRefGoogle Scholar
  82. Lorenz, G. 1988, Dicarboximide fungicides: History of resistance development and monitoring methods, pp. 45–51 In: Delp, C.J. (ed.) Fungicide Resistance in North America. American Phytopathological Society, St Paul, MN.Google Scholar
  83. Luck, J.E. and Gillings, M.R. 1995, Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction, Mycol. Res. 99:1483–1488.CrossRefGoogle Scholar
  84. Malathrakis, N.E. and Klironomou, E.J. 1992, Control of grey mould of tomatoes in greenhouses wih fungicides and antagonists, pp. 282–286 In: Verhoeff, K., Malathrakis, N.E. and Williamson, B. (eds.) Recent Advances in Botrytis Research, Pudoc, Wageningen.Google Scholar
  85. Malathrakis, N.E., Markellou, E. and Goumas, D. 1995, Biological control of Botrytis cinerea in greenhouse crops, IOBC WPRS Bull. 18(3)91–97.Google Scholar
  86. Marois, J.J. 1992, Biological control of Botrytis cinerea, pp. 109–111 In: Tjamos, E.C., Papavizas, G.C. and Cook, R.J. (eds.) Biological control of plant diseases, Plenum Press, New York.Google Scholar
  87. Marois, J.J., Redmond, J.C. and MacDonald, J.D. 1988, Quantification of the impact of environment on the susceptibility of Rosa hybrida flowers to Botrytis cinerea, J. Amer. Soc. Hort. Sci. 113:842–845.Google Scholar
  88. Martin, C., Ravetti, F., Decognet, V. and Nicot, P.C. 1994, Perspectives de lutte intégrée contre la pourriture grise de la tomate sous abri, pp. 861–868 In: Proc. Third Internat. A.N.P.P.Conf. on Plant Diseases (Volume 2), Bordeaux, France.Google Scholar
  89. Meneses, J.F. and Monteiro, A.A. 1990, Permanent ventilation in non heated greenhouses to reduce Botrytis on tomatoes, Proc. International Seminar and British-Israel Workshop on Greenhouse Technology, Tel-Aviv, Israel.Google Scholar
  90. Meneses, J.F., Monteiro, A.A. and Abreu, P.E. 1994, Influence of two differential ventilation methods on greenhouse climate, tomato production and Botrytis control, Plasticulture 101:3–12.Google Scholar
  91. Mermier, M. and Fauvel, C. 1996, Capteur d’humectation, In: Proc. Séminaire AIP “SERRES”, INRA, Alénya, France.Google Scholar
  92. Migheli, Q., Herrera-Estrella, A., Avataneo, M. and Gullino, M.L. 1994, Fate of transformed Trichoderma harzianum in the phyllosphere of tomato plants, Mol. Ecol. 3:153–159.Google Scholar
  93. Milling, R.J. and Richardson, C.J. 1995, Mode of action of the anilino-pyrimidine fungicide pyrimethanil.2. effects on enzyme secretion in botrytis cinerea, Pestic. Sci. 45:43–48.CrossRefGoogle Scholar
  94. Milner, J.L., Raffel, S.J., Lethbridge, B.J. and Handelsman, J. 1995, Culture conditions that influence accumulation of swittermicin A by Bacillus cereus UW85, Appl. Microbiol. and Biotech. 43:685–691.Google Scholar
  95. Moorman, G.W. and Lease, R.J. 1992, Benzimidazole-and dicarboximide-resistant in Botrytis cinerea from Pennsylvania greenhouses, Plant Dis. 76:477–480.CrossRefGoogle Scholar
  96. Moorman, G.W. and Lease, R.J. 1995, Incidence of dicarboximide fungicide resistance in Botrytis cinerea monitored in two greenhouses, Plant Dis. 79:319.CrossRefGoogle Scholar
  97. Moorman, G.W., Lease, R.J. and Vali, R.J. 1994, Bioassay for dicarboximide resistance in Botrytis cinerea, Plant Dis. 78:890–891.CrossRefGoogle Scholar
  98. Nicot, P.C. 1992, Inhibition of sporulation of Botrytis cinerea on plant tissue under polyethylene films filtering near ulta-violet light: potential for control of grey mold of greenhouse-grown vegetables. Proc. Xth Botrytis Symposium, Heraklio, Greece.Google Scholar
  99. Nicot, P.C. and Allex, D. 1991, Grey mold of greenhouse-grown tomatoes: disease control by climate management?, IOBC WPRS Bull. 14(5):200–210.Google Scholar
  100. Nicot, P.C., Mermier, M., Vaissière, B.E. and Lagier, J. 1996, Differential spore production by Botrytis cinerea on agar medium and plant tissue under near-ultraviolet light-absorbing polyethylene film, Plant Dis. 80: 555–558.CrossRefGoogle Scholar
  101. Nicot P.C., Morison, N., Guinebretière, M.H. and Nguyen Thé, C. 1993a, Evaluation of the effectiveness of selected microbial strains for the control of grey mold of tomato. pp. 9–15 In: Lepoivre, P. (ed.) Proc. Eur. Com. Workshop “Biological control of fruit and foliar diseases”, Gembloux, Belgium.Google Scholar
  102. Nicot P.C., Saltzis, V. and Guinebretière, M.H. 1993b, A miniaturized in vivo assay for the screening of potential antagonists of Botrytis cinerea on tomato plants. IOBC WRS Bull. 16(11):30–33.Google Scholar
  103. Nicot, P.C., Zimmer, N., Jacques, M.A. and Morris, C. 1994, Effect of nutrient amendments on the protection of pruning wounds on tomatoes against Botrytis cinerea by bacterial antagonists, Mol. Ecol. 3:611.Google Scholar
  104. Northover, J. 1988, Persistance of dicarboximide resistant Botrytis cinerea in Ontario vineyards, Can. J. Plant Pathol. 10:123–132.CrossRefGoogle Scholar
  105. Pak, H.A., Beever, R.E. and Laracy, E.P. 1990, Population dynamics of dicarboximide-resistant strains of Botrytis cinerea on grapevine in New Zealand, Plant Pathol. 39:501–509.CrossRefGoogle Scholar
  106. Peng, G., Sutton, J.C. and Kevan, P.G. 1992, Effectiveness of honeybees for applying the biocontrol agent Gliocladium roseum to strawberry flowers to suppress Botrytis cinerea, Can. J. Phytopathol. 14:117–129.Google Scholar
  107. Ragsdale, N.N. and Sisler, H.D. 1994, Social and political implications of managing plant diseases with decreased availability of fungicides in the United States, Annu. Rev. Phytopathol. 32:545–557.CrossRefPubMedGoogle Scholar
  108. Raposo R., Colgan R., Delcan J. and Melgarejo P. 1995, Application of an automated quantitative method to determine fungicide resistance in Botrytis cinerea, Plant Dis. 79:294–296.CrossRefGoogle Scholar
  109. Reglinski, T., Lyon, G.D. and Newton, A.C. 1995, The control of Botrytis cinerea and Rhizoctonia solani on lettuce using elicitors extracted from yeast cell walls, Z. PflKrankh. PflSchutz, 102:257–266.Google Scholar
  110. Reuveni, R. and Raviv, M. 1992, The effect of spectrally-modified polyethylene films on the development of Botrytis cinerea in greenhouse-grown tomato plants, Biol. Agric. and Hort. 9:77–86.Google Scholar
  111. Reuveni, R., Raviv, M. and Bar, R. 1989, Sporulation of Botrytis cinerea as affected by photoselective polyethylene sheets and filters, Ann. Appl. Biol. 115:417–424.Google Scholar
  112. Salinas, J., Glandorf, D.C.M., Picavet, E.D. and Verhoeff, K. 1989, Effect of temperatures, relative humidity and age of conidia on the incidence of spotting on gerbera flowers caused by Botrytis cinerea, Neth. J. Plant Pathol. 95:51–64.CrossRefGoogle Scholar
  113. Sasaki, T., Honda, Y., Umekawa, M. and Nemoto, M. 1985, Control of certain diseases of greenhouse vegetables with ultraviolet-absorbing vinyl film, Plant Dis. 69:530–533.Google Scholar
  114. Scherm, H., Koike, S.T., Laemmlen and van Bruggen, A.H.C. 1995, Field evaluation of fungicide spray advisories against lettuce downy mildew (Bremia lactucae) based on measured or forecast morning leaf wetness, Plant Dis. 79:511–516.CrossRefGoogle Scholar
  115. Sirjusingh, C. and Sutton, J.C. 1996, Effects of wetness duration and temperature on infection of geranium by Botrytis cinerea, Plant Dis. 80:160–165.CrossRefGoogle Scholar
  116. Smith, C.M. 1998. History of benzimidazole use and resistance, pp. 23–24 In: Delp, C.J. (ed.) Fungicide Resistance in North America. American Phytopathological Society, St Paul, MN.Google Scholar
  117. Stall, R.E. 1963, Effects of lime on incidence of Botrytis gray mold of Tomato, Phytopathology 53:149–151.Google Scholar
  118. Sutton, J.C., Gillespie, T.J. and James, T.D. 1988, Electronic monitoring and use of microprocessors in the field, pp. 99–113 In: Kranz, J. and Rotem, J. (eds.) Experimental Techniques in Plant Disease Epidemiology, Springer Verlag, Berlin.Google Scholar
  119. Sutton, J.C., James, T.D. and Rowell, P.M. 1986, BOTCAST: a forecasting system to time the initial fungicide spray for managing Botrytis leaf blight of onions, Agric. Ecosystems Environ. 18:123–143.CrossRefGoogle Scholar
  120. Sutton, J.C. and Peng, G. 1993a, Biosuppression of inoculum production by Botrytis cinerea in strawberry leaves, IOBC WRS Bull. 16(11):47–52.Google Scholar
  121. Sutton, J.C. and Peng, G. 1993b, Biocontrol of Botrytis cinerea in strawberry leaves, Phytopathology 83:615–621.CrossRefGoogle Scholar
  122. Tan, K.K. 1974, Blue-light inhibition of sporulation in Botrytis cinerea, J. Gen. Microbiol. 82:191–200.Google Scholar
  123. Tan, K.K 1975, Interaction of near-ultraviolet, blue, red and far-red light in sporulation of Botrytis cinerea, Trans. Br. Mycol. Soc. 64:215–222.CrossRefGoogle Scholar
  124. Terrentroy, A. 1994, Tomate Serre: enquète sur le Botrytis dans les cultures de tomate précoce, APREL Bull. No S-641, Chamber of Agriculture of Bouches du Rhône, France.Google Scholar
  125. Thonard, P., Jacques, P., Cornelius, C., Gregoire, J., Zgoulli, S., Destain, J., Meurisse, E., Tossut, P., Gilsoul, J.J., Hbid, C and Moukoum, J.B. 1993, Technological aspects of biopesticide production, pp. 87–92 In: Lepoivre, P. (ed.) Proc. Eur. Com. Workshop “Biological control of fruit and foliar diseases”, Gembloux, Belgium.Google Scholar
  126. Trivellas, A.E. 1988, Benzimidazole resistance monitoring techniques and the use of monitoring studies to guise benomyl marketing, pp. 28–30 In: Delp, C.J. (ed.) Fungicide Resistance in North America., American Phytopathological Society, St Paul, MN.Google Scholar
  127. Vakalounakis, D.J. 1991, Control of early blight of greenhouse tomato, caused by Alternaria solani, by inhibiting sporulation with ultraviolet-absorbing vinyl film, Plant Dis. 75:795–797.CrossRefGoogle Scholar
  128. Vakalounakis, D.J. 1992, Control of fungal diseases of greenhouse tomato under long-wave infrared-absorbing plastic film, Plant Dis. 76:43–46.CrossRefGoogle Scholar
  129. Vali, R.J. and Moorman, G.W. 1992, Influence of selected fungicide regimes on frequency of dicarboximide-resistant and dicarboximide-sensitive strains of Botrytis cinerea, Plant Dis. 76:919–924.CrossRefGoogle Scholar
  130. Vincelli, P.C. and Lorbeer, J.W. 1989, BLIGHT-ALERT: a weather-based predictive system for timing fungicide applications on onion before infection periods of Botrytis squamosa, Phytopathology 79:493–498.Google Scholar
  131. Volpin, H. and Elad, Y. 1991, Influence of calcium nutrition on susceptibility of rose flowers to Botrytis blight, Phytopathology 81:1390–1394.Google Scholar
  132. Wang, Z.N., Coley-Smith, J.R. and Wareing, P.W. 1986, Dicarboximide resistance of Botrytis cinerea in protected lettuce, Plant Pathol. 35:427–433.CrossRefGoogle Scholar
  133. Wilcox, W.F. and Seem, R.C., 1994, Relationship between strawberry gray mold incidence, environmental variables and fungicide applications during different periods of the fruiting season, Phytopathology 84:264–270.CrossRefGoogle Scholar
  134. Winspear, K.W., Postlethwaite, J.D. and Cotton, R.F. 1970, The restriction of Cladosporium fulvum and Botrytis cinerea attacking glasshouse tomatoes, by automatic humidity control. Ann. Appl. Biol. 65:75–83.CrossRefGoogle Scholar
  135. Yunis, H., Shtienberg, D., Elad, Y. and Mahrer, Y. 1994, Quallitative approach for modelling outbreaks of grey mould epidemics in non-heated cucumber greenhouses, Crop Protect. 13:99–104.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Philippe C. Nicot
    • 1
  • Alain Baille
    • 2
  1. 1.INRA Station de Pathologie VégétaleCentre de Recherches d’AvignonFrance
  2. 2.INRA Station de BioclimatologieCentre de Recherches d’AvignonFrance

Personalised recommendations