Skip to main content

Abstract

From a physiological standpoint, exercise can impose a significant amount of stress on an organism. Muscular activity requires coordinated integration of many physiological and biochemical systems. Such integration is possible only if the body’s various tissues and systems can communicate with each other. The nervous system is responsible for most of this communication through central command and peripheral adjustments. Regular exercise or training will result in better performance, however this ‘challenge of homeostasis’ can lead to an disturbed balance between training and recovery. This stress is counteracted by several adaptive and regulation mechanisms. The physiological responses to any disturbance of the body’s equilibrium and its ‘feed-forward’and ‘feed-back’ from and to the brain is primarily the responsibility of the endocrine system . The endocrine and nervous system work in concert to initiate and control movement and all physiological processes it involves. When all facets of the central nervous and neuroendocrine system are performing in harmony, the ability to coordinate and regulate key physiological and metabolic functions, under the perturbations imposed by physical exercise, is quite remarkable. To date, relatively little attention has been placed on the role of the central nervous system in overtraining and fatigue during exercise and training. This chapter will focus on the possible involvement of the central nervous system in the onset of fatigue during exercise and the role of neurotransmitters and neuromodulators in possible mechanisms that underlie overtraining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdelmalki A, Merino D, Bonneau D, Bigard A, Guezennec Y (1997) Administration of a GABAA agonist baclofen before running to exhaustion in the rat: effects on performance and some indicators of fatigue. Int Sports Med 18: 75–78

    Article  CAS  Google Scholar 

  2. Abercrombie E, Keefe K, DiFrischia D, Zigmond M (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem 52: 1655–1658

    Article  PubMed  CAS  Google Scholar 

  3. Acworth I, Nicolass J, Morgan B, Newsholme E (1986) Effect of sustained exercise on concentrations of plasma aromatic and branched chain amino acids and brain amines. Biochem Biophys Res Comm 137: 149–153

    Article  PubMed  CAS  Google Scholar 

  4. Bagdy G, Szemeredi K, Kanyicska B, Murphy D (1989) Different serotonin receptors mediate blood pressure, heart rate, plasma catecholamine and prolactin responses to m-chloro-phenylpiperasine in conscious rats. J Pharmacol Exp Ther 250: 72–78

    PubMed  CAS  Google Scholar 

  5. Bailey S, Davis J (1994) Response to letter to the editor by F. Chaouloff [letter]. Int J Sports Med 15: 340–341

    Google Scholar 

  6. Bailey S, Davis J, Ahlborn E (1992) Effect of increased brain serotonergic activity on endurance performance in the rat. Acta Physiol Scand 145: 75–76

    PubMed  CAS  Google Scholar 

  7. Bailey S, Davis J, Ahlborn E (1993a) Serotonergic agonists and antagonists affect endurance performance in the rat. Intern J Sports Med 14: 330–333

    CAS  Google Scholar 

  8. Bailey S, Davis J, Ahlborn E (1993b) Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. J Appl Physiol 74: 3006–3012

    PubMed  CAS  Google Scholar 

  9. Bannister E, Cameron B (1990) Exercise-induced hyperammonemia: peripheral and central effects. Int J Sports Med 11(Suppl 2): S129–S142

    Google Scholar 

  10. Blomstrand E, Celsing F, Newsholme E (1988) Changes in plasma concentrations of aromatic and branced-chain amino acids during sustained exercise in man and their possible role in fatigue. Acta Physiol Scand 133: 115–121

    PubMed  CAS  Google Scholar 

  11. Blomstrand E, Perret D, Parry-Billings M, Newsholme E (1989) Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat. Acta Physiol Scand 136: 473–481

    PubMed  CAS  Google Scholar 

  12. Burgess M, Davis M, Borg T, Buggy J (1991) Intracranial self-stimulation motivates treadmill running in rats. J Appl Physiol 71: 1593–1597

    PubMed  CAS  Google Scholar 

  13. Carboni E, Cadoni C, Tanda G, Di Chiara G (1989) Calcium dependent, Tetrodotoxin-sensitive stimulation of cortical serotonin release after tryptophan load. J Neurochem 53: 976–978

    Article  PubMed  CAS  Google Scholar 

  14. Carboni E, Cadoni C, Tanda G, Frau R, Di Chiara G (1991) Serotonin release and metabolism in the frontal cortex: effect of drugs, tryptophan and stress. In: Rollema H, Westerink B and Drijfhout J (eds) Monitoring molecules in neurosciences. The Netherlands: Krips Repro: 235–237

    Google Scholar 

  15. Chaouloff F (1989) Physical exercise and brain monoamines: a review. Acta Physiol Scand 137: 1–13

    PubMed  CAS  Google Scholar 

  16. Chaouloff F (1993) Physiolopharmacological interactions between stress hormones and central serotonergic systems. Brain Res Rev 18: 1–32

    Article  PubMed  CAS  Google Scholar 

  17. Chaouloff F (1994a) Influence of physical exercise on 5-HT1A receptor-and anxiety-related behaviours. Neurosci Let 176: 226–230

    Article  CAS  Google Scholar 

  18. Chaouloff F (1994b) Serotonin1C, 2 receptors and endurance performance [letter]. Int J. Sports Med 15: 339 1994b

    PubMed  CAS  Google Scholar 

  19. Chaouloff F (1997) The serotonin hypothesis. In: Morgan WP (ed) Physical activity & mental health. Taylor & Francis, Washington: 179–198

    Google Scholar 

  20. Chaouloff F, Kennett GA, Serrurier B, Merino D and Curzon G (1986) Amino acid analysis demonstrates that increased plasma free tryptophan causes the increase of brain tryptophan during exercise in the rat. J Neurochem 46: 1647–1650

    Article  PubMed  CAS  Google Scholar 

  21. Chaouloff F, Laude D, Baudrie V (1990) Effects of the 5-HT1C/5-HT2 receptor agonist DOI and-methyl-5-HT on plasma glucose and insulin levels in the rat. Eur J Pharmacol 187: 435–443

    Article  PubMed  CAS  Google Scholar 

  22. Chaouloff F, Laude D, Meringo D, Serrurrier B, Guezennec Y (1987) Amphetamine and alpha-methyl-p-tyrosine affect the exercise induced imbalance between the availability of tryptophan and synthesis of serotonin in the brain of the rat. Neuropharmacol 268: 1099–1106

    Article  Google Scholar 

  23. Cizza G, Kvetnansky R, Tartaglia M, Blackman M, Chrousos G, Gold P (1993) Immobolisation stress rapidly decreases hypothalamic corticotropin-releasing hormone secretion in vitro in the male 344/N fischer rat. Life Sci 53: 233–240

    Article  PubMed  CAS  Google Scholar 

  24. Coggan A, Coyle E (1991) Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance. Exerc Sport Sci rev 19: 1–40

    Article  PubMed  CAS  Google Scholar 

  25. Coggan A, Williams B (1995) Metabolic adaptations to endurance training: substrate metabolism during exercise. In: Hargreaves M (ed) Exercise metabolism. Human Kinetics Publishers Inc. Champaign USA: 177–210

    Google Scholar 

  26. Conlay L, Sabounjian L, Wurtman R (1992) Exercise and neuromodulators: choline and acetylcholine in marathon runners. Int J Sports Med 13(Suppl 1): S141–S142

    Article  PubMed  Google Scholar 

  27. Dantzer R (1993) Coping with stress. In: Stanford S & Salmon P (eds) Stress, from synapse to syndrome. Academic Press, London: 167–189

    Google Scholar 

  28. Darracq L, Blanc G, Glowinski J, Tassin J (1998) Importance of the noradrenaline-dopamine coupling in the locomotor activating effects of D-Amphetamine. J Neurosci 18: 2729–2739

    PubMed  CAS  Google Scholar 

  29. Davis M (1995) Central and peripheral factors in fatigue. J Sports Sci 13: S49–S53

    PubMed  Google Scholar 

  30. Davis M (1996) Nutritional influences on central mechanisms of fatigue involving serotonin. In: Maughan & Shirreffs (eds) Biochemistry of exercise IX. Human Kinetics Champaign USA: 445–455

    Google Scholar 

  31. Davis M, Bailey S (1997) Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc 29: 45–57

    PubMed  CAS  Google Scholar 

  32. Davis M, Bailey S, Jackson D, Strasner A, Morehouse S (1993) Effects of a serotonin agonist during prolonged exercise to fatigue in humans. Med Sci Sports Exerc [abstract] 25: S78

    Google Scholar 

  33. De Meirleir K (1985) Studies on cardiovascular drugs and (neuro)humoral substances in dynamic exercise [PhD thesis] Brussels: Vrije Univ Brussel

    Google Scholar 

  34. De Meirleir K, Gerlo F, Hollmann W, Vanhaelst L (1986) Cardiovascular effects of pergolide mesylate during dynamic exercise. Proceedings of the BPS, 633P

    Google Scholar 

  35. Dendale P, De Meirleir K (1993) Pergolide mesylate and physical performance: a brief report. Clin J Sports Med 3: 256–258

    Article  Google Scholar 

  36. Dishman R (1994) Biological psychology, exercise, and stress. Quest 46: 28–59

    Google Scholar 

  37. Dishman R (1997) The norepinephrine hypothesis. In: Morgan WP (ed) Physical activity & mental health. Taylor & Francis, Washington: 199–212

    Google Scholar 

  38. Dunn A, Dishman R (1991) Exercise and the neurobiology of depression. Exerc Sport Sci Rev 19: 41–98

    Article  PubMed  CAS  Google Scholar 

  39. Enoka R, Stuart D (1992) Neurobiology of muscle fatigue. J Appl Physiol 72: 1631–1648

    Article  PubMed  CAS  Google Scholar 

  40. Fernstrom J (1983) Role of precursor availability in control of monoamine biosynthesis in brain. Physiol rev 63: 484–546

    PubMed  CAS  Google Scholar 

  41. Fernstrom J, Wurtman R (1971) Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173: 149–52

    Article  PubMed  CAS  Google Scholar 

  42. Fernstrom J, Wurtman R (1972) Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178: 414–6

    Article  PubMed  CAS  Google Scholar 

  43. Finlay J, Zigmond M, Abercrombie E (1995) Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress effects of diazepam. Neuroscience 64: 619–628

    Article  PubMed  CAS  Google Scholar 

  44. Gerald M (1978) Effect of (+)-amphetamine on the treadmill endurance performance of rats. Neuropharmacol 17: 703–704

    Article  CAS  Google Scholar 

  45. Green H (1997) Mechanisms of muscle fatigue in intense exercise. J Sports Sci 15: 247–256

    Article  PubMed  CAS  Google Scholar 

  46. Gresch P, Sved A, Zigmond M, Finlay J (1994) Stress-induced sensitization of dopamine and no-repinephrine efflux in medial prefrontal cortex of the rat. J Neurochem 63, 575–583

    Article  PubMed  CAS  Google Scholar 

  47. Hernandez L, Parada M, Baptista T, Schwartz D, West H, Mark G, Hoebel B (1991) Hypothalamic serotonin in treatments for feeding disorders and depression as studied by brain microdialysis. J Clin Psychiatry 52 (Suppl): 32–40

    PubMed  Google Scholar 

  48. Heyes M, Garnett E, Coates G (1985) Central dopaminergic activity influences rats ability to run. Life Sci 36: 671–677

    Article  PubMed  CAS  Google Scholar 

  49. Heyes M, Garnett E, Coates G (1988) Nigrostriatal dopaminergic activity is increased during exhaustive exercise stress in rats. Life Sci 42: 1537–1542

    Article  PubMed  CAS  Google Scholar 

  50. Hillegaart V, Wadenberg M, Ahlenius S (1989) Effects of 8-OH-DPAT on motor activity in the rat. Pharmacol Biochem Behav 32: 797–800

    Article  PubMed  CAS  Google Scholar 

  51. Imperato A, Angelucci L, Casolini P, Zocchi A, Puglisi-Allegra S (1992) Repeated stressful experiences differently affect limbic dopamine release during and following stress. Brain Res 577: 194–199

    Article  PubMed  CAS  Google Scholar 

  52. Jacobs B (1991) Serotonin and behaviour: emphasis on motor control. J Clin Psy 52,12(Suppl): 17–23

    Google Scholar 

  53. Jacobs B, Fornal C (1993) 5-HT and motor control: a hypothesis. TINS 16:346–350

    PubMed  CAS  Google Scholar 

  54. Jordan S, Kramer G, Zukas P, Petty F (1994) Previous stress increases in vivo biogenic amine response to swim stress. Neurochem Res 19: 1521–1525

    Article  PubMed  CAS  Google Scholar 

  55. Keefe K, Stricker E, Zigmond M, Abercrombie E (1990) Environmental stress increases extracellular dopamine in striatum of 6-hydroxydopamine-treated rats: in vivo microdialysis studies. Brain Res 527: 350–353

    Article  PubMed  CAS  Google Scholar 

  56. Keizer H (1998) Neuroendocrine aspects of overtraining. In: Kreider, Fry, O’Toole (eds) Overtraining in Sport. Human Kinetics, Champaign Illinois: 145–167

    Google Scholar 

  57. Kennett G, Curzon G (1988) Evidence that mCPP may have behavioural effects mediated by central 5-HTIC receptors. Br J Pharmacol 94:137–147

    PubMed  CAS  Google Scholar 

  58. Kirby L, Chou-Green J, Davis K, Lucki I (1997) The effects of different stressors on extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Res 760: 218–230

    Article  PubMed  CAS  Google Scholar 

  59. Kjaer M (1989) Epinephrine and some other hormonal responses to exercise in man: with special reference to physical training. Int J Sports Med 10:2–15

    Article  PubMed  CAS  Google Scholar 

  60. Kjaer M, Secher N, Bach F, Galbo H (1987a) Role of motor center activity for hormonal changes and substrate mobilisation in exercising man. Am J Physiol 253: R687–R695

    PubMed  CAS  Google Scholar 

  61. Kjaer M, Secher N, Galbo H (1987b) Physical stress and catecholamine release. Balliere’s Clin Endocrin Metabol 1: 279–289

    Article  CAS  Google Scholar 

  62. Kreider R (1998) Central Fatigue hypothesis and overtraining. In: Kreider, Fry, O’Toole (eds) Overtraining in Sport. Human Kinetics, Champaign Illinois: 309–331

    Google Scholar 

  63. Kreider R, Miriel V, Bertun E 1993 Amino acid supplementation and exercise performance. Sports Med 16: 190–209

    Google Scholar 

  64. Lachuer J, Delton I, Buda M, Tappaz M (1994) The habituation of brainstem catecholaminergic groups to chronic daily restraint stress is stress specific like that of the hypothalamo-pituitary-adrenal axis. Brain Res 638: 196–202

    Article  PubMed  CAS  Google Scholar 

  65. Lehmann M, Foster C, Netzer N, Lormes W, Steinacker J, Liu Y, Opitz-Gress A, Gastmann U (1998) Physiological responses to short-and long-term overtraining in endurance athletes. In: Kreider, Fry, O’Toole (eds) Overtraining in Sport. Human Kinetics, Champaign Illinois: 19–46

    Google Scholar 

  66. Lucki I, Ward H, Frazer R (1989) Effect of 1-(m-chlorophenyl) piperazine and 1-(trifluoromethylphenyl) piperazine on locomotor activity. J Pharmacol Exp Ther 249: 155–164

    PubMed  CAS  Google Scholar 

  67. MacLaren D, Gibson H, Parry-Billings M, Edwards R. (1989) A review of metabolic and physiological factors in fatigue. Exc Sport Sci Rev 17: 29–66

    CAS  Google Scholar 

  68. Mazzeo R (1991) Catecholamine responses to acute and chronic exercise. Med Sci Sports Exerc 23: 839–845

    PubMed  CAS  Google Scholar 

  69. Meeusen R, Chaouloff F, Thorré K, Sarre S, De Meirleir K, Ebinger G, Michotte Y (1996) Effects of tryptophan and/or acute running on extracellular 5-HT and 5-HIAA levels in the hippocampus of food-deprived rats. Brain Res 740: 245–252

    Article  PubMed  CAS  Google Scholar 

  70. Meeusen R, De Meirleir K (1995) Exercise and brain neurotransmission. Sports Med 20: 160–188

    PubMed  CAS  Google Scholar 

  71. Meeusen R, Smolders I, Sarre S, De Meirleir K, Keizer H, Serneels M, Ebinger G, Michotte Y (1997a) Endurance training effects on striatal neurotransmitter release, an ‘in vivo’ microdialysis study. Acta Physiol Scand 159: 335–341

    Article  PubMed  CAS  Google Scholar 

  72. Meeusen R, Sarre S, Michotte Y, Ebinger G, De Meirleir K (1994) The effects of exercise on neurotransmission in rat striatum, a microdialysis study. In: Louilot A, Durkin T, Spampinato U, Cador M (eds) Monitoring Molecules in neuroscience: 181–182

    Google Scholar 

  73. Meeusen R, Smolders I, Sarre S, De Meirleir K, Ebinger G, Michotte Y (1995) The effects of exercise on extracellular glutamate (GLU) and GABA in rat striatum, a microdialysis study. Medicine and Science in Sports and Exercise 27: S215

    Google Scholar 

  74. Meeusen R, Roeykens J, Magnus L, Keizer H, De Meirleir K (1997b) Endurance performance in humans: the effect of a dopamine precursor or a specific serotonin antagonist. Int J Sports Med 18: 571–577

    Article  PubMed  CAS  Google Scholar 

  75. Newsholme E, Acworth I, Blomstrand E (1987) Amino acids, brain neurotransmitters and a functional link between muscle and brain that is important in sustained exercise. In: Benzi G (ed) Advances in myochemistry. John Libby Eurotext, London: 127–138

    Google Scholar 

  76. Nisembaum L, Zigmond M., Sved A, Abercrombie E (1991) Prior exposure to chronic stress results in enhanced synthesis and release of hippocampal norepinephrine in response to a novel stressor. J Neurosci 11: 1478–1484

    Google Scholar 

  77. Palfreyman M, Schmidt C, Sorensen S, Dudley M, Kehne J, Moser P, Gittos M, Carr A (1993) Electro-physiological, biochemical and behavioural evidence for 5-HT2 and 5-HT3 mediated control of dopaminergic function. Psychopharmacol 112: S60–S67

    Article  CAS  Google Scholar 

  78. Pei Q, Zetterström T, Fillenz M (1989) Measurement of extracellular 5-HT and 5-HIAA in hippocampus of freely moving rats using microdialysis: long-term applications. Neurochem Int 15: 503–509

    Article  CAS  PubMed  Google Scholar 

  79. Plotsky P, Cunninham E, Widmaier E (1989) Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin szecretion. Endocrine Reviews 10: 437–458

    PubMed  CAS  Google Scholar 

  80. Ramage A, Wouters W, Bevan P (1988) Evidence that the novel antihypertensive agent, flesinoxan, causes differential sympathoinhibition and also increases vagal tone by central action. Eur J Pharmacol 151: 373–379

    Article  PubMed  CAS  Google Scholar 

  81. Romanowski W, Grabiec S (1974) The role of serotonin in the mechanism of central fatigue. Acta Physiol Pol 25: 127–134

    PubMed  CAS  Google Scholar 

  82. Schwartz D, Hernandez L, Hoebel B (1990) Tryptophan increases extracellular serotonin in the lateral hypothalamus of food-deprived rats. Brain Res Bull 25: 803–807

    Article  PubMed  CAS  Google Scholar 

  83. Seguin L, Liscia P, Guezennec Y, Fillion G (1998) Effects of moderate and intensive training on functional activity of central 5-HT1B receptors in the rat substantia nigra. Acta Physiologica Scandinavica 162: 63–68

    Article  PubMed  CAS  Google Scholar 

  84. Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138: 32

    Google Scholar 

  85. Sharp T, Bramwell S, Grahame-Smith D (1992) Effect of acute administration of L-tryptophan in the release of 5-HT in rat hippocampus in relation to serotonergic neuronal activity: an in vivo microdialysis study. Life Sci 50: 1215–1223

    Article  PubMed  CAS  Google Scholar 

  86. Sharp T, Bramwell S, Hjorth S, Grahame-Smith D (1989) Pharmacological characterization of 8-OH-DPAT-induced inhibition of rat hippocampal 5-HT release in vivo as measured by microdialysis. Br J Pharmacol 98: 989–997

    PubMed  CAS  Google Scholar 

  87. Shintani F, Nakaki T, Kanba S, Sato K, Yagi G, Shiozawa M, Aiso S, Kato R, Asai M (1995) Involvement of interleukin-1 in immobilisation stress-induced increase in plasma adrenocorticotropic hormones and in release of hypothalamic monoamines in rat. J Neurosci 15: 1961–1970

    PubMed  CAS  Google Scholar 

  88. Sleight A, Marsden C, Martin K, Palfreyman M (1988) Relationship between extracellular 5-hydroxytryptamine and behavior following monoamine oxidase inhibition and L-tryptophan. Br J Pharmacol 93: 303–310

    PubMed  CAS  Google Scholar 

  89. Stanford C (1993) Monoamines in response and adaptation to stress. In: Stanford S & Salmon P (eds) Stress, from synapse to syndrome. Academic Press, London: 281–331

    Google Scholar 

  90. Sutanto W, De Kloet R (1993) The role of GABA in the regulation of the stress response. In: Stanford S & Salmon P (eds) Stress, from synapse to syndrome. Academic Press, London: 333–354

    Google Scholar 

  91. Thorré K, Chaouloff F, Sarre S, Meeusen R, Ebinger G, Michotte Y (1997) Differential effects of restraint stress on hippocampal 5-HT metabolism and extracellular levels of 5-HT in streptozotocin-diabetic rats. Brain Research 772: 209–216

    Article  PubMed  Google Scholar 

  92. Tuomisto J, Mannisto P (1985) Neurotransmitter regulation of anterior pituitary hormones. Pharmacology Reviews 37: 249–332

    CAS  Google Scholar 

  93. Urhausen A, Gabriel H, Kindermann W (1998) Impaired pituitary hormonal response to exhaustive exercise in overtrained endurance athletes. Med Sci Sports Exerc 30: 407–414

    PubMed  CAS  Google Scholar 

  94. Ursin H & Ollf M (1993) The stress response. In: Stanford S & Salmon P (eds) Stress, from synapse to syndrome. Academic Press, London: 3–22

    Google Scholar 

  95. Weizman R, Weizman A, Kook K, Vocci F, Deitsch S, Paul S (1989) Repeated swim stress alters brain benzodiazepine receptors measured in vivo. J Pharmacol. Exp Ther 249: 701–707

    PubMed  CAS  Google Scholar 

  96. Westerink B, De Vries J (1991) Effect of precursor loading on the synthesis rate and release of dopamine and serotonin in the striatum: a microdialysis study in conscious rats. J Neurochem 56: 228–233

    Article  PubMed  CAS  Google Scholar 

  97. Wilckens T, Schweiger U, Pirke K (1992) Activation of 5-HT1C-receptors suppresses excessive wheel running induced by semi-starvation in the rat. Psychopharmacol 109: 77–84

    Article  CAS  Google Scholar 

  98. Wilson W, Maughan R (1992) Evidence for a possible role of 5-hydroxytryptamine in the genesis of fatigue in man: administration of paroxetine, a 5-HT re-uptake inhibitor, reduces the capacity to perform prolonged exercise. Exper Physiol 77: 921–924

    CAS  Google Scholar 

  99. Wurtman R, Lewis M (1991) Exercise, plasma composition and neurotransmission. In: Brouns F (ed) Advances in Nutrition and Top Sport. Med Sport Sci. Basel: Karger 32: 94–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Meeusen, R. (1999). Overtraining and the Central Nervous System. In: Lehmann, M., Foster, C., Gastmann, U., Keizer, H., Steinacker, J.M. (eds) Overload, Performance Incompetence, and Regeneration in Sport. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-34048-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-34048-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46106-4

  • Online ISBN: 978-0-585-34048-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics