Intracellular Symbiosis in Insects

  • Hajime Ishikawa


Many eukaryotic cells constitute the sole habitat for a vast and varied array of prokaryotic lineages (xcBuchner, 1965). These intracellular associations have evolved repeatedly and have had major consequences for the diversification of both bacteria and host. The magnitude of these consequences is immediately evident if one considers the examples of mitochondria and chloroplasts, now widely acknowledged to be descended from prokaryotes that invaded intracellular habitats (xcMargulis, 1970; xcGray and Doolittle, 1982).


Aphid Species Cytoplasmic Incompatibility Wolbachia Infection Histidine Protein Kinase Secondary Symbiont 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baumann, P., Munson, M. A., Lai, C.-Y., Clark, M. A., Baumann, L., Moran, N. A., and Campbell, B. C., 1993, Origin and properties of bacterial endosymbionts of aphids, whiteflies, and mealybugs, ASM News 59: 21–24.Google Scholar
  2. Breeuwer, J. A. J., and Werren, J. H., 1990, Microorganisms associated with chromosome destruction and reproductive isolation between two insect species, Nature 346: 558–560.PubMedCrossRefGoogle Scholar
  3. Breeuwer, J. A. J., Stouthamer, R., Barns, S. M., Pelletier, D. A., Weisburg, W. G., and Werren, J. H., 1992, Phylogeny of cytoplasmic incompatibility microorganisms in the parasitoid wasp genus Nasonia (Hymenoptera: pteromalidae) based on 16S ribosomal DNA sequences, Insect Mol. Biol. 1: 25–36.PubMedGoogle Scholar
  4. Buchner, P., 1965, Endosymbiosis of Animals with Plant Microorganisms, Interscience Publishers, New York.Google Scholar
  5. Clark, M. A., Baumann, L., Munson, M. A., Baumann, P., Campbell, B. C., Duffus, J. E., Osborne, L. S., and Moran, N. A., 1992, The eubacterial endosymbionts of whiteflies (Homoptera: Aleyrodoidea) constitute a lineage distinct from the endosymbionts of aphids and mealybugs, Curr. Microbiol. 25: 119–123.CrossRefGoogle Scholar
  6. Cochran, D. G., 1985, Nitrogen excretion in cockroaches, Ann. Rev. Entomol. 30: 29–49.CrossRefGoogle Scholar
  7. Douglas, A. E., 1989, Mycetocyte symbiosis in insects, Biol. Rev. 64: 409–434.PubMedGoogle Scholar
  8. Ebbert, M. A., 1993, Endosymbiotic sex ratio distorters in insects and mites, in Evolution and Diversity of Sex Ratio in Insects and Mites (ed. Wrensch, D. L. and Ebbert, M. A.), Chapman & Hall, New York.Google Scholar
  9. Fukatsu, T., and Ishikawa, H., 1992, A novel eukaryotic extracellular symbiont in an aphid, Astegopteryx styraci (Homoptera, Aphididae, Hormaphidinae), J. Insect Physiol. 38: 765–773.CrossRefGoogle Scholar
  10. Fukatsu, T., and Ishikawa, H., 1993, Occurrence of chaperonin 60 and chaperonin 10 in primary and secondary symbiont of aphids: Implications for evolution of endosymbiotic system in aphids, J. Mol. Evol. 36: 568–577.PubMedCrossRefGoogle Scholar
  11. Fukatsu, T., Aoki, S., Kurosu, U., and Ishikawa, H., 1994, Phylogeny of Cerataphidini aphids revealed by their symbiotic microorganisms and basic structure of their galls: Implications for host-symbiont coevolution and evolution of sterile soldier castes, Zoological Sci. 11: 613–623.Google Scholar
  12. Gray, M. W., and Doolittle, W. F., 1982, Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46: 1–42.PubMedGoogle Scholar
  13. Hara, E., Fukatsu, T., Kakeda, K., Kengaku, M., Ohtaka, C., and Ishikawa, H., 1990, The predominant protein in an aphid endosymbiont is homologous to an E. coli heat shock protein, Symbiosis 8: 271–283.Google Scholar
  14. Harada, H., and Ishikawa, H., 1993, Gut microbe of aphid closely related to its intracellular symbiont, BioSystems 31: 185–191.PubMedCrossRefGoogle Scholar
  15. Heie, O. E., 1987, Paleontology and phylogeny, in Aphids: Their Biology, Natural Enemies and Control Vol. 2A (ed. Minks, A. K. and Harrewijn, P.), Elsevier, Amsterdam, pp. 367–391.Google Scholar
  16. Hertig, M., 1936, The rickettsia Wolbachia pipiens (gen. et sp. n.) and associated inclusions of the mosquito, Culex pipiens, Parasitol. 28: 453–486.Google Scholar
  17. Hinde, R., 1971, The fine structure of the mycetocyte symbiotes of the aphids Brevicoryne brassicae, Myzus persicae and Macrosiphum rosae, J. Insect Physiol. 17: 2035–2050.PubMedCrossRefGoogle Scholar
  18. Hoffmann, A. A., Turelli, M., and Simmons, G. M., 1986, Unidirectional incompatibility between population of Drosophila simulans, Evolution 40: 692–701.CrossRefGoogle Scholar
  19. Ishikawa, H., 1984, Characterization of the protein species synthesized in vivo and in vitro by an aphid endosymbiont, Insect Biochem. 14: 417–425.CrossRefGoogle Scholar
  20. Ishikawa, H., 1989, Biochemical and molecular aspects of endosymbiosis in insects, Intern. Rev. Cytol. 116: 1–45.CrossRefGoogle Scholar
  21. Ishikawa, H., Fukatsu, T., and Ohtaka-Maruyama, C., 1992, Cellular and molecular evolution of intracellular symbiont, in The Origin and Evolution of the Cell (ed. Hartman, H. and Matsuno, K.), World Scientific, Singapore, pp. 205–229.Google Scholar
  22. Kakeda, K., and Ishikawa, H., 1991, Molecular chaperone produced by an intracellular symbiont, J. Biochem. 110: 583–587.PubMedGoogle Scholar
  23. Margulis, L., 1970, Origin of Eukaryotic Cells, Yale University Press, New Haven.Google Scholar
  24. Montchamp-Moreau, C., Ferveur, J. F., and Jacques, M., 1991, Geographic distribution and inheritance of three cytoplasmic incompatibility types in Drosophila simulans, Genetics 129: 399–407.PubMedGoogle Scholar
  25. Moran, N. A., Munson, M. A., Baumann, P, and Ishikawa, H., 1993, A molecular clock in endosymbiotic bacteria is calibrated using insect host, Proc. R. Soc. Lond. B 253: 167–171.CrossRefGoogle Scholar
  26. Moran, N. A., and Baumann, P., 1994, Phylogenetics of cytoplasmically inherited microorganisms of arthropods, Trends Ecol. Evol. 9: 15–20.CrossRefGoogle Scholar
  27. Morioka, M., Muraoka, H., and Ishikawa, H., 1993, Chaperonin produced by an intracellular symbiont is an energy-coupling protein with phosphotransferase activity, J. Biochem. 114: 246–250.PubMedGoogle Scholar
  28. Morioka, M., Muraoka, H., Yamamoto, K., and Ishikawa, H., 1994, An endosymbiont chaperonin is a novel type of histidine protein kinase, J. Biochem. 116: 1075–1081.PubMedGoogle Scholar
  29. Munson, M. A., Baumann, P., and Kinsey, M. G., 1991, Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte associated primary endosymbionts of aphids, Int. J. Syst. Bact. 41: 566–568.CrossRefGoogle Scholar
  30. Munson, M. A., Baumann, P., and Moran, N. A., 1992, Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on 16S rDNA sequences, Mol. Phylogen. Evol. 1: 26–30.CrossRefGoogle Scholar
  31. Ohtaka, C., Nakamura, H., and Ishikawa, H., 1992, Structure of chaperonins from an intracellular symbiont and their functional expression in E. coli groE mutants, J. Bacteriol. 174: 1869–1874.PubMedGoogle Scholar
  32. O’Neill, S. L., and Karr, T. L., 1990, Bidirectional incompatibility between conspecific populations of Drosophila simulans, Nature 348: 178–180.PubMedCrossRefGoogle Scholar
  33. O’Neill, S. L., Giordano, R., Colbert, A. M. E., Karr, T. L., and Robertson, H. M., 1992, 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects, Proc. Natl, Acad. Sci. USA 89: 2699–2702.CrossRefGoogle Scholar
  34. Rousset, F., Bouchon, D., Pintureau, B., Juchault, J., and Solignac, M., 1992, Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods, Proc. R. Soc. Lond. B 250: 91–98.CrossRefGoogle Scholar
  35. Sasaki, T., Aoki, T., Hayashi, H., and Ishikawa, H., 1990, Amino acid composition of the honeydew of symbiotic and aposymbiotic pea aphids Acyrthosiphon pisum, J. Insect Physiol. 36: 35–40.CrossRefGoogle Scholar
  36. Sasaki, T., and Ishikawa, H., 1993, Nitrogen recycling in the endosymbiotic system of the pea aphid, Acyrthosiphon pisum, Zoological Sci. 10: 779–785.Google Scholar
  37. Sasaki, T., Fukuchi, N., and Ishikawa, H., 1993, Amino acid flow through aphid and its symbiont: Studies with 15N-labeled glutamine, Zoological Sci. 10: 787–791.Google Scholar
  38. Sasaki, T., and Ishikawa, H., 1995, Production of essential amino acids from glutamate by mycetocyte symbionts of the pea aphid, Acyrthosiphon pisum, J. Insect Physiol., 41: 41–46.CrossRefGoogle Scholar
  39. Stock, J. B., Ninfa, A. J., and Stock, A. M., 1989, Protein phosphorylation and regulation of adaptive responses in bacteria, Micribiol. Rev. 53: 450–490.Google Scholar
  40. Stouthamer, R., Luck, R. F., and Hamilton, W. D., 1990, Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex, Proc. Natl. Acad. Sci. USA 87: 2424–2427.PubMedCrossRefGoogle Scholar
  41. Stouthamer, R., and Luck, R. F., 1993, Influence of microbe-associated parthenogenesis on the fecundity of Trichogramma deion and T. pretiosum, Entomol. Exp. Appl. 67: 183–192.CrossRefGoogle Scholar
  42. Stouthamer, R., Breeuwer, J. A. J., Luck, R. F., and Werren, J. H., 1993, Molecular identification of microorganisms associated with parthenogenesis, Nature 361: 66–68.PubMedCrossRefGoogle Scholar
  43. Thompson, J. N., 1982, Interaction and Coevolution, John Wiley and Sons, New York.Google Scholar
  44. Unterman, B. M., Baumann, P., and McLean, D. L., 1989, Pea aphid symbiont relationships established by analysis of 16S rRNAs, J. Bacteriol. 171: 2970–2974.PubMedGoogle Scholar
  45. Whitehead, L. F., and Douglas, A. E., 1993, A metabolic study of Buchnera, the intracellular bacterial symbionts of the pea aphid Acyrthosiphon pisum, J. Gen. Microbiol. 139: 821–826.Google Scholar
  46. Yen, J. H., and Barr, A. R., 1971, New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens, Nature 232: 657–658.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Hajime Ishikawa
    • 1
  1. 1.Department of Biological Sciences Graduate School of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations