Neuromuscular and Motor System Alterations After Knee Trauma and Knee Surgery

A New Paradigm
  • Jürgen Freiwald
  • I. Reuter
  • Martin Engelhardt


Knee trauma and operations have a high incidence and economic relevance. They are among the most frequent injuries especially in sports. Recently, both diagnostic possibilities (such as MRT) and the surgical spectrum (meniscus suture, cartilage cell breeding) have increased. Internationally, an increase in minimal-invasive procedures can be observed, supported by improved surgical equipment. Rehabilitation has changed, too, in parallel to the technical and surgical developments—it has been characterized by early-functional rehabilitation concepts since the early 90s. In spite of advances in diagnostics, surgical procedures and physiotherapeutic rehabilitation, there are short and/or long-term changes in motoric function following trauma and surgery. The subject matter of Motor System has nothing in common with the subject matter of movement. “In this way, there is a clear distinction between the totality of all regulating processes and functions on the one hand, and the adverse outcomes of these processes, human movement, on the other hand.” (Marhold 1995 from Beyer 1992, 425). > Deficient activation of the musculature is seen, especially the knee extensors, consecutive atrophy—especially of the M. vastus medialis—and coordinative changes may occur. For posttraumatic and postoperative changes—for both the deficits and the therapy- or training-related adaptations—the explanations are meager. It is therefore urgently necessary to provide explanations in order to establish adequate treatment. The following questions must be answered:
  1. 1.

    How are the receptors in the knee joint supplied and what structures may be mechanically damaged in interior knee trauma or following surgical procedures?

  2. 2.

    What metabolic changes occur in conjunction with knee trauma or surgical procedures?

  3. 3.

    Are there any nervous functions disrupted in interior knee trauma or surgical procedures?

  4. 4.

    What changes can be measured in complex motor functions after knee injury and after surgical treatment?

  5. 5.

    Is there a pattern in the measurable changes?

  6. 6.

    What therapeutic consequences arise for rehabilitation?



Anterior Cruciate Ligament Knee Joint Posterior Cruciate Ligament Knee Extensor Muscle Spindle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andriacchi TP, Birac D (1993) Functional testing in the anterior cruciate ligament deficient knee. Clin Orthop Rel Res 288: 40–47Google Scholar
  2. 2.
    Appell HJ, Glöser S, Duarte JAR, Zellner A, Soares JMC (1993) Skeletal muscle damage during tourniquet-induced ischemia. The initial step towards artrophy after orthopaedic surgery? Eur J Appl Physio 67: 342–347Google Scholar
  3. 3.
    Appell HJ, Verdonck A, Duesberg, F, Windeck P (1991) Fehlende Ermüdung der Muskulatur bei Patienten nach Immobilisation — ein Paradoxon? Sportverletzung — Sportschaden (5): 205–207PubMedGoogle Scholar
  4. 4.
    Assimakopulos AP, Katonis PG, Agapitos MV, Exarchou EI (1992) The innervation of the human meniscus. Clinical Orthopaedics and Related Research 275,2: 232–236Google Scholar
  5. 5.
    Balgo R (1998) Bewegung und Wahrnehmung als System. Hofmann SchorndorfGoogle Scholar
  6. 6.
    Bernstein NA (1987) 2 Bewegungsphysiologie. Barth LeipzigGoogle Scholar
  7. 7.
    Beyer E (ed) (1992) 2 Dictionary of Sport Science. Hofmann SchorndorfGoogle Scholar
  8. 8.
    Biedert RM, Stauffer E, Friederich NF (1992) Occurrence of free nerve endings in the soft tissue of the knee joint. The American Journal of Sports Medicine 20,4: 430–433PubMedGoogle Scholar
  9. 9.
    Birbaumer N, Schmidt RF (1989) Biologische Psychologie, BerlinGoogle Scholar
  10. 10.
    Bonebakker AE, Bonke B, Klein MD, Wolters G, Stijnen T, Passchier J, Merikle PM (1996) Information processing during general anaesthesia: Evidence for unconscious memory. Memory & Cognition 24: 766–776Google Scholar
  11. 11.
    Boyd IA, Roberts TDM (1953) Proprioreceptive discharges from stretchreceptors in the knee joint of the cat. J. PhysiologyGoogle Scholar
  12. 12.
    Brand RA (1989) A neurosensory hypothesis of ligament function. Med Hypotheses (29) 4: 245–250Google Scholar
  13. 13.
    Brügger A (1980) Die Erkrankungen des Bewegungsapparates und seines Nervensystems. Stuttgart-New YorkGoogle Scholar
  14. 14.
    Burgness PR, Clark FJ (1969) Characteristics of knee joint receptors in the cat. J Physiol 203-B: 317–335Google Scholar
  15. 15.
    Burke D, Gandevia SC, Macefield G (1988) Responses to passive movement of receptors in joint, skin and muscle of the human hand. J Physiol [Br] (402): 347–361Google Scholar
  16. 16.
    Claus D (1993) Transkranielle Stimulation. In: Görg J and Hielscher H (eds) Evozierte Potentiale in Klinik und Praxis. Springer: 347–361Google Scholar
  17. 17.
    Corrigan JP, Cashman WF, Brady MP (1992) Proproception in the cruciate deficient knee. J Bone Joint Surg 74-B: 247–250Google Scholar
  18. 18.
    DeAndrade JR, Grant C, Dixon ASJ (1965) Joint distension and reflex muscle inhibition in the knee. J Bone Joint Surg 47A: 313–322Google Scholar
  19. 19.
    Dietz V, Horstmann GA, Trippel M, Gollhofer A (1989) Human postural reflexes and gravity — an underwater simulation. Neurscience Letters 106:350–355Google Scholar
  20. 20.
    Dietz V (1997) Neuronal Kontrolle automatischer funktioneller Bewegungsabläufe: Wechselbeziehung zwischen zentraler Programmierung und afferenter Information. In: Zichner L. Engelhardt M, Freiwald J (eds): Muskuläre Dysbalancen. Novartis Wehr: 59–69Google Scholar
  21. 22.
    Eccles JC (1969) The Inhibitory Pathways of the Central Nervous System. The Sherrington Lectures IX Springfield/IIIGoogle Scholar
  22. 23.
    Eckhardt R, Schaft HP, Puhl W (1994) Die Bedeutung der neuromuskulären Koordination für die sportliche Belastbarkeit des Kniegelenkes nach vorderen Kreuzbandverletzungen. Sportverletzung-Sport-schaden 8: 16–24Google Scholar
  23. 24.
    Edelson R, Burkes BT and Bloebaum RD (1995) Short term effects of knee washout for osteoarthritis. Am J Sports Med 23,3: 345–349PubMedGoogle Scholar
  24. 25.
    Edin BB, Abbs JH (1991) Finger Movement Responses of Cuteaneous Mechanoreceptors in the Dorsal Skin of the Human Hand. Journal of Neurophysiology 65,3: 657–660PubMedGoogle Scholar
  25. 26.
    Elmqvist LG, Lorentzon R, Johansson C, Fugl-Meyer AR (1988) Does a torn anterior cruciate ligament lead to change in the central nervous drive of the knee extensors? Eur J Appl Physiol 58: 203–207Google Scholar
  26. 27.
    Engelhardt M (1997) Neuromuskuläre Veränderungen nach Kniegelenkstraumen und Operationen am Kniegelenk. Habitilationsschrift, FrankfurtGoogle Scholar
  27. 28.
    Engelhardt M, Reuter I, Freiwald J (submitted 1998) Is muscle atrophy after knee injury caused by reduced neural activation? Medicine, Sports and ScienceGoogle Scholar
  28. 29.
    Engelhardt M, Freiwald J (1997) EMG-kontrollierte Muskelrehabilitierung — Knieverletzungen. Sportverletzung-Sportschaden 11,3: 87–99PubMedGoogle Scholar
  29. 30.
    Ferrell WR, Rosenberg JR, Baxendale RH, Halliday D, Wood L (1990) Fourier analysis of the relation between the discharge of quadriceps motor units and periodic mechanical stimulation of cat knee joint receptors. Experimental Physiology 75: 739–750PubMedGoogle Scholar
  30. 31.
    Ferrell, WR, Danvevia SC, McCloskey DI (1987) The role of joint receptors in human kinaesthesia when intramuscular receptors cannot contribute. J Physiol (386) 5: 63–71Google Scholar
  31. 32.
    Ferrell WR, Baxendale RH, Carnachan C, Hart IK (1985) The influence of joint afferent discharge on locomotion, proprioreception and activity in conscious cats. Brain Res (347): 41–48PubMedGoogle Scholar
  32. 33.
    Freeman MAR (1965) Treatment of ruptures of the lateral ligament of the ankle. J Bone Joint Surg 47-B: 661–668Google Scholar
  33. 34.
    Freeman MA, Wyke B (1967) The Innervation of the Knee Joint: An Anatomical and Histological Study in the Cat. J Anat 101,3: 505–512PubMedGoogle Scholar
  34. 35.
    Freiwald J (1996) Neuromuskuläre Veränderungen des M. quadrizeps femoris nach akuten und chronischen Kniegelenksschädigungen. Habilitationsschrift DortmundGoogle Scholar
  35. 36.
    Freiwald J (1992) Veränderungen von Umfangsmaßen, isometrischen und isokinetischen Kraftwerten nach Schädigungen des Kniegelenkes unter besonderer Berücksichtigung neurophysiologischer Ursachen. Dissertationsschrift, Dortmund.Google Scholar
  36. 37.
    Freiwald J, Engelhardt M, Gnewuch A (1998) Trainingstherapie auf der Basis der Motorikforschung und der philosophischen Erkenntnistheorie am Beispiel von Kniepatienten. In: Binkowski H, Hoster M, Nepper HU (eds) Medizinische Trainingstherapie in der ambulanten orthopädischen und traumatologische Rehabilitation. Sport Consult Waldenburg: 9–19Google Scholar
  37. 38.
    Freiwald J, Engelhardt M, Huth D (1998) Veränderungen der neuronalen Ansteuerungsmuster der Beinmuskulatur nach Kniebinnentraumen. Poster presented at the 13th German-Austrian-Swiss Congress for Sportsorthopedics and Sport Traumatology, MunichGoogle Scholar
  38. 39.
    Freiwald J, Engelhardt M, Reuter I, Konrad P, Gnewuch A (1997) Die nervöse Versorgung der Kniegelenke. Wiener Medizinische Wochenzeitschrift. Themenheft “Kniegelenk” 23/24: 531–541Google Scholar
  39. 40.
    Freiwald J, Engelhardt M, Reuter I (1995) Der Einfluß von intraartikulär applizierten lokalen g und Training. Sankt Augustin: 245–250Google Scholar
  40. 41.
    Freiwald J, Engelhardt M (1994) EMG gestützte Funktionsanalysen nach vordren Kreuzbandplastiken. In: Schmidtbleicher D, Müller AF (eds) Leistungsdiagnostische und präventive Aspekte der Biomechanik. Sankt Augustin: 123–136Google Scholar
  41. 42.
    Freiwald J, Engelhardt M (1994) EMG-Einsatz in der Knierehabilitation. Praktische Konsequenzen. Rehabilitace a Fyzikalni Lekarstivi 374: 136–139Google Scholar
  42. 43.
    Freiwald J, Starischka S, Engelhardt M (1993) Rehabilitatives Krafttraining. Überlegungen zum Krafttraining — Neue Ansätze zur Anwendung und Diagnostik im klinischen Bereich. Deutsche Zeitschrift für Sportmedizin 44,9: 368–378Google Scholar
  43. 44.
    Frisch H (1995) Programmierte Therapie am Bewegungsapparat. Springer, BerlinGoogle Scholar
  44. 45.
    Frisch H (1989) Programmierte Untersuchung des Bewegungsapparates. Springer-Verlag Berlin-Heidelberg-New YorkGoogle Scholar
  45. 46.
    Gardner E (1944) The distribution and termination of nerves in the knee joint of the cat. J Compu Neurol 80: 11–32Google Scholar
  46. 47.
    Goertzen M, Gruber J, Dellmann A (1992) Neurohistological findings after experimental anterior cruciate ligament allograft transplantation. Arch Orthop Trauma Surg (111) 2: 126–129Google Scholar
  47. 48.
    Gollhofer A, Scheuffelen C, Lohrer H (1993) Neuromuskuläre Stabilisation im oberen Sprunggelenk nach Immobilisation. Sportverletzung-Sportschaden (Sonderheft 1), 7: 23–28Google Scholar
  48. 49.
    Grigg P, Schaible HG, Schmidt RF (1986) Mechanical sensitivity of group III and IV afferents from posterior articular nerve in normal and inflamed cat knee. Journal of Neurophysiol 55,4:635–643Google Scholar
  49. 50.
    Grigg P, Hoffman AH (1984) Ruffini mechanoreceptors in isolated joint capsule: response correlated with strain energy density. Somatosens Res 2: 149–162PubMedGoogle Scholar
  50. 51.
    Grigg P, Hoffmann AH (1982) Properties of ruffini afferents revealed by stress analysis of isolated sections of cat knee capsule. J of Neurophysiology 47,1: 41–45Google Scholar
  51. 52.
    Grillner S, Hongo T, Lund S (1969) Descending monosynaptic and reflex control of Gamma-mononeurons. Acta Physiol Scand 75:592PubMedGoogle Scholar
  52. 53.
    Grüber J, Wolter D, Lierse W (1986) Der vordere Kreuzbandreflex (LCA-Reflex). Unfallchirurg 89: 551–554PubMedGoogle Scholar
  53. 54.
    Halata Z, Haus J (1989) The ultrastructure of sensory nerve endings in human anterior cruciate ligament. Anat Embryol 179:415–421PubMedGoogle Scholar
  54. 55.
    Halata Z (1988) Ruffini corpuscle — a stretch receptor in the connective tissue of the skin and locomotion apparatus. In: Hamann W, Iggo A (eds) Progress in Brain Research Vol 74: 221–229Google Scholar
  55. 56.
    Halata Z, Groth HP (1976) Innervation of the synovial membrane of the cats joint capsule. Cell Tissue Res 1969: 415–418Google Scholar
  56. 57.
    Haus J, Halata Z, Refior HJ (1992) Propriozeption im vorderen Kreuzband des menschlichen Kniegelenkes — morphologische Grundlagen. Z Orthop 130: 484–494PubMedGoogle Scholar
  57. 58.
    Haus J, Halata Z (1990) Innervation of the anterior cruciate ligament. International Orthopaedics (SICOT) 14: 293–296Google Scholar
  58. 59.
    He X, Proski U, Schaible HG (1988) Acute inflammation of the knee joint in the cat alter responses of flexor motoneurons to leg movement. J Neurophysiol (59) 2: 326–340Google Scholar
  59. 60.
    Hoffmann J (1993) Vorhersage und Erkenntnis. Hogrefe, GöttingenGoogle Scholar
  60. 61.
    Hörster G, Kediziora O (1993) Kraftverlust und-regeneration der Kniestreckmuskulatur nach Operationen am Kniebandapparat. Akt Sporttraumatol 23: 244–254Google Scholar
  61. 62.
    Hultborn H (1972) Convergence on interneurons in the reciprocal la inhibitory pathway to motoneurones. Acta Physiol Scand (Supplement) 375,85: 1–42Google Scholar
  62. 63.
    Jacobson MD, Pedowitz RA, Oyama BK, Tryon G, Gershuni DH (1993) Muscle Functional Deficits after Tourniquet Ischemia. The American Journal of Sports Medicine 22,3: 372–377Google Scholar
  63. 64.
    Jerosch J, Castro WHM, Hofstetter I, Bischof M (1994) Propriozeptive Fähigkeiten bei Probanden mit stabilen und instabilen Sprunggelenken. Deutsche Zeitschrift für Sportmedizin 45,10: 380–389Google Scholar
  64. 65.
    Jerosch J, Hofstetter I, Reer R, Assheuer J (1994) Strain-related long-term changes in the minisci in asymptomatic athletes. Knee Surg Sports Traumatol Arthroscopy 2: 8–13Google Scholar
  65. 66.
    Johansson H, Sjölander P, Sojka P (1991) Receptors in the knee joint ligaments and their role in the biomechanics of the joint. Critical Reviews in Biomedical Engineering 18,5: 341–368PubMedGoogle Scholar
  66. 67.
    Johansson H, Sojka P (1991) Pathophysiological mechanisms involved in genesis and spread of muscular tension in occupational muscle pain and in chronic musculoskeletal pain syndromes: A hypothesis. Medical Hypotheses 35: 196–203PubMedGoogle Scholar
  67. 68.
    Johansson H (1991) Role of knee ligaments in proprioception and regulation of muscle stiffness. Journal of Electromyography and Kinesiology 1,3: 158–179Google Scholar
  68. 69.
    Johansson H, Sjölander P, Sojka P (1991) A sensory role for the cruciate ligaments. Clinical Orthopaedics and Releated Research 268: 161–178Google Scholar
  69. 70.
    Johansson H, Sjölander P, Sojka P (1990) Activity in receptor afferents from the anterior cruciate ligament evokes reflex effects on fusimotor neurones. Neurscience Research 8: 54–59Google Scholar
  70. 71.
    Johansson H, Lorentzon R, Sjölander P, Sojka P (1990) The anterior cruciate igament. A sensor acting on the (-muscle spindle systems of muscles around the knee joint. Neuro Orthop (9): 1–23Google Scholar
  71. 72.
    Johansson H, Sjölander P, Sojka P, Wadell I (1989) Reflex actions on the Gamma-muscle spindle systems of muscles acting at the knee. Neuroorthopedics 8: 9Google Scholar
  72. 73.
    Johansson H, Sjölander P, Sojka P (1989) Effects of electrical and natural stimulation of skin afferents on the gamma-spindle system of the triceps surae muscle. Neurosci Res (6) 6: 537–555PubMedGoogle Scholar
  73. 74.
    Johansson H, Lorentzon R, Sjöström M, Fagerlund M, Fugl-Meyer AR (1987) Sprinter and marathon runners. Does isokinetic knee extensor performance reflect muscle size and structure. Acta Physio Scand 130: 663–669Google Scholar
  74. 75.
    Johansson H, Sjölander P, Sojka P (1987) Fusimotor reflexes to antagonistic muscles simultaneously assessed by multi-afferent recordings from muscle spindle afferents. Brain Res (435) 1–2: 337–342Google Scholar
  75. 76.
    Johansson H, Sjölander P, Sojka P (1986) Actions on gamma-motoneurones elicited by electrical stimulation of joint aferent fibres in the hind limb of the cat. J Physio 375: 137–152Google Scholar
  76. 77.
    Katonis PG, Assimakopoulos AP, Agapitos MV, Exarchou EI (1991) Mechanoreceptors in the posterior cruciate ligament. Acta Orthop Scand 72,3: 276–278Google Scholar
  77. 78.
    Kennedy JC, Alexander IJ, Hayes KC (1982) Nerve Supply of the Human Knee and its Functional Importance. Am J Sports Med 10,6: 329–335PubMedGoogle Scholar
  78. 79.
    Kniffki KD, Schomburg ED, Steffens H (1979) Synaptic responses of lumbar Alpha-motoneurones to chemical algesic stimulation of skeletal muscle in spinal cats. Brain Res 160: 549–552PubMedGoogle Scholar
  79. 80.
    Konrad P (1996) Analyse von Belastungs-und Beanspruchungsindikatoren im Kunstturntraining — unter besonderer Berücksichtigung neuromuskulärer Messverfahren. Sport & Buch Strauß, CologneGoogle Scholar
  80. 81.
    Langford LA, Schaible HG, Schmidt RF (1984) Structure and function of fine joint afferents; Observations and speculations. In: Hamann W, Iggo A (eds) Sensory receptor mechanisms. World scientific SingaporeGoogle Scholar
  81. 82.
    LaRue J, Bard C, Fleury M (1995) Is proprioception important for the timing of motor activities? Can J Physiol Pharmacol (73) 2: 255–261Google Scholar
  82. 83.
    Lass P, Kalund S, LeFevre S, Arendt-Nielsen L, Sinkjaer R, Simonsen O (1991) Muscle coordination following rupture of the anterior cruciate ligament. Acta Orthop Scand 62: 9–14PubMedGoogle Scholar
  83. 84.
    Lentell G, Baas B, Lopez D (1995) The contributions of proprioceptive deficits, muscle function, and anatomilaxity to functional instability of the ankle. J Orthop Sports Phy Ther (21) 4: 206–215Google Scholar
  84. 85.
    Lorentzon R, Johansson C, Sjöström M, Fagerlund M, Fugl-Meyer AR (1988) Fatigue during dynamic muscle contractions in male sprinters and marathon runners: Relationship between performance, electromyographic activity, muscle cross-sectional area and morphology. Acta Physiology Scand 132: 531–536Google Scholar
  85. 86.
    Lundberg A, Lamgren K, Schomburg ED (1978) Role of joint afferents in motor control exemplified by effects on reflex pathways from Ib afferents. J Physio (Lond) 184: 327–343Google Scholar
  86. 87.
    Lundberg A, Malmgren K, Schomburg ED (1977) Cutaneous facilitation of transmission in reflex pathways from Ib afferents to motoneurones. J Physio (Lond) 265: 763–780Google Scholar
  87. 88.
    Matthews PBC (1972) Mammalian muscle receptors and their central actions. Arnold LondonGoogle Scholar
  88. 89.
    McNair PJ, Marshall RN, Marguire K (1995) Knee joint effusion and proprioception. Arch Phys Med Rehabil (76) 6: 566–568Google Scholar
  89. 90.
    Mense S (1995) Lokaler und übertragener Muskelschmerz. Phys Rehab Kur Med 5: 147–152Google Scholar
  90. 91.
    Mense S (1993) Nociception from skeletal muscle in relation to clinical muscle pain. Pain 54: 241–289PubMedGoogle Scholar
  91. 92.
    Mense S (1991) Physiology of nociception in muscles. J Manual Medicine 6: 24–33Google Scholar
  92. 93.
    Mense S (1988) Verhalten von Nozizeptoren im normalen und im entzündeten Muskel. In: Sprintge R, Droh R (eds) Schmerz und Sport Heidelberg: 199–206Google Scholar
  93. 94.
    Newell KM, Corcos DM (eds) (1993) Variability and Motor Control. Human Kinetic Publishers, ChampaignGoogle Scholar
  94. 95.
    Nürnberger F (1997) Lokalisation und Funktion von Rezeptoren im Gelenk-Muskel-Complex. In: Zichner L, Engelhardt M, Freiwald J (eds) Muskuläre Dysbalancen. Novartis, Wehr: 24–38Google Scholar
  95. 96.
    O’Connor BL, Visco DM, Brandt KD (1993) Sensory nerves only temporarily protect the unstable canine knee joint from osteoarthritis. Evidence that sensory nerves reprogram the central nervous system after cruciate ligament transection. Arthritis Rheum (36) 8: 1154–1163Google Scholar
  96. 97.
    O’Connor BL, Palmoski MJ, Brandt KD (1985) Neurogenic acceleration of degenerative joint lesions. J Bone Joint Surg [Am] (67) 4: 562–572Google Scholar
  97. 98.
    Paintal AS (1967) A comparison of the nerve impulses of mammalian non medullated nerve fibres with those of smallest diameter medullated fibres. J Phys (Lond) 193: 523–533Google Scholar
  98. 99.
    Pitman MI, Nainzadeh N, Menche D (1992) The intraoperative evaluation of the neurosensory function of the anterior cruciate ligament in humans using somatosensory evoked potentials. Arthroscopy (8) 4: 442–447Google Scholar
  99. 100.
    Pope CF, Cole KJ, Brand RA (1990) Physiologic loading of the anterior cruciate ligament does not activate quadriceps or hamstrings in the anesthesized cat. The American Journal of Sports Medicine 18,6: 595–599PubMedGoogle Scholar
  100. 101.
    Pope MH, Johnson RJ, Brown DW, Tighe C (1979) The role of the musculature in injuries to medial collateral ligament. J Bone Joint Surg 61: 398–402PubMedGoogle Scholar
  101. 102.
    Popper K (1994) Logik der Forschung. Mohr TübingenGoogle Scholar
  102. 103.
    Portr R, Lemon R (1995) Corticospinal Function an Voluntary Movement. Clarendon Press OxfordGoogle Scholar
  103. 104.
    Renström PAFH (ed) (1993) Sports Injuries. Blackwell Oxford.Google Scholar
  104. 105.
    Reuter I, Engelhardt M, Freiwald J (1994) Sensorische Rückmeldungen aus arthronalen Systemen als Steuerungsvoraussetzungen der Muskulatur. In: Zichner, L, Engelhardt M, Freiwald J (eds) (1994) Die Muskulatur. Sensibles, integratives und meßbares Organ. Ciba Geigy Wehr: 41–52Google Scholar
  105. 106.
    Reuter I, Engelhardt M, Freiwald J (1994) Steuerung der Muskulatur durch sensorische Rückmeldung. TW Sport und Medizin 6,3: 181–184Google Scholar
  106. 107.
    Rosenbaum DA, Gordon AM, Stillings NA, Feinstein MH (1987) Stimulus-response compatability in the programming of speech. Memory & Cognition 15: 372–393Google Scholar
  107. 108.
    Rovere GD, Adair DM (1983) Anterior cruciate-deficient knees: a review of the literature. Am J Sports Med (11): 412PubMedGoogle Scholar
  108. 109.
    Schaible HG, Grubb BD (1993) Afferent and spinal mechanisms of joint pain. Pain 55: 5–54PubMedGoogle Scholar
  109. 110.
    Schmalz T, Blumentritt S, Wagner R, Gokeler A (1998) Ganganalytische Verlaufsuntersuchung patellasehnenversorgter Rupturen des vorhandenen Kreuzbandes. Phys Rehab Kur Med 9: 1–8Google Scholar
  110. 111.
    Schmidt RA (1988) Motor control and learning: A behavioral emphasis. Human Kinetics ChampaignGoogle Scholar
  111. 112.
    Schmidt RF (ed) (1987) Grundriß der Neurophysiologie. Springer Verlag BerlinGoogle Scholar
  112. 113.
    Schomburg ED (1997) Spinale Mechanismen zur Steuerung neuromuskuärer Balance. In: Zichner L, Engelhardt M, Freiwald J (eds) Neuromuskuläre Dysbalancen Novartis Wehr: 39–57Google Scholar
  113. 114.
    Schomburg ED (1991) The role of nociceptive afferents and enkephalins in spinal motor control. In: Wernig A (ed) Plastisticity of Motoneural Connection. Elsevier Amsterdam: 345–353Google Scholar
  114. 115.
    Schmburg ED (1988) Zur Funktion nozirezeptiver Afferenzen in der spinalen Motorik. In: Spintge R, Droh R (eds) Schmerz und Sport. Berlin-Heidelberg: 207–219Google Scholar
  115. 116.
    Schultz RA, Miller CD, Kerr C, Micheli L (1984) Mechanorezeptoren in human cruciate ligaments. J Bone Joint Surg 66-A: 1072–1076Google Scholar
  116. 117.
    Schutte MJ, Dabezies EK, Zimny ML (1987) Neural Anatomy of the Human Anterior Cruciate Ligament. J Bone Joint Surg [Am] (69): 243–247Google Scholar
  117. 118.
    Scott DT, Ferrell WR, Baxendale RH (1994) Excitation of soleus-gastrocnemius gamma-motoneurones by group II knee joint afferents in suppressed by group IV joint afferents in the decerebrate, spinalized cat. Exp Physiol 79: 357–364PubMedGoogle Scholar
  118. 119.
    Shakespeare DT, Stokes M, Sherman KP (1985) Reflex inhibition of the quadriceps after meniscectomy: lack of association with pain. Clin Physiol 5: 137–144PubMedGoogle Scholar
  119. 120.
    Shelbourne KD, Nitz P (1990) Accelerated rehabilitation after anterior cruciate ligament reconstruction. Am J Sports Med 18: 292–299PubMedGoogle Scholar
  120. 121.
    Simons DG (1988) Myofascial pain syndrome due to trigger points. Reh Medicine St. Louis: 686–723Google Scholar
  121. 122.
    Sinkjaer R, Arendt-Nielsen L (1991) Knee stability and muscle coordination in patients with anterior cruciate ligament injuries. An electromyographic approach. J Electromyography Kinesiol 3,1: 209–217Google Scholar
  122. 123.
    Sjölander P, Djupsjöbacka M, Johansson H, Sojka P, Lorentzon R (1994) Can receptors in the collateral ligaments contribute to knee stability and proprioception via effects on the fusimotor-muscle-spindle system? Neuro-Orthopedics 15:65–80Google Scholar
  123. 124.
    Skinner HB, Barrack RL (1991) Joint Position Sense in the Normal and Pathologic Knee Joint. Journal of Electromyography and Kinesiology (1) 3: 180–190Google Scholar
  124. 125.
    Snyder Macker L, DeLuca PF, Williams PR (1994) Reflex inhibition of the quadriceps femoris muscle after injury or reconstruction of the anterior cruciate ligament. J Bone Joint Surg [Am] (76) 4: 555–560Google Scholar
  125. 126.
    Sojka P, Sjölander P, Johansson H, Dupsjöbacka M (1991) Influence from stretch-sensitive receptors in the collageral ligaments of the knee joint on the (-muscle spindle systems of flexor and extensor muscles. Neurosci Res 11: 55–62PubMedGoogle Scholar
  126. 127.
    Sojka P, Sjölander P, Johansson H, Djupsjöbacka M (1989) Fusimotor neurons can be reflexly influenced by activity in receptor afferents from the posterior cruciate ligament. Brain Res 483: 177PubMedGoogle Scholar
  127. 128.
    Spencer JD, Hayes KC, Alexander IJ (1984) Knee joint effusion and quadriceps reflex inhibition in man. Arch Phys. Med Rehabil (65) 4: 171–177Google Scholar
  128. 129.
    Stöhr M and Bluthardt M (1993) Atlas der klinischen Elektromyographie und der Neurographie. Kohlhammer, 3. AuflageGoogle Scholar
  129. 130.
    Stokes M, Young A (1984) The contribution of reflex inhibition to arthrogenous muscle weakness. Clinical Science 67: 7–14PubMedGoogle Scholar
  130. 131.
    Wißmeier T, Kutter T, Hülser PJ (1997) Der H-Reflex — eine neue Möglichkeit der Kontrolle von Funktion-sparametern in der Behandlung von Bandverletzungen. Beispiel: Vorderes Kreuzband. In: Zichner L, Engelhardt M, Freiwald J (eds). Muskuläre Dysbalancen. Novartis Wehr: 133–164Google Scholar
  131. 132.
    Wojtys EM, Juston LJ (1994) Neuromuscular performance in normal and anteiror cruciate ligament-deficient lower extremities. Am J Sports Med 22,1: 89–104PubMedGoogle Scholar
  132. 133.
    Wolff HD (1996) Neurophysiologische Aspekte des Bewegungssystems. Springer BerlinGoogle Scholar
  133. 134.
    Wollny R (1993) Stabilität und Variabilität im motorischen Verhalten. Meyer & Meyer AachenGoogle Scholar
  134. 135.
    Wulf G (1994) Zur Optimierung motorischer Lernprozesse. Hofmann SchorndorfGoogle Scholar
  135. 136.
    Wyke B (1967) The Neurology of Joints. Ann R Coll Surg Engl 41:25–50PubMedGoogle Scholar
  136. 137.
    Young A, Stokes M, Iles JF (1987) Effects of joint pathology on muscle. Clinical Orthopaedics and Related Research 219,6: 21–27PubMedGoogle Scholar
  137. 138.
    Young A, Stokes M (1986) Reflex inhibition of muscle activity and the morphological consequences of inactivity. In: Saltin B (ed) International Series of Sport Sciences. Vol. 16, Biochemistry of Exercise VI. Human Kinetics, Champaign: 531–544Google Scholar
  138. 139.
    Zimny ML (1988) Mechanoreceptors in articular tissues. The American Journal of Anatomy 182: 16–32PubMedGoogle Scholar
  139. 140.
    Zimny ML, Schutte M, Dabezies E (1986) Mechanoreceptors in the human anterior cruciate ligament. Anar Rec (214) 2: 204–209Google Scholar
  140. 141.
    Zimny ML, Wink CS (1991) Neuroreceptors in the tissues of the knee joint. Journal of Electromyography and Kinesiology I,3: 148–157Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • Jürgen Freiwald
    • 1
  • I. Reuter
    • 2
  • Martin Engelhardt
    • 1
  1. 1.Orthopedic University Hospital Friedrichsheim J.W. Goethe University FrankfurtGermany
  2. 2.Mapother House, King’s College HospitalLondonUK

Personalised recommendations