Skip to main content

Abstract

The earth was born 4.6 billion years ago, as a planet of the solar system. Then, after the chemical evolution of organic compounds ca. 4.0 to 3.5 billion years ago, life was created by accident. Ancient living cells are presumed to have had RNA as their hereditary element (xcGilbert, 1986). RNA was substituted by DNA and the present form of living cells (possessing protein-synthesizing ability) is the DNA-based organism. DNA organisms evolved to the presently existing various descendents. Driving forces for the explosive evolution that occurred were environmental changes in the biosphere. The decrease in temperature of the biosphere was one of the most important environmental changes associated with early evolution (xcWoese, 1981; xcWoese, 1987). Ancient organisms, living before 3.0 billion years ago, are presumed to have been thermophiles, which required temperatures higher than 70°C. The temperature of the surface of the earth decreased gradually to below 70°C, after 3.0 billion years ago (xcTrakes, 1979), and thermophilic organisms were, thereafter, found in hot springs or in the hydrothermal vents of deep sea volcanos. The second important environmental change in the biosphere was generation of oxygen (xcCloud, 1983). Oxygen was produced by cyanobacteria in the sea, and after oxygen saturation of the sea, oxygen was released into the atmosphere. The generation of oxygen selected against the primitive anaerobic bacteria, leading to selection of aerobic bacteria. The primitive forms of anaerobic bacteria are presumed to be archaebacteria (xcWoese, 1981; xcWoese, 1987). As the concentration of atmospheric oxygen increased, aerobic eubacteria diversified explosively about 2.0 billion years ago. The eucaryotes were created by endosymbiosis about 2.0 billion years ago, and various multicellular organisms were created up to 0.7 billion years ago (xcCloud, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhattacharya, D. and Elwood, H. J., 1990, Phylogeny of Gracilaria lemaneiformis (Rhodophyta) based on sequence analysis of its small subunit ribosomal RNA coding region. J. Phycol. 26, 181–186.

    Article  CAS  Google Scholar 

  • Cavalier-Smith, T., 1986, The kingdom Chromista: Origin and systematics. Progress in Phycological Research 4, 309–347.

    Google Scholar 

  • Cloud, P., 1983, The biosphera. Scientific American 249, 132–144.

    Google Scholar 

  • Craig, E. A., et al., 1989, SSC1, and essential member of the yeast hsp70 multigene family, encodes a mitochondrial protein. Mol. Cell. Biol. 9, 3000–3008.

    PubMed  CAS  Google Scholar 

  • Douglas, S. E., 1992, A sec Y homologue is found in the plastid genome of Cryptomonas ϕ. FEBS Letters 298, 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, S. E. and Durnford, D. G., 1989, The small subunit of ribulose-1,5-bisphosphate carboxylase is plastid-encoded in the chlorophyll c-conteining alga Cryptomonas f. Plant. Mol. Biol. 13, 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, S. E., et al., 1991, Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eucaryotes. Nature 350, 148–151.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, S. E. and Turner, S., 1991, Molecular evidence for the origin of plastids from a cyanobacterium-like ancester. J. Mol. Evol. 33, 267–273.

    Article  PubMed  CAS  Google Scholar 

  • Eschbach, S., et al., 1991, Primary and secondary structure of the nuclear small subunit ribosomal RNA of the Cryptomonad Pyrenomonas salina as inferred from the gene sequence: Evolutionary implications. J. Mol. Evol. 32, 247–252.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J., 1978, Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27, 401–410.

    Article  Google Scholar 

  • Felsenstein, J., 1985, Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  • Gilbert, W., 1986, The RNA world. Nature 319, 618.

    Article  Google Scholar 

  • Gray, M. W., 1988, Organelle origins and ribosomal RNA. Biochem. Cell Biol. 66, 325–348.

    Article  PubMed  CAS  Google Scholar 

  • Gray, M. W., 1989, The evolutionary origins of organelles. Trends in Genetics 5, 294–299.

    Article  PubMed  CAS  Google Scholar 

  • Gray, M. W., et al., 1989, On the evolutionary origin of the plant mitochondrion and its genome. Proc. Natl. Acad. Sci. U.S.A. 86, 2267–2271.

    Article  PubMed  CAS  Google Scholar 

  • Green, B. R., 1976, Covalently closed minicircular DNA associated with Acetabularia chloroplasts. Biochim. Biophys. Acta 447, 156–166.

    PubMed  CAS  Google Scholar 

  • Gunderson, J. H., et al., 1987, Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc. Natl. Acad. Sci. U.S.A. 84, 5823–5827.

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsen, S. M., et al., 1988, Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333, 330–334.

    Article  PubMed  CAS  Google Scholar 

  • Hendriks, L., et al., 1991, The evolutional position of the rhodophyte Porphyra umbilicalis and the Basidiomycete Leucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA. J. Mol. Evol. 32, 167–177.

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka, J., et al., 1989, The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217, 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Huss, V. A. R. and Sogin, M. L., 1990, Phylogenetic position of some Chlorella species within the Chlorococcales based upon complete small-subunit ribosomal RNA sequences. J. Mol. Evol. 31, 432–442.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, S. and Tabita, F. R., 1991, Cotranscription, deduced primary structure, and expression of the chloroplast-encoded rbcL and rbcS genes of the marine diatom Cylindrotheca sp. strain N1. J. Biol. Chem. 266, 6271–6279.

    PubMed  CAS  Google Scholar 

  • Iwabe, N., et al., 1989, Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl. Acad. Sci. USA 86, 9355–9359.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y., et al., 1994, Chloroplast small-subunit RNA gene sequence from Chlamydomonas parkeae (Chlorophyta): molecular phylogeny of a green alga with a peculiar pigment composition. Eur. J. Phycol. 29, 213–217.

    Article  CAS  Google Scholar 

  • Kubo, T., et al., 1995, The chloroplast trnP-trnW-petG gene cluster in the mitochondrial genomes of Beta vulgaris, B. trigyna and B. webbiana: evolutionary aspects. Curr. Genet. 27, 285–289.

    Article  PubMed  CAS  Google Scholar 

  • Lonsdale, D. M., et al., 1983, Maize mitochondrial DNA contains a sequence homologous subunit gene in chloroplast DNA. Cell 34, 1007–1014.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, M. and Gibbs, S. P., 1985, DNA is present in the nucleomorph of cryptomonads: Further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma 127, 9–20.

    Article  Google Scholar 

  • Manhart, J. R., et al., 1989, Unusual characteristics of Codium fragile chloroplast DNA revealed by physical and gene mapping. Mol. Gen. Genet. 216, 417–421.

    Article  PubMed  CAS  Google Scholar 

  • Margulis, L. and Schwartz, K. V., 1982, Five Kingdoms. San Francisco, Freeman & Co.

    Google Scholar 

  • Martin, W., et al., 1992, Molecular phylogenies of plastid origins and algal evolution. J. Mol. Evol. 35, 385–404.

    Article  CAS  Google Scholar 

  • McKerracher, L. and Gibbs, S. P., 1982, Cell and nucleomorph division in the alga Cryptomonas. Can. J. Bot. 60, 2440–2452.

    Google Scholar 

  • Ohta, N., et al., 1994, Physical map of the plastid genome of the unicellular red alga Cyanidium caldarium strain RK-1. Curr. Genet. 26, 136–138.

    Article  PubMed  CAS  Google Scholar 

  • Ohyama, K., et al., 1986, Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha. Nature 322, 572–574.

    Article  CAS  Google Scholar 

  • Oyaizu, H., et al., 1993, Polyphyletic origins of chlorophyte chloroplasts. J. Gen. Appl. Microbiol. 39, 313–319.

    CAS  Google Scholar 

  • Padmanabhan, U. and Green, B. R., 1978, The kinetic complexity of Acetabularia chloroplast DNA. Biochim. Biophys. Acta 521, 67–73.

    PubMed  CAS  Google Scholar 

  • Palmer, J. D., 1985, Comparative organization of chloroplast genomes. Ann. Rev. Genet. 19, 325–354.

    Article  PubMed  CAS  Google Scholar 

  • Pancic, P. G., et al., 1992, Chloroplast ATPase genes in the diatom Odontella sinensis reflect cyanobacterial characters in structure and arrangement. J. Mol. Biol. 224, 529–536.

    Article  PubMed  CAS  Google Scholar 

  • Rausch, H., et al., 1989, Phylogenetic relationships of the green alga Volvox carteri deduced from small-subunit ribosomal RNA comparisons. J. Mol. Evol. 29, 255–265.

    Article  PubMed  CAS  Google Scholar 

  • Reith, M. and Cattolico, R. A., 1986, Inverted repeat of Olisthodiscus luteus chloroplast DNA contains genes for both subunits of ribulose-1,5-bisphosphate carboxylase and the 32,000-dalton QB protein: Phylogenetic implications. Proc. Natl. Acad. Sci. 83, 8599–8603.

    Article  PubMed  CAS  Google Scholar 

  • Reith, M. and Munholland, J., 1993, A high-resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5, 465–475.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N. and Nei, M., 1986, The number of nucleotiedes required to determine the branching order of three species, with special reference to the Human-Chimpanzee-Gorilla divergence. J. Mol. Evol. 24, 189–204.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N. and Nei, M., 1987, The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Sasa, T., et al., 1992, A yellow marine Chlamydomonas morphology and pigment composition. Plant Cell Physiol. 33, 527–534.

    CAS  Google Scholar 

  • Scaramuzzi, C. D., et al., 1992, Characterisation of a chloroplast-encoded secY homologue and atpH from a chromophytic alga. FEBS Letters 304, 119–123.

    Article  PubMed  CAS  Google Scholar 

  • Scaramuzzi, C. D., et al., 1992, Heat shock Hsp70 protein is chloroplast-encoded in the chromophytic alga Pavlova lutherii. Plant Mol. Biol. 18, 467–476.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, W. and Brennicke, A., 1987, Plastid DNA in the mitochondrial genome of Oenothera: intra-and interorganellar rearrangements involving part of the ribosomal cistron. Mol. Gen. Genet. 210

    Google Scholar 

  • Sederoff, R. R., et al., 1986, Maize mitochondrial plasmid S-1 sequences share homology with chloroplast gene psbA. Genetics 113, 469–482.

    PubMed  CAS  Google Scholar 

  • Shinozaki, K., et al., 1986, The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5, 2043–2049.

    PubMed  CAS  Google Scholar 

  • Sourdis, J. and Nei, M., 1988, Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree. Mol. Biol. Evol. 5, 298–311.

    PubMed  CAS  Google Scholar 

  • Stern, D. B. and Palmer, J. D., 1984, Extensive and widespread homologies between mitochondrial DNA and chloroplast DNA in higher plants. Proc. Natl. Acad. Sci. USA 81, 1946–1950.

    Article  PubMed  CAS  Google Scholar 

  • Trakes, L. A., 1979, Climates throughout geologic time. Amsterdam, Elsevier Scientific Publishing Co.

    Google Scholar 

  • Tymms, M. J. and Schweiger, H., 1985, Tandemly repeated nonribosomal DNA sequences in the chloroplast genome of an Acetabularia mediterranea strain. Proc. Natl. Acad. Sci. USA 82, 1706–1710.

    Article  PubMed  CAS  Google Scholar 

  • Valentin, K., 1993, Sec A is plastid-encoded in a red alga: implications for the evolution of plastid genomes and the thylakoid protein import apparatus. Mol. Gen. Genet. 236, 245–250.

    Article  PubMed  CAS  Google Scholar 

  • Valentin, K. and Zetsche, K., 1989, The genes of both subunits of ribulose-1,5-bisphosphate carboxylase constitute and operon on the plastome of a red alga. Curr. Genet. 16, 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Whatley, J. M., et al., 1979, From extracellular to intracellular: the establishment of mitochondria and chloroplasts. Proc. R. Soc. Lond. B 204, 165–187.

    Article  PubMed  CAS  Google Scholar 

  • Wheelis, M. L., et al., 1992, On the nature of global classification. Proc. Natl. Acad. Sci. USA 89, 2930–2934.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C. R., 1981, Archaebacteria. Scientific American 244, 94–106.

    Article  Google Scholar 

  • Woese, C. R., 1987, Bacterial evolution. Microbiol. Rev. 51, 221–271.

    PubMed  CAS  Google Scholar 

  • Woese, C. R., et al., 1990, Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87, 4576–4579.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, K. H., et al., 1992, Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J. Mol. Evol. 35, 304–317.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Oyaizu, H., Ohtsuka, S. (1996). Algal Diversity and Evolution. In: Colwell, R.R., Simidu, U., Ohwada, K. (eds) Microbial Diversity in Time and Space. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-34046-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-34046-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45194-2

  • Online ISBN: 978-0-585-34046-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics