Adaptation of Soybean Bradyrhizobia to the Brazilian Edaphic Savannahs

  • M. Cristina P. Neves
  • Heitor L. C. Coutinho
  • Norma G. Rumjanek


The vast Brazilian tropical edaphic savannah, referred to as Cerrado, is considered to be one of the last frontiers of agricultural utilization (xcBorloug and Dowswell, 1994). Soils are deep but leached of nutrients and, in general, strongly acidic (pH averages 5.0 and aluminum is present at toxic levels, xcVerdade, 1971). Agricultural utilization of the Cerrado was stimulated in the sixties when soil amendments, appropriated technologies, and improved/adapted varieties became available. To bring the land to crop production requires a ritual that includes land clearance (dragging or slash and burning of the native vegetation), ploughing, liming, and fertiliser application. In a little over two decades, the Cerrado became a major grain producing area, reducing social pressures threatening the very fragile soils of the Amazon region.


Bradyrhizobium Japonicum Bradyrhizobium Strain Commercial Inoculant Cerrado Soil Pyrolysis Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldani, J. I., Baldani, V. L. D., Xavier, D. F., Boddey, R. M., and Döbereiner, J., 1982, Efeito da calagem no número de actinomicetos e na porcentagem de bactérias resistentes a estreptomicina na rizosfera de milho, trigo e feijão, Rev. Bras. Microbiol. 13: 250–263.Google Scholar
  2. Basit, H.A., Angle, J.S., Salem, S., Gewaily, E.M., Kotob, S.I., and van Berkun, P., 1991, Phenotypic diversity among strains of Bradyrhizobium japonicum belonging to serogroup 110, Appl. Environ. Microbiol. 57:1570–1572.PubMedGoogle Scholar
  3. Boddey, L.H., and Hungria, M., 1994, Classificação de estirpes de Bradyrhizobium japonicum em genótipo I e II baseada em caracteristicas fenotipicas e genotipicas, in: Proc. III Simpósio Brasileiro sobre Microbiologia do Solo, p.66, IAPAR, Londrina.Google Scholar
  4. Boddey, R.M., Urquiaga, S., Suhet, A.R., Peres, J.R., and Neves, M.C.P. 1990, Quantification of the contribution of N2 fixation to field-grown grain legumes: A strategy for the practical application of the 15N isotope dilution technique, Soil Biol. Biochem. 22:649–655.CrossRefGoogle Scholar
  5. Borloug, N. E., and Dowswell, C.R., 1994, Feeding a human population that increasingly crowds a fragile planet, in: Keynote Lecture, 15th World Congress of Soil Science, International Society of Soil Science, Acapulco, Mexico.Google Scholar
  6. Chatel, D. L., and Parker, C. A., 1968, Inhibition of rhizobia by toxic soil-water extracts, Soil Biol. Biochem. 4: 289–294.CrossRefGoogle Scholar
  7. Coelho, R.R.R., and Drozdowicz, A., 1979, The occurrence of actinomycetes in a cerrado soil in Brazil, Rev. Ecol. Biol. Sol. 15: 459–473.Google Scholar
  8. Coutinho, H.L.C., 1993, Studies of Bradyrhizobia from the Brazilian Cerrado,. University of Bristol., PhD ThesisGoogle Scholar
  9. Devine, T.E., Kuykendall, L.D., and O’Neill, J.J., 1988, DNA Homology group and the identity of bradyrhizobial strains producing rhizobitoxine-induced foliar chlorosis on soybean, Crop Sci. 28:939–941.CrossRefGoogle Scholar
  10. Döbereiner, J., 1982, New evidence for the production and accumulation of antibiotics in nature, Scripta Varia 53.Google Scholar
  11. Freire, J.R.J., 1982, Research into the Rhizobium/Leguminosae symbiosis in Latin America, Plant Soil 67:227–239.CrossRefGoogle Scholar
  12. Fuhrmann, J., 1990, Symbiotic effectiveness of indigenous soybean bradyrhizobia as related to serological, morphological, rhizobitoxine, and hydrogenase phenotypes, App. Environ. Microbiol. 56:224–229.Google Scholar
  13. Kuykendall, L.D., Saxena, B., Devine, T.E., and Udell, S.E., 1992, Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. Nov., Can.J.Microbiol.38:501–505.CrossRefGoogle Scholar
  14. Minamisawa, K., 1989, Comparison of extracellular polysaccharide composition, rhizobitoxine production, and hydrogenase phenotype among various strains of Bradyrhizobium japonicum, Plant Cell Physiol. 30:877–884.Google Scholar
  15. Neves, M.C.P., 1989, A new physiological approach for Bradyrhizobium strain selection, in: Proc. World Soybean Research Conference IV, vol. V, pp 2177–2192, Buenos Aires.Google Scholar
  16. Neves, M.C.P., Didonet, A.D., Duque, F.F., and Döbereiner, J., 1985, Rhizobium strain effects on nitrogen transport and distribution in soybeans, J. Exp. Bot. 36: 1179–1192.CrossRefGoogle Scholar
  17. Neves, M.C.P., Ramos, M.L.G., Martinazzo, A.F., Botelho, G.R., and Döbereiner, J., 1992, Adaptation of more efficient soybean and cowpea rhizobia to replace established populations, in Biological Nitrogen Fixation and Sustainability of Tropical Agriculture (K. Mulongoy, M. Gueye, and D.S.C. Spencer, eds.), pp 219–233, Wiley-Sayce Co-Publ.Google Scholar
  18. Norris, D.O., 1967, The intelligent use of inoculants and lime pelleting for tropical legumes, Trop. Grassl. 1:107–121.Google Scholar
  19. Patterson, T.G., and La Rue, T.A., 1983, Nitrogen fixation by soybeans: Seasonal and cultivar effects, and comparison of estimates, Crop Sci. 23:488–492.CrossRefGoogle Scholar
  20. Rumjanek, N.G., Dobert, R.C., van Berkun, P., and Triplett, E.W., 1993, Common soybean inoculant strains in Brazil are members of Bradyrhizobium elkanii, Appl. Environ. Microbiol. 59: 4371–4373.PubMedGoogle Scholar
  21. Scotti, M.R.M.M.L., Neves, M.C.P., Paiva, E., and Döbereiner, J., 1993, Effect of soybean roots on strain competitivity and protein profile of Bradyrhizobium japonicum adapted to Cerrado soils, An. Acad. Bras. Ci. 65:427–438.Google Scholar
  22. Scotti, M.R.M.M.L., Sá, N.M.H., Vargas, M.A.T., and Döbereiner, J., 1982, Streptomycin resistance of Rhizobium isolates from Brazilian cerrados, An. Acad. Bras. Cien. 54:733–738.Google Scholar
  23. Silva, J.G., 1948, Estudos sobre inoculação de soja, Rev. Agric. 22:365–378.Google Scholar
  24. Van Soon, C. Rumjanek, N.G., Vanderleyden, J., and Neves, M.C.P., 1993, Hydrogenase in Bradyrhizobium japonicum: occurrence, genetics and effect on plant growth, World J. Microbiol. Biotechnol. 9:615–624.CrossRefGoogle Scholar
  25. Vargas, M.A.T.; Mendes, I.C.; Suhet, A.R., and Peres, J.R.R., 1993, Fix⇂cão biológica de nitrogênio, in: A Cultura da Soja nos Cerrados, (N.E. Arantes, and P.I.M. Souza, eds.), POTAFOS/EMBRAPA.Google Scholar
  26. Vargas, M.A.T., and Suhet, S.R., 1980, Efeito de tipos e niveis de inoculantes na soja (Glycine max) cultivada em um solo de cerrados, Pesq. Agropec. Bras. 15:343–347.Google Scholar
  27. Verdade, F.C., 1971, Agricultura e silvicultura no Cerrado, in: III Simpósio sobre o Cerrado (M.G. Ferri ed.), pp. 65–76, Ed. Universidade de São Paulo, São Paulo.Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • M. Cristina P. Neves
    • 1
  • Heitor L. C. Coutinho
    • 2
  • Norma G. Rumjanek
    • 1
  1. 1.EMBRAPA/National Center of Agrobiology Research (CNPAB)Seropédica, RJBrazil
  2. 2.Fundação Tropical de Pesquisa André ToselloCampinas, S PBrazil

Personalised recommendations