Diversity of Naturally Occurring Prokaryotes

  • E. F. De Long


Understanding the patterns of naturally occurring microbial diversity, how these patterns vary in space and time, and how they relate to ecosystem structure and function, remains a significant challenge for microbiologists. A variety of levels of microbial diversity are important and relevant from the perspective of microbial ecology, including trophic, physiological or functional diversity, intraspecific genetic diversity, or phylogenetic diversity of species and higher taxa. For the purpose of this chapter, “diversity” will be used to refer to phylogenetic variety at the level of species and higher taxa. One of the very first tasks necessary for assessing naturally occurring prokaryote diversity is to identify accurately those prokaryotic species predominant in a given habitat. This fundamental goal, representing the basis of understanding of the ecology or natural history of microbes, has rarely, if ever, been achieved for any naturally occurring microbial assemblage. We have a long way to go to catch up with the rest of biology!


Microbial Diversity Delta Proteobacteria Magnetotactic Bacterium Alcaligenes Faecalis Desulfovibrio Desulfuricans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amann R.I., L. Krumholz and D. A. Stahl. 1990. Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172: 762–770.PubMedGoogle Scholar
  2. Barns, S. M., R. E. Fundyga, M. W. Jeffries and N. R. Pace. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91:1609–1613.PubMedCrossRefGoogle Scholar
  3. DeLong E.F., G. Wickham, and N. R. Pace. 1989. Phylogenetic stains: Ribosomal RNA-based probes for identification of single microbial cells. Science 243:1360–1363.CrossRefGoogle Scholar
  4. DeLong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89:5685–5689CrossRefGoogle Scholar
  5. DeLong, E. F., R. B. Frankel and D. A. Bazylinski. 1993a. Multiple evolutionary origins of magnetotaxis in bacteria. Science 259:803–806.CrossRefGoogle Scholar
  6. DeLong, E. F., D. G. Franks and A. L. Alldredge. 1993b. Phylogenetic diversity of aggregate-attached versus free-living marine bacterial assemblages. Limnol. Oceanog. 38:924–934.CrossRefGoogle Scholar
  7. DeLong, E. F., K. Y. Wu, B. B. Prézelin, and R. V. M. Jovine. 1994. High abundance of Archaea in Antarctic marine picoplankton, Nature 371: 695–697.CrossRefGoogle Scholar
  8. Devereux, R., M. Delaney, F. Widdel and D. S. Stahl. 1989. Natural relationships among sulfate-reducing bacteria. J. Bacteriol. 171:6689–6695.PubMedGoogle Scholar
  9. Eden, P. A., T. M. Schmidt, R. P. Blakemore, and N. R. Pace. 1991. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int. J. Syst. Bacteriol. 41:324–325.PubMedCrossRefGoogle Scholar
  10. Fuhrman, J. F., McCallum, K. and Davis, A. A. 1992. Novel major archaebacterial group from marine plankton. Nature 356:148–149.PubMedCrossRefGoogle Scholar
  11. Fuhrman, J. A., McCallum, K. and A. A. Davis. 1993. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl. Environ. Microbiol. 59: 1294–1302.PubMedGoogle Scholar
  12. Giovannoni, S. J., T. B. Britschgi, C. L. Moyer, and K. G. Field. 1990. Genetic diversity of Sargassso Sea bacterioplankton. Nature 345: 60–62.PubMedCrossRefGoogle Scholar
  13. Head, I. M., W. D. Hiorns, T. Martin Embley, A. J. McCarthy and J. R. Saunders. 1993. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA. J. Gen. Microbiol. 139:1147–1153.PubMedGoogle Scholar
  14. Liesack, W., and E. Stackebrandt. 1992. Occurrence of novel groups of the Domain bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial ecosystem. J. Bacteriol. 174:5072–5078.PubMedGoogle Scholar
  15. Mann, S., N. H. C. Sparks, R. B. Frankel, D. A. Bazylinski, and H. W. Jannasch. 1990. Biomineralization of ferrimagnetic greigite and iron pyrite in a magnetotactic bacterium. Nature 343:258–261.CrossRefGoogle Scholar
  16. Medlin, L., H. Elwood, S. Stickel and M. L. Sogin. 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71: 491–499.PubMedCrossRefGoogle Scholar
  17. Pace, N. R., D. A. Stahl, D. J. Lane and G. J. Olsen. 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Adv. Microbial Ecol. 9:1–55.Google Scholar
  18. Sakai, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–494.CrossRefGoogle Scholar
  19. Schleifer, K. H., D. Schuler, S. Spring, M. Weizenegger, R. Amann, W. Ludwig, and M. Kohler. 1991. The genus Magnetospirillum gen nov., description of Magnetospirillum gryphyswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb nov. Syst. Appl. Microbiol. 14: 379–385.Google Scholar
  20. Schmidt, T. M., E. F. DeLong and N. R. Pace. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173: 4371–4378.PubMedGoogle Scholar
  21. Smith, D. C., Simon, M., Alldredge, A. L. and Azam, F. 1992. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359: 139–142.CrossRefGoogle Scholar
  22. Spring, S., R. Amann, W. Ludwig, K. H. Schleifer, H. Van Gemerden, and N. Petersen. 1993. Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Appl. Environ. Microbiol. 59:2397–2403.PubMedGoogle Scholar
  23. Stahl, D. A., D. J. Lane, G. J. Olsen, and N. R. Pace. 1984. Analysis of hydrothermal vent associated symbionts by ribosomal RNA sequences. Science 224:409–411.CrossRefPubMedGoogle Scholar
  24. Stahl, D. A. 1993. The natural history of microorganisms. ASM News 59: 609–613.Google Scholar
  25. Staley, J. T. and A. Konopka. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev. Microbiol. 39:321–346CrossRefGoogle Scholar
  26. Teske, A., E. Alm, J. M. Regan, S. Toze, B. E. Rittmann, and D. A. Stahl. 1994. Evolutionary relationships among ammonia-and nitrite-oxidizing bacteria. J. Bacteriol. 176:6623–6630.PubMedGoogle Scholar
  27. Ward, D. M., R. Weller, and M. M. Bateson. 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community, Nature 344: 63–65.CrossRefGoogle Scholar
  28. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221–271.PubMedGoogle Scholar
  29. Woese, C. R., O. Kandler, and M. L. Wheelis. 1990. Towards a system of organisms: Proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl. Acad. Sci. USA 87: 4576–4579.PubMedCrossRefGoogle Scholar
  30. Zuckerkandl E., and L. Pauling. 1965. Molecules as documents of evolutionary history. J Theo Biol 8:357–366CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • E. F. De Long
    • 1
  1. 1.Department of Ecology, Evolution and Marine BiologyUniversity of California, Santa BarbaraSanta Barbara

Personalised recommendations