Microbial Biodiversity-Global Aspects

  • Rita R. Colwell


The enormous diversity available at the microbial level is beginning to be recognized, but this richness of diversity amongst bacterial and virus species has yet to be cataloged. The number of species of bacteria that have been described is approximately 2,000– 4,000, whereas the estimated total number of bacterial species is approximately 3,000,000, most probably, a significant underestimation. The number of virus species may be in the same range. The role of microorganisms in ecological cycles is just beginning to be more fully understood. For example, viruses have been found to regulate/modulate algal abundance and distribution. Global cycles, including carbon, nitrogen, sulfur, and heavy metal cycles, are known to be mediated or influenced by microorganisms. A unique aspect of the diversity of microorganisms is their morphologyl, ranging from the ultramicroscopic to a recently described bacterial species visible to the naked eye. The shapes of bacteria may be rod, spherical, spiral, triangular, pyramidal, and rectangular, in brief, nearly every possible morphology. Morphology and function of bacteria are influenced by the environment, a demonstration of the inter-relationship of diversity and ecological processes. Inventorying and cataloging microbial diversity is a daunting task, requiring ingenuity and creativity, but offering substantial economic and social reward.


Bacterial Community Sewage Sludge Microbial Diversity Clostridium Perfringens Marine Actinomycete 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amann, R. I., Krumholz, L. and Stahl, D. A. 1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic and environmental studies in microbiology. J. Bacteriol. 172: 762–770.PubMedGoogle Scholar
  2. Amann, R. I., N. Springer, W. Ludwig, H.-D. Görtz, and K.-H. Schleifer. 1991. Identification of in situ phylogeny of uncultured bacterial endosymbionts. Nature 351: 161–164.PubMedCrossRefGoogle Scholar
  3. Ausabel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1994. Current protocols in molecular biology. Greene Publishing Associates and John Wiley & Sons, Inc., NY.Google Scholar
  4. Boicourt, W. C. 1992. Influences of circulation processes on dissolved oxygen in the Chesapeake Bay. p. 7–53. In: D. A. Smith, M. Leffler, and G. Mackierman (ed.), Oxygen Dynamics in the Chesapeake Bay: Synthesis of Recent Research, Maryland Sea Grant, College Park, MD.Google Scholar
  5. Bergh, O., K. Y. Boraheim, G. Bratbak, and M. Heidal. 1989. High abundance of viruses found in aquatic environments. Nature. 340: 467–468.PubMedCrossRefGoogle Scholar
  6. Bothner, M. H., H. Takada, I. T. Knight, R. T. Hill, C. Butman, J. W. Farrington, R. R. Colwell, and J. F. Grassle. 1992. Sewage contamination in sediments beneath a deep-ocean dumpsite off New York. Marine Environ. Res. 38: 43–59.CrossRefGoogle Scholar
  7. Brikun, I. 1994. Suziedelis, Kestutis: Berg, Douglas E. DNA Sequence Divergence among Derivatives of Escherichia coli K-12 Detected by Arbitrary Primer PCR (Random Amplified Polymorphic DNA) Fingerprinting. Jnl. of Bacter. Mar. Vol. 176,No. 6, pp. 1673–1682.Google Scholar
  8. Bull, A. T., M. Goodfellow, and J. H. Slater. 1992. Biodiversity as a source of innovation in biotechnology. Ann. Rev. Microbiol. 46: 219–252.CrossRefGoogle Scholar
  9. Cancilla, M. R., I. B. Powell, A. J. Hiller, and D. E. Davidson. 1992. Rapid genomic fingerprinting of Lactococcus lactia strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Appl. Environ. Microbiol. 58: 1772–1775.PubMedGoogle Scholar
  10. Colwell, R. R. 1970a. Polyphasic taxonomy of bacteria. Culture Collections of Microorganisms. Poc. International Conference on Culture Collections, Oct 1968, Tokyo: Tokyo Univ. press pp. 421–436.Google Scholar
  11. Colwell, R.R. 1970b. Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolytions, and related Vibrio species. J. Bacteriol. 104: 410–433.PubMedGoogle Scholar
  12. Colwell, R. R. and R. Hill. 1993. Microbial diversity. In: M. N. A. Peterson (ed). Diversity of Oceanic Life: An Evaluative Review, Ocean Policy Institute. Honululu and the Center for Strategic and International Studies. Washington, DC. pp. 100–106.Google Scholar
  13. Erwin, T. L. 1982. Tropical forests: Their richness in Colsoptera and other arthropod species. Coleopterist’s Bulletin. 36: 74–75.Google Scholar
  14. Fuhrman, J., K. McCallum, and A. A. Davis. 1992. Novel major archaebacterial group from marine plankton. Nature. 356: 148–149.PubMedCrossRefGoogle Scholar
  15. Fuhrman, J., K. McCallum, and A. A. Davis. 1993. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl. Environ. Microbiol. 59: 1294–1302.PubMedGoogle Scholar
  16. Giovannoni, S. J., T. B. Britcschgi, C. L. Moyer, and K. G. Field. 1990. Genetic diversity in Sargasso Sea Bacterioplankton. Nature. 345: 60–63.PubMedCrossRefGoogle Scholar
  17. Grassle, J. F. 1989. Species diversity in deep-sea communities. Trends Ecol. Evol. 4: 12–15.CrossRefGoogle Scholar
  18. Grassle, J. F. 1991. Deep-sea benthic biodiversity. Bioscience. 41: 464–469.CrossRefGoogle Scholar
  19. Groombridge, B. (ed.). 1992. Global Biodiversity: Status of the Earth’s Living Resources. London. Chapman and Hall.Google Scholar
  20. Hawksworth, D. L. and J. M. Ritchie. 1993. Biodiversity and Biosystematic Priorities: Microorganisms and Invertebrates. Priorities for Biosystematic Research in Support of Biodiversity in Developing Countries: Microorganisms and Invertebrates. CAB International, Wallingford, Oxon, U.K. 120 pp.Google Scholar
  21. Hill, R. T., I. T. Knight, M. Anikis, W. L. Straube, and R. R. Colwell. 1992a. Benthic distribution of sludge indicated by Clostridium perfringens spores at a sewage disposal site off the coast of New Jersey. Amer. Geophys. Union Ocean Science Meeting, New Orleans, LA.Google Scholar
  22. Hill, R. T., K. E. Wommack, and R. R. Colwell. 1992b. Bacterium-bacteriophage interactions in the Chesapeake Bay. 92nd General Meeting of the Amer. Soc. Microbiol., New Orleans, LA.Google Scholar
  23. Hill, R. T., I. T. Knight, M. Anikis, and R. R. Colwell. 1993. Benthic Distribution of Sewage Sludge Indicated by Clostridium perfringens at a Deep-Ocean Dump Site. 1993. Appl. Environ. Micriobiol. 59(1): 47–51.Google Scholar
  24. Höfle, M. G. 1992. Aquatic microbial community structure and dynamics during large-scale release of bacteria as revealed by low-molecular-weight. RNA analysis. Appl. Environ. Microbiol. 58: 3387–3394.PubMedGoogle Scholar
  25. Jensen, P. R., R. Dwight, and W. Fenical. 1991. Distribution of actinomycetes in near-shore tropical marine sediments. Appl. Environ. Microbiol. 57: 1102–1108.PubMedGoogle Scholar
  26. Kellenberger, E. 1994. Genetic ecology: A new interdisciplinary science, fundamental for evolution, biodiversity and biosafety evaluations. Experientia. 50: 429–437.PubMedCrossRefGoogle Scholar
  27. Kersulyte, A., J. P. Woods, E. J. Keath, W. E. Goldman, and D. E. Berg. 1992. Diversity among clinical isolates of Histoplasma capsulatum detected by polymerase chain reaction with arbitrary primers. J. Bacteriol. 174: 7075–7079.PubMedGoogle Scholar
  28. Knight, I. T. S. Schults, C. W. Kasper, and R. R. Colwell. 1990. Direct detection of Salmonella spp. in estuaries by using DNA probe. Appl. Environ. Microbiol. 59: 1059–1066.Google Scholar
  29. Knight, I. T., J. DiRuggiero, and R. R. Colwell. 1991. Direct detection of enteropathogenic bacteria in estuarine water using nucleic acid probes. Water Sci. Technol. 24: 261–266.Google Scholar
  30. Lelong, P. P., M. A. Bianchi, and Y. P. Martin. 1980. Planktonic and Bacterial Population Dynamics During Experimental Production of Natural Marine Phytophytoplankton II. Structure and Physiology of Populations and Their Interactions. Canadian Journal of Microb. Vol. 26, pp. 297–307.CrossRefGoogle Scholar
  31. Moore, J. C. and P. C. Deruiter. 1991. Temporal and Spatial Heterogeneity of Trophic Interactions Within Belowground Food Webs. Agri. Ecosystems and Environ. Vol 34, pp.371–397.CrossRefGoogle Scholar
  32. Pielou, E. C., 1975. Ecological Diversity. New York. Wiley.Google Scholar
  33. Proctor, L. M. and J. A. Fuhrman. 1990. Viral mortality of marine bacateria and cyanobacteria. Nature. 343: 60–62.CrossRefGoogle Scholar
  34. Russek-Cohen, E. and D. Jacobs. 1995. Statistics, Biodiversity, and Microorganisms. In: (eds.) D. Allsopp, R. R. Colwell, and D. L. Hawksworth. Microbial Diversity and Ecosystem Function. CAB International, Wallingford, Oxon, U.K., pp. 305–320.Google Scholar
  35. Sambrook, J., E. F. Fntsch and T. Maniatis. 1989. Molecular Cloning. Cold Spring Harbor Press, Cold Spring Harbor, NY.Google Scholar
  36. Solbrig, O. T. (ed.). 1991. From Genes to Ecosystems: A Research Agenda for Biodiversity. Cambridge, MA. International Union of Biological Sciences, Paris.Google Scholar
  37. Somerville, C. C., I. T. Knight, W. L. Straube, and R. R. Colwell. 1989. Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl. Environ. Microbiol. 55: 548–554.PubMedGoogle Scholar
  38. Straube, W. L., M. Takizawa, R. T. Hill, and R. R. Colwell. 1992. Response of near-bottom pelagic bacterial community of a deepwater sewage disposal site to deep-sea conditions. Amer. Geophys. Union Ocean Sciences Meeting, New Orleans, LA.Google Scholar
  39. Straube, W. L., R. T. Hill, and R. R. Colwell. 1996. Comparison of aquatic bacterial communities using semirandomly primed PCR. (Submitted)Google Scholar
  40. Systematics Agenda 2000. 1991. Systematics Agenda 2000: Integrating biological diversity and societal needs. Systematic Botany. 16: 758–761.Google Scholar
  41. Systematics Agenda 2000: Charting the Biosphere — A Global Initiative to Discover, Describe and Classify the World’s Species. Technical Report. 1994. Amer. Soc. Plant Taxon., Soc. System Biologists, Willi Hennig Society, and Assoc. System. Coll., 34 pp.Google Scholar
  42. Takizawa, M. and R. T. Hill. 1992. Isolation and ecological studies of actinomycetes in the Chesapeake Bay. 92nd General Meeting of the Amer. Soc. Microbiol., New Orleans, LA.Google Scholar
  43. Takizawa, M., R. T. Hill, and R. R. Colwell. 1993. Isolation and diversity of actinomycetes in the Chesapeake Bay. Appl. Environ. Microbiol. pp. 997–1002.Google Scholar
  44. Tiedje, J. 1992. Microbial diversity: Priorities for research and infrastructure. A Conference Speonsored by the Center for Microbial Ecology and the Bergey’s Manual Trust, June 15–18, 1992, Michigan State University, East Lansing, MI.Google Scholar
  45. Walker, J. D. and R. R. Colwell. 1975. Factors affecting enumeration and isolation of actinomycetes from Chesapeake Bay and southeastern Atlantic Ocean sediments. Marine Biol. 30: 193–201.CrossRefGoogle Scholar
  46. Whittaker, R. H. 1969. New concepts of kingdoms of organisms. Science. 163: 150–160.PubMedCrossRefGoogle Scholar
  47. Wilhum and Dorris, (1969).Google Scholar
  48. Williams, J. G. K., A. R. Kublik, K, J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nuc. Acids Res. 18: 6531–6535.CrossRefGoogle Scholar
  49. Wilson, E. O. 1988. Biodiversity (Ed. E. O. Wilson), pp. 1–18. Washington, DC. National Academy Press.Google Scholar
  50. Wommack, K. E., R. T. Hill, M. Kessel, E. Russek-Cohen, and R. R. Colwell. 1992. Distribution of viruses in the Chesapeake Bay. Appl. Environ. Microbiol. 58: 2965–2970.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Rita R. Colwell
    • 1
  1. 1.University of Maryland Biotechnology InstituteCollege Park

Personalised recommendations