Fungal Diversity and Phylogeny with Emphasis on 18S Ribosomal DNA Sequence Divergence

  • Junta Sugiyama
  • Takahiko Nagahama
  • Hiromi Nishida


“The number of known species of fungi is about 69,000”, but species of the fungal world are conservatively estimated to be 1.5 million (xcHawksworth, 1991). The fungi are of great consequence agronomically, bioindustrially, medically, and biologically. In spite of their importance, their taxonomic inventory is poor, particularly for the tropical regions. In addition, very little is known about the phylogeny and evolution of fungi and between these and other organisms. As pointed out by xcBruns et al. (1991), “their simple and frequently convergent morphology, their lack of a useful fossil record, and their diversity have been major impediments to progress in this field”.


Fungal Diversity High Fungus Basidiomycetous Yeast Rhodotorula Glutinis Ascomycetous Yeast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldauf, S. L. and Palmer, J. D., 1993, Animals and fungi are each other’s closest relatives: Congruent evidence from multiple proteins, Proc. Natl. Acad. USA 90: 11558–11562.CrossRefGoogle Scholar
  2. Bartnicki-Garcia, S., 1970, Cell wall composition and other biochemical markers in fungal phylogeny. In: Harborne JB (ed) Phytochemical Phylogeny, pp. 81–103. Academic Press, London, United Kingdom.Google Scholar
  3. Bartnicki-Garcia, S., 1987, The cell wall: a crucial structure in fungal evolution. In: Rayner ADM, Brasier CM, and Moore D (ed) Evolutionary Biology of the Fungi, pp. 389–403. Cambridge University Press, Cambridge.Google Scholar
  4. Berbee, M. L., and Taylor, J. W., 1992, Two ascomycete classes based on fruiting-body characters and ribosomal DNA sequences, Mol. Biol. Evol. 9: 278–284.PubMedGoogle Scholar
  5. Berbee, M. L. and Taylor, J. W., 1993, Dating the evolutionary radiations of the true fungi, Can. J. Bot. 71: 1114–1127.Google Scholar
  6. Blanz, P. A. and Unseld, M., 1987, Ribosomal RNA as a taxonomic tool in mycology. In: de Hoog GS, Smith MTh, and Weijman ACM (ed) The Expanding Realm of Yeast-like Fungi, pp. 247–258. Elsevier Science Publishers, Amsterdam.Google Scholar
  7. Bowman, B. H., Taylor, J. W., Brownlee, A. G., Lee J., Lu, S.-D., and White, T. J., 1992, Molecular evolution of the fungi: Relationship of the Basidiomycetes, Ascomycetes, and Chytridiomycetes, Mol. Biol. Evol. 9: 285–296.PubMedGoogle Scholar
  8. Bruns, T. D., Vilgalys, R., Barns, S. M., Gonzalez, D., Hibbett, D. S., Lane, D. J., Simon, L., Stickel, S., Szaro, T. M., Weisburg, W. G., and Sogin, M. L., 1992, Evolutionary relationships within the Fungi: Analyses of nuclear small subunit rRNA sequences, Mol. Phylogenet. Evol. 1: 231–241.PubMedCrossRefGoogle Scholar
  9. Bruns, T. D., White, T. J., and Taylor, J. W., 1991, Fungal molecular systematics, Ann. Rev. Ecol. Syst. 22: 525–564.CrossRefGoogle Scholar
  10. Cavalier-Smith, T., 1987, The origin of Fungi and pseudofungi. In: Rayner ADM, Brasier CM, and Moore D (ed) Evolutionary Biology of the Fungi, pp. 339–353. Cambridge Univ. Press, Cambridge.Google Scholar
  11. Cavalier-Smith, T., 1993, Kingdom Protozoa and its 18 phyla, Microbiol. Rev. 57: 953–994.PubMedGoogle Scholar
  12. Dutta, S. K., 1976, DNA homologies among heterothallic species of Neurospora, Mycologia 68: 388–401.PubMedCrossRefGoogle Scholar
  13. Edman, J. C., Kovacs, J. A., Masur, H., Santi, D. V., Elwood, H. J., and Sogin, M. L., 1988, Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi, Nature 334: 519–522.PubMedCrossRefGoogle Scholar
  14. Felsenstein, J., 1985, Confidence limits on phylogenies: an approach using the bootstrap, Evolution 39: 783–791.CrossRefGoogle Scholar
  15. Felsenstein, J., 1994, PHYLIP — phylogenetic inference package, version 3.5c, Computer programs distributed by the author, Department of Genetics, University of Washington, Seattle.Google Scholar
  16. Föster, H., Coffey, M. D., Elwood, H., and Sogin, M. L., 1990, Sequence analysis of the small subunit ribosomal RNAs of three zoosporic fungi and implications for fungal evolution, Mycologia 82: 306–312.CrossRefGoogle Scholar
  17. Gianinazzi-Pearson, V., Lemoine, M-C., Arnould, C., Gollotte, A., and Morton, J. B., 1994, Localization of b (1Å®3) glucans in spore and hyphal walls of fungi in the Glomales, Mycologia 86: 478–485.CrossRefGoogle Scholar
  18. Goto, S. and Sugiyama, J., 1970, Studies on Himalayan yeasts and molds, IV, several asporogenous yeasts including two new taxa of Cryptococcus, Can. J. Bot. 48: 2097–2101.Google Scholar
  19. Goto, S., Sugiyama, J., Hamamoto, M., and Komagata, K., 1987, Saitoella, a new anamorph genus in the Cryptococcaceae to accommodate two Himalayan yeast isolates formerly identified Rhodotorula glutinis, J. Gen. Appl. Microbiol. 33: 75–85.Google Scholar
  20. Hawksworth, D. L., 1991, The fungal dimension of biodiversity: magnitude, significance, and conservation, Mycol. Res. 95: 641–655.Google Scholar
  21. Hendriks, L., De Baere, R., Van de Peer, Y., Neefs, J., Goris, A., and De Wachter, R., 1991, The evolutionary position of the rhodophyte Porphyra umbilicalis and the basidiomycete Leucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA, J. Mol. Evol. 32: 167–177.PubMedCrossRefGoogle Scholar
  22. Hibbett, D. S., 1992, Ribosomal RNA and fungal systematics, Trans. Mycol. Soc. Japan 33: 533–556.Google Scholar
  23. Higgins, D. G., Bleasby, A. J., and Fuchs, R., 1992, CLUSTAL V: Improved software for multiple sequence alignment, Cabios 8: 189–191.PubMedGoogle Scholar
  24. Hoddinott, J., and Olsen, O. A., 1972, A study of the carbohydrates in the cell walls of some species of the Entomophthorales, Can. J. Bot. 50: 1675–1679.CrossRefGoogle Scholar
  25. Hori, H. and Osawa, S., 1987, Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences, Mol. Biol. Evol. 4: 445–472.PubMedGoogle Scholar
  26. Humber, R. A., 1989, Synopsis of a revised classification for the Entomophthorales (Zygomycotina), Mycotaxon 36: 441–460.Google Scholar
  27. Kohn, L. M., 1992, Developing new characters for fungal systematics: An experimental approach for determining the rank of resolution, Mycologia 84: 139–153.CrossRefGoogle Scholar
  28. Kramer, C. L., 1958, A new genus in the Protomycetaceae, Mycologia 50: 916–926.CrossRefGoogle Scholar
  29. Kramer, C. L., 1987, The Taphrinales. In: de Hoog GS, Smith MTh, and Weijman ACM (ed) The Expanding Realm of Yeast-like Fungi, pp.151–166. Elsevier Science Publishers, Amsterdam.Google Scholar
  30. Kurtzman, C. P., 1987, Prediction of biological relatedness among yeasts from comparisons of nuclear DNA complimentarity. In: de Hoog GS, Smith MTh, and Weijman ACM (ed) The Expanding Realm of Yeast-like Fungi, pp. 459–468. Elsevier Science Publishers, Amsterdam.Google Scholar
  31. Kurtzman, C. P., 1992, rRNA sequence comparisons for assessing phylogenetic relationships among yeasts, Int. J. Syst. Bacteriol. 42: 1–6.PubMedCrossRefGoogle Scholar
  32. Kurtzman, C. P., 1993, Systematics of the ascomycetous yeasts assessed from ribosomal RNA sequence divergence, Antonie van Leeuwenhoek 63: 165–174.PubMedCrossRefGoogle Scholar
  33. Kurtzman, C. P. and Phaff, H. J., 1987, Molecular taxonomy. In: Rose AH & Harrison JS (ed) The Yeasts Vol. 1, pp. 63–94. Academic Press, London.Google Scholar
  34. Kurtzman, C. P., Smiley, M. J., Robnett, C. J., and Wicklow, D. T., 1986, DNA relatedness among wild and domesticated species in the Aspergillus flavus group, Mycologia 78: 955–959.CrossRefGoogle Scholar
  35. McKerracher, L. J., and Heath, I. B., 1985, The structure and cycle of the nucleus-associated organelle in two species of Basidiobolus, Mycologia 77: 412–417.CrossRefGoogle Scholar
  36. Moss, S. T., and Young, T. W. K., 1978, Phyletic considerations of the Harpellales and Asellariales (Trichomycetes, Zygomycotina) and the Kickxellales (Zygomycetes, Zygomycotina), Mycologia 70: 944–963.CrossRefGoogle Scholar
  37. Nagahama, T., Sato, H., Shimazu, M., and Sugiyama, J., 1995, Phylogenetic divergence of the entomophthoralean fungi: evidence from nuclear 18S ribosomal RNA sequence, Mycologia 87: 203–209.CrossRefGoogle Scholar
  38. Nishida, H. and Sugiyama, J., 1993, Phylogenetic relationships among Taphrina, Saitoella, and other higher fungi, Mol. Biol. Evol. 10: 431–436.PubMedGoogle Scholar
  39. Nishida, H. and Sugiyama, J., 1994a, Phylogeny and molecular evolution among higher fungi, Nippon Nôgeikagaku Kaishi 68: 54–57. (In Japanese)Google Scholar
  40. Nishida, H. and Sugiyama, J., 1994b, Archiascomycetes: detection of a major new lineage within the Ascomycota, Mycoscience 35: 361–366.CrossRefGoogle Scholar
  41. Nishida, H., Blanz, P. A., and Sugiyama, J., 1993, The higher fungus Protomyces inouyei has two group I introns in the 18S rRNA gene, J. Mol. Evol. 37: 25–28.PubMedCrossRefGoogle Scholar
  42. Nishida, H., Ando, K., Ando, Y., Hirata, A., and Sugiyama, J., 1995, Mixia osmundae: transfer from the Ascomycota to the Basidiomycota based on evidence from molecular and morphology, Can. J. Bot. 73(Suppl. 1): S 660–S 661.Google Scholar
  43. Nishida, T., 1911, A contribution to the monogragh of the parasitic Exoascaceae of Japan. In: Collection of Botanical Papers Presented to Prof. Dr. Kingo Miyabe on the Occasion of the Twenty-fifth Anniversary of His Academic Service, pp. 157–204 (in Japanese), pp. 205–212 (English summary). Rokumeikwan, Tokyo.Google Scholar
  44. Reddy, M. S. and Kramer, C. L., 1975, A taxonomic revision of the Protomycetales, Mycotaxon 3: 1–50.Google Scholar
  45. Saikawa, M., 1989, Ultrastructure of the septum in Ballocephala verrucospora (Entomophthorales, Zygomycetes), Can. J. Bot. 67: 2484–2488.Google Scholar
  46. Saitou, N. and Nei, M., 1987, The neighbour-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4: 406–425.PubMedGoogle Scholar
  47. Savile, D. B. O., 1955, A phylogeny of the Basidiomycetes, Can. J. Bot. 33: 60–104.Google Scholar
  48. Savile, D. B. O., 1968, Possible interrelationships between fungal groups. In: Ainsworth GC and Susmann AS (ed) The Fungi, An Advanced Treatise, pp. 649–675. Academic Press, New York.Google Scholar
  49. Sugiyama, J., 1994, Fungal molecular systematics: Towards a phylogenetic classification for the fungi, Nippon Nôgeikagaku Kaishi 68: 48–53. (In Japanese)Google Scholar
  50. Sugiyama, J., Nishida, H., and Suh, S.-O., 1993, The paradigm of fungal diagnoses and descriptions in the era of molecular systematics: Saitoella complicata as an example. In: Reynolds DR and Taylor JW (ed) The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics, pp. 261–269. CAB International, Wallingford, UK.Google Scholar
  51. Suh, S.-O. and Sugiyama, J., 1993, Phylogeny among the basidiomycetous yeasts inferred from small subunit ribosomal DNA sequence, J. Gen. Microbiol. 139: 1595–1598.PubMedGoogle Scholar
  52. Suh, S.-O. and Sugiyama, J., 1994, Phylogenetic placement of the basidiomycetous yeasts Kondoa malvinella and Rhodosporidium dacryoidum, and the anamorphic yeast Sympodiomycopsis paphipedili by means of 18S rRNA gene sequence analysis, Mycoscience 35: 367–375.CrossRefGoogle Scholar
  53. Swann, E. C. and Taylor, J. W., 1993, Higher taxa of basidiomycetes: An 18S rRNA gene perspective, Mycologia 85: 923–936.CrossRefGoogle Scholar
  54. Swofford, D. L., 1989, PAUP: phylogenetic analysis using parsimony, version 3.0 Illinois Natural History Survey, Campaign, Illinois.Google Scholar
  55. Talbot, P. H. B., 1971, Principal of fungal taxonomy. The Macmillan Press, London. 274 pp.Google Scholar
  56. Taylor, J. W., Swann, E. C., and Berbee, M L., 1994, Molecular evolution of ascomycete fungi: Phylogeny and conflict. In: Hawksworth, D. L. (ed) Ascomycete Systematics: Problems and Perspectives in the Nineties, pp. 201–212. Plenum Press, New York.Google Scholar
  57. Thompson, J. D., Higgins, D. G., and Gibson, T. J., 1994, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice, Nucl. Acid Res. 22: 4673–4680.CrossRefGoogle Scholar
  58. Tubaki, K., 1957, Biological and cultural studies of three species of Protomyces, Mycologia 49: 44–54.CrossRefGoogle Scholar
  59. Tubaki, K., 1978, Taphrina wiesneri (Rathay) Mix. In: Udagawa S, Tubaki K et al. (ed) Kinrui-zukan (Compendium of fungi), Part 1, pp. 329–330. Kodansha, Tokyo.Google Scholar
  60. Vogel, H. J., 1964, Distribution of lysine pathways among fungi: evolutionary implication, Am. Nat. 98: 435–446.CrossRefGoogle Scholar
  61. Wainright, P. O., Hinkle, G., Sogin, M. L., and Stickel, S. K., 1993, Monophyletic origins of the Metazoa: an evolutionary link with Fungi, Science 260: 340–342.PubMedCrossRefGoogle Scholar
  62. Walker, W. F. and Doolittle, W. F., 1982, Redividing the basidiomycetes on the basis of 5S rRNA sequences, Nature 299: 723–724.PubMedCrossRefGoogle Scholar
  63. Watanabe, J., Hori, H., Tanabe, K., and Nakamura, Y., 1989, Phylogenetic association of Pneumocystis carinii with the ‘Rhizopoda / Myxomycota / Zygomycota group’ indicated by comparison of 5S ribosomal RNA sequences, Mol. Biochem. Parasitol. 32: 163–168.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Junta Sugiyama
    • 1
  • Takahiko Nagahama
    • 1
  • Hiromi Nishida
    • 1
  1. 1.Institute of Molecular and Cellular BiosciencesThe University of TokyoTokyoJapan

Personalised recommendations