Skip to main content

Intracellular Symbiosis in Insects

  • Chapter
Microbial Diversity in Time and Space

Abstract

Many eukaryotic cells constitute the sole habitat for a vast and varied array of prokaryotic lineages (xcBuchner, 1965). These intracellular associations have evolved repeatedly and have had major consequences for the diversification of both bacteria and host. The magnitude of these consequences is immediately evident if one considers the examples of mitochondria and chloroplasts, now widely acknowledged to be descended from prokaryotes that invaded intracellular habitats (xcMargulis, 1970; xcGray and Doolittle, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumann, P., Munson, M. A., Lai, C.-Y., Clark, M. A., Baumann, L., Moran, N. A., and Campbell, B. C., 1993, Origin and properties of bacterial endosymbionts of aphids, whiteflies, and mealybugs, ASM News 59: 21–24.

    Google Scholar 

  • Breeuwer, J. A. J., and Werren, J. H., 1990, Microorganisms associated with chromosome destruction and reproductive isolation between two insect species, Nature 346: 558–560.

    Article  PubMed  CAS  Google Scholar 

  • Breeuwer, J. A. J., Stouthamer, R., Barns, S. M., Pelletier, D. A., Weisburg, W. G., and Werren, J. H., 1992, Phylogeny of cytoplasmic incompatibility microorganisms in the parasitoid wasp genus Nasonia (Hymenoptera: pteromalidae) based on 16S ribosomal DNA sequences, Insect Mol. Biol. 1: 25–36.

    PubMed  CAS  Google Scholar 

  • Buchner, P., 1965, Endosymbiosis of Animals with Plant Microorganisms, Interscience Publishers, New York.

    Google Scholar 

  • Clark, M. A., Baumann, L., Munson, M. A., Baumann, P., Campbell, B. C., Duffus, J. E., Osborne, L. S., and Moran, N. A., 1992, The eubacterial endosymbionts of whiteflies (Homoptera: Aleyrodoidea) constitute a lineage distinct from the endosymbionts of aphids and mealybugs, Curr. Microbiol. 25: 119–123.

    Article  Google Scholar 

  • Cochran, D. G., 1985, Nitrogen excretion in cockroaches, Ann. Rev. Entomol. 30: 29–49.

    Article  CAS  Google Scholar 

  • Douglas, A. E., 1989, Mycetocyte symbiosis in insects, Biol. Rev. 64: 409–434.

    PubMed  CAS  Google Scholar 

  • Ebbert, M. A., 1993, Endosymbiotic sex ratio distorters in insects and mites, in Evolution and Diversity of Sex Ratio in Insects and Mites (ed. Wrensch, D. L. and Ebbert, M. A.), Chapman & Hall, New York.

    Google Scholar 

  • Fukatsu, T., and Ishikawa, H., 1992, A novel eukaryotic extracellular symbiont in an aphid, Astegopteryx styraci (Homoptera, Aphididae, Hormaphidinae), J. Insect Physiol. 38: 765–773.

    Article  Google Scholar 

  • Fukatsu, T., and Ishikawa, H., 1993, Occurrence of chaperonin 60 and chaperonin 10 in primary and secondary symbiont of aphids: Implications for evolution of endosymbiotic system in aphids, J. Mol. Evol. 36: 568–577.

    Article  PubMed  CAS  Google Scholar 

  • Fukatsu, T., Aoki, S., Kurosu, U., and Ishikawa, H., 1994, Phylogeny of Cerataphidini aphids revealed by their symbiotic microorganisms and basic structure of their galls: Implications for host-symbiont coevolution and evolution of sterile soldier castes, Zoological Sci. 11: 613–623.

    Google Scholar 

  • Gray, M. W., and Doolittle, W. F., 1982, Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46: 1–42.

    PubMed  CAS  Google Scholar 

  • Hara, E., Fukatsu, T., Kakeda, K., Kengaku, M., Ohtaka, C., and Ishikawa, H., 1990, The predominant protein in an aphid endosymbiont is homologous to an E. coli heat shock protein, Symbiosis 8: 271–283.

    CAS  Google Scholar 

  • Harada, H., and Ishikawa, H., 1993, Gut microbe of aphid closely related to its intracellular symbiont, BioSystems 31: 185–191.

    Article  PubMed  CAS  Google Scholar 

  • Heie, O. E., 1987, Paleontology and phylogeny, in Aphids: Their Biology, Natural Enemies and Control Vol. 2A (ed. Minks, A. K. and Harrewijn, P.), Elsevier, Amsterdam, pp. 367–391.

    Google Scholar 

  • Hertig, M., 1936, The rickettsia Wolbachia pipiens (gen. et sp. n.) and associated inclusions of the mosquito, Culex pipiens, Parasitol. 28: 453–486.

    Google Scholar 

  • Hinde, R., 1971, The fine structure of the mycetocyte symbiotes of the aphids Brevicoryne brassicae, Myzus persicae and Macrosiphum rosae, J. Insect Physiol. 17: 2035–2050.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, A. A., Turelli, M., and Simmons, G. M., 1986, Unidirectional incompatibility between population of Drosophila simulans, Evolution 40: 692–701.

    Article  Google Scholar 

  • Ishikawa, H., 1984, Characterization of the protein species synthesized in vivo and in vitro by an aphid endosymbiont, Insect Biochem. 14: 417–425.

    Article  CAS  Google Scholar 

  • Ishikawa, H., 1989, Biochemical and molecular aspects of endosymbiosis in insects, Intern. Rev. Cytol. 116: 1–45.

    Article  CAS  Google Scholar 

  • Ishikawa, H., Fukatsu, T., and Ohtaka-Maruyama, C., 1992, Cellular and molecular evolution of intracellular symbiont, in The Origin and Evolution of the Cell (ed. Hartman, H. and Matsuno, K.), World Scientific, Singapore, pp. 205–229.

    Google Scholar 

  • Kakeda, K., and Ishikawa, H., 1991, Molecular chaperone produced by an intracellular symbiont, J. Biochem. 110: 583–587.

    PubMed  CAS  Google Scholar 

  • Margulis, L., 1970, Origin of Eukaryotic Cells, Yale University Press, New Haven.

    Google Scholar 

  • Montchamp-Moreau, C., Ferveur, J. F., and Jacques, M., 1991, Geographic distribution and inheritance of three cytoplasmic incompatibility types in Drosophila simulans, Genetics 129: 399–407.

    PubMed  CAS  Google Scholar 

  • Moran, N. A., Munson, M. A., Baumann, P, and Ishikawa, H., 1993, A molecular clock in endosymbiotic bacteria is calibrated using insect host, Proc. R. Soc. Lond. B 253: 167–171.

    Article  Google Scholar 

  • Moran, N. A., and Baumann, P., 1994, Phylogenetics of cytoplasmically inherited microorganisms of arthropods, Trends Ecol. Evol. 9: 15–20.

    Article  Google Scholar 

  • Morioka, M., Muraoka, H., and Ishikawa, H., 1993, Chaperonin produced by an intracellular symbiont is an energy-coupling protein with phosphotransferase activity, J. Biochem. 114: 246–250.

    PubMed  CAS  Google Scholar 

  • Morioka, M., Muraoka, H., Yamamoto, K., and Ishikawa, H., 1994, An endosymbiont chaperonin is a novel type of histidine protein kinase, J. Biochem. 116: 1075–1081.

    PubMed  CAS  Google Scholar 

  • Munson, M. A., Baumann, P., and Kinsey, M. G., 1991, Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte associated primary endosymbionts of aphids, Int. J. Syst. Bact. 41: 566–568.

    Article  Google Scholar 

  • Munson, M. A., Baumann, P., and Moran, N. A., 1992, Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on 16S rDNA sequences, Mol. Phylogen. Evol. 1: 26–30.

    Article  CAS  Google Scholar 

  • Ohtaka, C., Nakamura, H., and Ishikawa, H., 1992, Structure of chaperonins from an intracellular symbiont and their functional expression in E. coli groE mutants, J. Bacteriol. 174: 1869–1874.

    PubMed  CAS  Google Scholar 

  • O’Neill, S. L., and Karr, T. L., 1990, Bidirectional incompatibility between conspecific populations of Drosophila simulans, Nature 348: 178–180.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill, S. L., Giordano, R., Colbert, A. M. E., Karr, T. L., and Robertson, H. M., 1992, 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects, Proc. Natl, Acad. Sci. USA 89: 2699–2702.

    Article  CAS  Google Scholar 

  • Rousset, F., Bouchon, D., Pintureau, B., Juchault, J., and Solignac, M., 1992, Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods, Proc. R. Soc. Lond. B 250: 91–98.

    Article  CAS  Google Scholar 

  • Sasaki, T., Aoki, T., Hayashi, H., and Ishikawa, H., 1990, Amino acid composition of the honeydew of symbiotic and aposymbiotic pea aphids Acyrthosiphon pisum, J. Insect Physiol. 36: 35–40.

    Article  CAS  Google Scholar 

  • Sasaki, T., and Ishikawa, H., 1993, Nitrogen recycling in the endosymbiotic system of the pea aphid, Acyrthosiphon pisum, Zoological Sci. 10: 779–785.

    CAS  Google Scholar 

  • Sasaki, T., Fukuchi, N., and Ishikawa, H., 1993, Amino acid flow through aphid and its symbiont: Studies with 15N-labeled glutamine, Zoological Sci. 10: 787–791.

    CAS  Google Scholar 

  • Sasaki, T., and Ishikawa, H., 1995, Production of essential amino acids from glutamate by mycetocyte symbionts of the pea aphid, Acyrthosiphon pisum, J. Insect Physiol., 41: 41–46.

    Article  CAS  Google Scholar 

  • Stock, J. B., Ninfa, A. J., and Stock, A. M., 1989, Protein phosphorylation and regulation of adaptive responses in bacteria, Micribiol. Rev. 53: 450–490.

    CAS  Google Scholar 

  • Stouthamer, R., Luck, R. F., and Hamilton, W. D., 1990, Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex, Proc. Natl. Acad. Sci. USA 87: 2424–2427.

    Article  PubMed  CAS  Google Scholar 

  • Stouthamer, R., and Luck, R. F., 1993, Influence of microbe-associated parthenogenesis on the fecundity of Trichogramma deion and T. pretiosum, Entomol. Exp. Appl. 67: 183–192.

    Article  Google Scholar 

  • Stouthamer, R., Breeuwer, J. A. J., Luck, R. F., and Werren, J. H., 1993, Molecular identification of microorganisms associated with parthenogenesis, Nature 361: 66–68.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J. N., 1982, Interaction and Coevolution, John Wiley and Sons, New York.

    Google Scholar 

  • Unterman, B. M., Baumann, P., and McLean, D. L., 1989, Pea aphid symbiont relationships established by analysis of 16S rRNAs, J. Bacteriol. 171: 2970–2974.

    PubMed  CAS  Google Scholar 

  • Whitehead, L. F., and Douglas, A. E., 1993, A metabolic study of Buchnera, the intracellular bacterial symbionts of the pea aphid Acyrthosiphon pisum, J. Gen. Microbiol. 139: 821–826.

    CAS  Google Scholar 

  • Yen, J. H., and Barr, A. R., 1971, New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens, Nature 232: 657–658.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Ishikawa, H. (1996). Intracellular Symbiosis in Insects. In: Colwell, R.R., Simidu, U., Ohwada, K. (eds) Microbial Diversity in Time and Space. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-34046-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-34046-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45194-2

  • Online ISBN: 978-0-585-34046-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics