Endothelial Cell Biology

  • Una S. Ryan
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 193)


The endothelium is a critical component of all organs yet itself represents a complex, unique organ with a vast surface area and an aggregate mass equal to that of the liver. In cross sections of the vessel wall, the endothelium appears as a thin and insignificant layer that belies its importance and significance in homeo- stasis [1].


Nitric Oxide Smooth Muscle Cell Complement Activation Tissue Factor Pathway Inhibitor Leukocyte Adhesion Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ryan US. Structural bases for metabolic activity. Ann Rev Physiol 44:223, 1982.CrossRefGoogle Scholar
  2. 2.
    Ryan US. Pulmonary endothelium: A dynamic interface. Clin Invest Med 9:124, 1986.PubMedGoogle Scholar
  3. 3.
    Ryan US, Ryan JW, Whitaker C, Chiu A. Localization of angiotensin converting enzyme (kininase II): Immunocytochemistry and immunofluorescence. Tissue Cell 8:125, 1976.PubMedCrossRefGoogle Scholar
  4. 4.
    Ryan US. Processing of angiotension and other peptides by the lungs. In Fishman AP (ed). Handbook of Physiology — Section 3: The Respiratory System. Bethesda, MD: American Physiological Society, 351, 1985.Google Scholar
  5. 5.
    Ryan US, Maxwell G. Isolation, culture and subculture of bovine pulmonary artery endothelial cells: Mechanical methods. J Tissue Culture Meth 10:3, 1986.CrossRefGoogle Scholar
  6. 6.
    Larson RS, Springer TA. Structure and function of leukocyte integrins. Immunol Rev 114:181, 1990.PubMedCrossRefGoogle Scholar
  7. 7.
    Spagnoli LG, Pietra GC, Villaschi S, Jones LW. Morphometric analysis of gap junctions in regenerating endothelium. Lab Invest46:139, 1982.Google Scholar
  8. 8.
    Ryan US, Ryan JW. Vital and functional activities of endothelial cells. In Nossel HL, Vogel HJ, (eds). Pathobiology of the Endothelial Cell. New York: Academic Press, 445, 1982.Google Scholar
  9. 9.
    Esmon NL, Owen WG, Esmon CT. Isolation of a membrane bound cofactor for thrombin-catalyzed activation of protein C. J Biol Chem 257:859, 1982.PubMedGoogle Scholar
  10. 10.
    Walker FJ, Secton PW, Esmon CT. The inhibition of blood coagulation by activated protein C through the selective inactivation of activated factor V. Biochim Biophys Acta 571:333, 1979.PubMedGoogle Scholar
  11. 11.
    Stern DM, Nawroth PP, Harris K, Esmon CT. Cultured bovine aortic endothelial cells promote activated protein C-protein S-mediated inactivarion of factor Va. J Biol Chem 261:713, 1986.PubMedGoogle Scholar
  12. 12.
    Broze GJ Jr. The role of tissue factor pathway inhibitor in a revised coagulation cascade. Semin Hematol 29:159, 1992.PubMedGoogle Scholar
  13. 13.
    Broze GJ Jr., Warren LA, Novotny WF, Higuchi DA, Girard JJ, Miletich JP. The lipoprotein-associated coagulation inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: Insight into its possible mechanism of action. Blood 71:335, 1988.PubMedGoogle Scholar
  14. 14.
    Sabharwal AK, Bajaj SP, Ameri A, Tricomi SM, Hyers TM, Dahms TE, et al. Tissue factor pathway inhibitor and von Willebrand factor antigen levels in adult respiratory distress syndrome and in a primate model of sepsis. Am J Respir Crit Care Med 151:758, 1995.PubMedGoogle Scholar
  15. 15.
    Ameri A, Kuppuswamy MN, Basu S, Bajaj SP. Expression of tissue factor pathway inhibitor by cultured endothelial cells in response to inflammatory mediators. Blood 79:3219, 1992.PubMedGoogle Scholar
  16. 16.
    Sandset PM, Abildgaard U, Larsen ML. Heparin induces release of extrinsic pathway inhibitor. Thromb Res 50:803, 1988.PubMedCrossRefGoogle Scholar
  17. 17.
    Weksler BB, Marcus AJ, Jaffe EA. Synthesis of prostaglandin I, (prostacyclin) by cultured human and bovine endothelial cells. Proc Natl Acad Sci USA 126:365, 1977.Google Scholar
  18. 18.
    Radomski MW, Palmer RM, Moncada S. The antiaggregating properties of the vascular endothelium: Interactions between prostacyclin and nitric oxide. Br J Pharmacol 82:6539, 1987.Google Scholar
  19. 19.
    Levin E, Loskutoff DJ. Cultured bovine endothelial cells product both urokinase and tissue-type plasminogen activators. J Cell Biol 94:631, 1982.PubMedCrossRefGoogle Scholar
  20. 20.
    Colucci M, Balcon GI, Lorenzet R, et al. Cultured human endothelial cells generate tissue factor in response to endotoxin. J Clin Invest 71:1893, 1983.PubMedGoogle Scholar
  21. 21.
    Bevilacqua MP, Pober JS, Majeau GR, Fiers W, Cotran RS, Gimbrone MA Jr. Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: Characterization and comparison with the actions of interleukin 1. Proc Natl Acad Sci USA 83:4533, 1986.PubMedCrossRefGoogle Scholar
  22. 22.
    Nawroth PP, Stern DM. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med 163:740, 1986.PubMedCrossRefGoogle Scholar
  23. 23.
    Sakariassen KS, Nievelstein PF, Coller BA, Sixma JJ. The role of glycoprotein 1b and 1lb-111a in platelet adherence to human artery subendothelium. Br J Haematol 63:681, 1986.PubMedGoogle Scholar
  24. 24.
    Weiss HJ, Baumgartner HR, Tchopp TB, Turitto VT, Cohen D. Correction by factor VIII of the impaired platelet adhesion to subendothelium in von Willebrand’s disease. Blood 51:267, 1978.PubMedGoogle Scholar
  25. 25.
    Brommer EJP, Verheijen JH, Chang GTG, Rijken DC. Masking of fibrinolytic response to stimulation by an inhibitor ot tissue-type plasminogen activator in plasma. Thromb Haemost 52:154, 1984.PubMedGoogle Scholar
  26. 26.
    Nilsson IM, Ljunger H, Tengborn L. Two different mechanisms in patients with venous thrombosis and defective fibrinolysis: Low concentration of plasminogen activator or increased concentration or plasminogen activator inhibiror. Br Med J 290:1453, 1985.Google Scholar
  27. 27.
    Powell JS, Rouge M, Muller RK, Baumgartner HR, Cilazapril suppresses myointimal proliferation after vascular injury: Effects on growth factor induction in vascular smooth muscle cells. Basic Res Cardoil 86:65, 1991.Google Scholar
  28. 28.
    Bhagyalakshmi A, Frangos JA. Mechanism of shear-induced prostacyclin production in endothelial cells. Biochem Biophys Res Commun 158:31, 1989.PubMedCrossRefGoogle Scholar
  29. 29.
    Baenziger NL, Fogerty FJ, Mertz LF, Chernuta LF. Regulation of histamine-mediated prostacyclin synthesis in cultured human vascular endothelial cells. Cell 24:915, 1981.PubMedCrossRefGoogle Scholar
  30. 30.
    Crutchley DJ, Ryan JW, Ryan US, Fischer GH. Bradykinin-induced release of prostacyclin and thromboxanes from bovine pulmonary artery endothelial cells. Biochim Biophys Acta 751:99, 1983.PubMedGoogle Scholar
  31. 31.
    Hamberg M, Svensson J, Samuelson G. Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA 72:2994, 1975.PubMedCrossRefGoogle Scholar
  32. 32.
    Fitzgerald GA, Oates JA, Hawiger J, et al. Endogenous biosynthesis of prostacyclin and thromboxane and platelet function during chronic administration of aspirin in man. J Clin Invest 71:676, 1983.PubMedGoogle Scholar
  33. 33.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxaation of arterial smooth muscle by acetycholine. Nature 373:299, 1980.Google Scholar
  34. 34.
    Khan MT, Furchgott RF. Similarities of behavior of (NO) and endothelium-derived relaxing factor in perfusion cascade bioassay system. Fed Proc 46:385, 1987.Google Scholar
  35. 35.
    Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endothelium-derived relaxing factor (EDRF) released from artery and vein appears ro be nitric oxide (NO) or a closely related radical species. Fed Proc 46:644, 1987.Google Scholar
  36. 36.
    Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 357:524, 1987.CrossRefGoogle Scholar
  37. 37.
    Hutchinson PJ, Palmer RM, Moncada S. Comparative pharmacology of EDRF and nitric oxide on vascular strips. Eur J Pharmacol 141:445, 1987.PubMedCrossRefGoogle Scholar
  38. 38.
    Diaz MN, Cohen R. Coronary Vascalar Pharmacology. In Becker RC (ed). Textbook of Coronary Thrombosis and Thrombolysis Boston: Kluwer Academic 1996.Google Scholar
  39. 39.
    Moncada S, Palmer RMJ, Higgs EA. Biosynthesis and endogenous roles of nitric oxide. Pharmacol Rev 43:109, 1991.PubMedGoogle Scholar
  40. 40.
    Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664, 1988.PubMedCrossRefGoogle Scholar
  41. 41.
    Rapoport RM, Murad F. Agonist induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cyclic GMP. Circ Res 52:352, 1983.PubMedGoogle Scholar
  42. 42.
    Rees DD, Palmer RMJ, Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 86:3375, 1989.PubMedCrossRefGoogle Scholar
  43. 43.
    Aiska K, Gross SS, Griffith OW, Levi R. NG-Methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: Does nitric oxide regulate blood pressure in vivo? Biochem Biophys Acta 160:881, 1989.Google Scholar
  44. 44.
    Knowles RG, Merrett M, Salter M, Moncada S. Differential induction of brain, lung and liver nitirc oxide synthase by endotoxin in the rat. Biochem J 270:833, 1990.PubMedGoogle Scholar
  45. 45.
    Busse R, Mulch A. Induction of nitric oxide synthaseby cytokines in vascular smooth muscle cells. FEBS Lett 275:87, 1990.PubMedCrossRefGoogle Scholar
  46. 46.
    Johnson GPS, Tsa D, Malloy D, Leffer AM. Cardioprotective effects of acidified sodium nitrite in myocardial ischemia with reperfusion. J Pharmacol Exp Ther 252:35, 1990.PubMedGoogle Scholar
  47. 47.
    Gryglewski RJ, Botung RM, Vane JR. Mediators produced by the endothelial cell. Hypertension 12:530, 1988.PubMedGoogle Scholar
  48. 48.
    Flavahan NA. Atherosclerosis or lipoprotein-induced endothelial dysfunction. Potential mechanisms underlying reduction in EDRF/nitric oxide activity. Circulation 85:1927, 1992.Google Scholar
  49. 49.
    Venturini CM, Ryan US. Endothelial control of vascular smooth muscle: The importance of nitric oxide. In Sperelakis N (ed). Physiology and Paraphysiology of the Heart, 3rd ed. Boston: Kluwer Academic, 1994.Google Scholar
  50. 50.
    Rubanyi GM, Vanhoutte PM, Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J Physiol 364:45, 1985.PubMedGoogle Scholar
  51. 51.
    Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411, 1995.CrossRefGoogle Scholar
  52. 52.
    Goetz KL, Wang BC, Madwed JB, Zhu JL, Leadley RJ Jr. Cardiovascular, renal, and endocrine responses to intravenous endothelin in conscious dogs. Am J Physiol 255:1604, 1988.Google Scholar
  53. 53.
    DeNucci G, Thomas R, D’Orleans-Juste P, et al. Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc Natl Acad Sci USA 87:9797, 1988.CrossRefGoogle Scholar
  54. 54.
    Miyauchik T, Yangisawa M, Tomizawa T, et al. Increased plasma concentrations of endothelin-1 and big endothelin-1 in acute myocardial infarction [letter]. Lancet 2:53, 1989.CrossRefGoogle Scholar
  55. 55.
    Tomita K, Ujiie K, Nakanishi T, et al. Plasma endothelin levels in patients with acute renal failure. N Engl J Med 321:1127, 1989.PubMedGoogle Scholar
  56. 56.
    Trachtenberg JD, Sun S, Rapp NS, Choi ET, Callow AD, Ryan US. The effect of endothelin-1 infusion on the development of intimal hyperplasia after balloon catheter injury. J Cardiovasc Pharmacol 22:355, 1993.Google Scholar
  57. 57.
    Hynes RO. Integrins: A family of cell surface receptors. Cell 48:549, 1986.CrossRefGoogle Scholar
  58. 58.
    Ruoslahi E. Integrins. J Clin Invest 87:1, 1991.Google Scholar
  59. 59.
    Williams AF, Barclay AN. The immunoglobulin superfamily—domains for cell surface recognition. Annu Rev Immunol 6:381, 1988.PubMedGoogle Scholar
  60. 60.
    Brandley BK, Swiedler SJ, Robbins PW. Carbohydrate ligands of the LEC cell adhesion molecules. Cell 63:861, 1990.PubMedCrossRefGoogle Scholar
  61. 61.
    Springer TA, Lasky LA. Sticky sugars for selectins. Nature 349:196, 1991.PubMedCrossRefGoogle Scholar
  62. 62.
    Arnout MA. The structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 75:1037, 1990.Google Scholar
  63. 63.
    Kishimoto TK, Larson RS, Corbi AL, Dustin ML, Staunton DE, Springer TA. The leukocyte integrins. Adv Immunol 46:149, 1991.Google Scholar
  64. 64.
    Marlin SD, Springer TA. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51:813, 1987.PubMedCrossRefGoogle Scholar
  65. 65.
    Gahmberg CG, Nortamo P, Zimmermann D, Ruoslahti E. The human leukocyte-adhesion ligand, intercellular-adhesion molecule 2. Expression and characterizationof the protein. Eur J Biochem 195:197, 1991.CrossRefGoogle Scholar
  66. 66.
    Springer TA. Adhesion receptors of the immune system. Nature 346:425, 1990.PubMedCrossRefGoogle Scholar
  67. 67.
    Dustin ML, Rothlein R, Bhan AK, Dinarello CA, Springer TA. Induction by IL-1 and interferon-gamma: Tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol 137:245, 1986.PubMedGoogle Scholar
  68. 68.
    Nortamo P, Li R, Renkonen R, et al. The expression of human leukocyte adhesion molecular intercellular adhesion molecule-2 is refractory to inflammatory cytokines. Eur J Immunol 21:2629, 1991.PubMedCrossRefGoogle Scholar
  69. 69.
    Carlos TM, Schwartz BR, Kovach NL, et al. Vascular cell adhesion molecule—1 mediates lymphocyte adherence to cytokine-activated cultured human endothelial cells. Blood 76:965, 1990.PubMedGoogle Scholar
  70. 70.
    Elices MJ, Osborn L, Takada Y, et al. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA4 at a site distinct from the VLA4/ fibronectin binding site. Cell 60:577, 1990.PubMedCrossRefGoogle Scholar
  71. 71.
    Koch AE, Burrows JC, Haines GK, Carlos TM, Harlan JM. Immunolocalization of endothelial and leukocyte adhesion molecules in human rheumatoid and osteoarthritic synovial tissues. Lab Invest 64:313, 1991.PubMedGoogle Scholar
  72. 72.
    Bevilacqua M, Butcher E, Furie B, et al. Selectins: A family of adhesion receptors. Cell 67:233, 1991.PubMedCrossRefGoogle Scholar
  73. 73.
    Bevilacqua MP, Stengelin S, Gimbrone MA Jr, Seed B. Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243:1160, 1989.PubMedCrossRefGoogle Scholar
  74. 74.
    Kansas GS. Structure and function of L-selectin. APMIS 100:287, 1992.PubMedCrossRefGoogle Scholar
  75. 75.
    Michl J, Qiu QY, Kuerer HM. Homing receptors and addressins. Curr Opin Immunol 3:373, 1991.PubMedCrossRefGoogle Scholar
  76. 76.
    McEver RP, Beckstead JH, Moore KL, Marshall-Carlson L, Bainton DF. GMP-140, a platelet alphagranule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin Invest 84:92, 1989.PubMedGoogle Scholar
  77. 77.
    Lasky LA. Lectin cell adhesion molecules (LEC-CAMs): A new family of cell adhesion proteins involved with inflammation. J Cell Biochem 45:139, 1991.PubMedCrossRefGoogle Scholar
  78. 78.
    Sako D, Chang X, Barone KM, Vachino G, White HM, Shaw G, et al. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell 75:1179, 1993.PubMedCrossRefGoogle Scholar
  79. 79.
    Moore KL, Patel KD, Bmehl RE, Fugang L, Johnson DA, Lichenstein HS, et al. P-selectin glycoprotein Ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol 128:661, 1995.PubMedCrossRefGoogle Scholar
  80. 80.
    Asa D, Raycroft L, Ma L, Aeed PA, Kaytes PS, Elhammer AP, et al. The P-selectin glycoprotein ligand functions as a common human leukocyte ligand for P-and E-selectins. J Biol Chem 270:11662, 1995.PubMedCrossRefGoogle Scholar
  81. 81.
    Vachino G, Chang X, Veldman GM, Kumar R, Sako D, Fouser LA, et al. P-selectin glycoprotein ligand-1 is the major counter-receptor for P-selectin on stimulated T cells and is widely distributed in non functional form on many lymphocytic cells. J Biol Chem 270:21996, 1995.Google Scholar
  82. 82.
    Wilkins PP, Moore KL, McEver RP, Cummings RD. Tyrosine sulfation of P-selectin glycoprotein ligand-1 is required for high affinity binding to P-selectin. J Biol Chem 270:22677, 1995.PubMedCrossRefGoogle Scholar
  83. 83.
    Steegmaler M, Levinovitz A, Isenmann S, Borges E, Lenter M, Kocher HP, et al. The E-selectin-ligand ESL-1 is a variant of a receptor for fibroblast growth factor. Nature 373:615, 1995.CrossRefGoogle Scholar
  84. 84.
    Pober JS, Bevilacqua MP, Mendrick DL, Lapierre LA, Fiers W, Gimbroine MA Jr. Two distinct monokines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of culture human vascular endothelial cells. J Immunol 136:1680, 1986.PubMedGoogle Scholar
  85. 85.
    Cotran RS, Gimbrone MA Jr. Bevilacqua MP, Mendrick DL, Pober JS. Induction and detection of a human endothelial activation antigen in vivo. J Exp Med 164:661, 1986.PubMedCrossRefGoogle Scholar
  86. 86.
    McEver RP. GMP-140: A receptor for neutrophils and monocytes on activated platelets and endothelium. J Cell Biochem 45:156, 1991.PubMedCrossRefGoogle Scholar
  87. 87.
    Hattori R, Hamilton KK, Fugate RD, McEver RP, Sims PJ. Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140. J Biol Chem 264:7768, 1989.PubMedGoogle Scholar
  88. 88.
    Bonfanti R, Furie BC, Furie B, Wagner DD. PADGEM (GMP140) is a component of Weibel-Palade bodies of human endothelial cells. Blood 73:1109, 1989.PubMedGoogle Scholar
  89. 89.
    Geng JG, Bevilacqua MP, Moore KL, et al. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 343:575, 1990.CrossRefGoogle Scholar
  90. 90.
    Patel KD, Zimmerman GA, Prescott SM, Mclntyre TM. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. J Cell Biol 112:749, 1991.PubMedCrossRefGoogle Scholar
  91. 91.
    Lo SK, VanSeventer GA, Levin SM, Wright SD. Two leukocyte receptors (CD11a/CD18 and CD11b/ CD18) mediate transient adhesion to endothelium by binding to different ligands. J Immunol 143:3325, 1989.PubMedGoogle Scholar
  92. 92.
    Albelda SM, Smith CW, Ward PA. Adhesion molecules and inflammatory injury. FASEB J 8:504, 1994.PubMedGoogle Scholar
  93. 93.
    Adams DH, Shaw S. Leucocyte-endothelial interactions and regulation of leucocyte migration. Lancet 343:831, 1994.PubMedCrossRefGoogle Scholar
  94. 94.
    Mackay C. Lymphocyte migration: A new spin on lymphocyte homing. Curr Biol 5:733, 1995.PubMedCrossRefGoogle Scholar
  95. 95.
    Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 76:301, 1994.PubMedCrossRefGoogle Scholar
  96. 96.
    Oppenheim JJ, Zachariae COC, Mukaida N, Matsushima K. Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu Rev Immunol 9:617, 1991.PubMedGoogle Scholar
  97. 97.
    Miller MD, Krangel MS. Biology and biochemistry of the chemokines: A family of chemotactic and inflammatory cytokines. CRC Crit Rev Immunol 14:54, 1992.Google Scholar
  98. 98.
    Kuna P, Reddigari SR, Schall TJ, Rucinski D, Sadick M, Kaplan AP, Characterization of the human basophil response to cytokines, growth factors, and histamine releasing factors of the intercrine/chemokine family. J Immunol 150:1932, 1993.PubMedGoogle Scholar
  99. 99.
    Kelner GS, Kennedy J, Bacon KB, Kleyensteuber S, Largaespada DA, Jenkins NA, et al. Lymphotactin: A cytokine that represents a new class of chemokine. Science 266:1395, 1994.PubMedCrossRefGoogle Scholar
  100. 100.
    Ryan US, Worthington RE. Cell-cell contact mechanisms. Curr Opin Immunol 4:33, 1992.PubMedCrossRefGoogle Scholar
  101. 101.
    Ogawa S, Gerlach H, Esposito C, Pasagian-Macaulay A, Brett J, Stern D. Hypoxia modulates the barrier and coagulant function of culture bovine endothelium. J Clin Invest 85:1090, 1990.PubMedCrossRefGoogle Scholar
  102. 102.
    Mulligan MS, Yeh CG, Rudolph AR, Ward PA. Protective effects of soluble CR1 in complement-and neutrophil-mediated tissue injury. J Immunol 148:1479, 1992.PubMedGoogle Scholar
  103. 103.
    Hill J, Lindsay TD, Oritz F, Yeh CG, Hechtman HB, Moore HD. Soluble complement receptor type 1 ameliorates the local and remote organ injury after intestinal ischemia-reperfusion in the rat. J Immunol 149:1723, 1992.PubMedGoogle Scholar
  104. 104.
    Marks RM, Todd RFI, Ward PA. Rapid induction of neutrophil-endothelial adhesion by endothelial complement fixation. Nature 339:314, 1989.PubMedCrossRefGoogle Scholar
  105. 105.
    Popma JJ, Califf RM, Topol EJ. Clinical trials of restenosis after coronary angioplasty. Circulation 84:1426, 1991.PubMedGoogle Scholar
  106. 106.
    Ferns GAA, Stewarr-Lee AL, Anggard EE. Arterial response ro mechanical injury: Balloon catheter deendothelialization. Atherosclerosis 92:89, 1992.PubMedCrossRefGoogle Scholar
  107. 107.
    Wilcox JN. Molecular biology: Insight into the causes and prevention of restenosis after arterial intervention. Am J Cardiol 72:88E, 1993.PubMedCrossRefGoogle Scholar
  108. 108.
    Herrman JR, Hermans WRM, Vos J, Serruys PW. Pharmacological approaches to the prevention of restenosis following angioplasty. The search for the Holy Grail? (Part 1). Drugs 46:18, 1993.PubMedGoogle Scholar
  109. 109.
    Schwartz RS, Edwards WD, Huber KC, Antoniades LC, Bailey KR, Camrud AR, et al. Coronary restenosis: Prospects for solution and new perspectives from a porcine model. Mayo Clin Proc 68:54, 1993.PubMedGoogle Scholar
  110. 110.
    O’Brien ER, Schwartz SM. Update on the biology and clinical study of restenosis. Trends Cardiovsc Med 4:169, 1994.CrossRefGoogle Scholar
  111. 111.
    Casscells W, Engler D, Wilkerson JT. Mechanisms of restenosis. Tex Heart Inst J 21:68, 1994.PubMedGoogle Scholar
  112. 112.
    Landau C, Lange RA, Hillis LD. Percutaneous transluminal coronary angioplasty. N Engl J Med 330:981, 1994.PubMedCrossRefGoogle Scholar
  113. 113.
    Currier JW, Haudenschild C, Faxon DP. Pathophysiology of restenosis: Clinical implications. In Anonymous Strategies in Primary and Secondary Prevention of Coronary Artery Disease. New York: W. Zuckschwerdt Verlag GmbH, 1992:181.Google Scholar
  114. 114.
    Shirotani M, Yui Y, Kawai C. Restenosis after coronary angioplasty: Pathogenesis of neointimal thickening initiated by endothelial loss. Endothelium 1:5, 1993.CrossRefGoogle Scholar
  115. 115.
    Ricevuti G, Mazzone A, Paotti D, deServi S, Specchia G. Role of granulocytes in endothelial injury in coronary heart disease in humans. Atherosclerosis 91:1, 1991.PubMedCrossRefGoogle Scholar
  116. 116.
    Majesky MW. Neointima formation after acute vascular injury. Role of counteradhesive extracellular matrix proteins. Tex Heart Inst J 21:78, 1994.PubMedGoogle Scholar
  117. 117.
    Lindner V, Reidy MA. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Natl Acad Sci USA 88:3739, 1991.PubMedCrossRefGoogle Scholar
  118. 118.
    Fingerle J, Johnson R, Clowes AW, Majesky MW, Reidy MA. Role of platelets in smooth muscle cell proliferation and migration after vascular injury in rat carotid artery. Proc Natl Acad Sci USA 86:8412, 1989.PubMedCrossRefGoogle Scholar
  119. 119.
    Rossen RD, Swain JL, Michael I.H, Weakley S, Giannini E, Entman ML. Selective accumulation of the first component of complement and leukocytes in ischemie canine heart muscle. A possible initiator of an extra myocardial mechanism of ischemic injury. Circ Res 57:119, 1985.PubMedGoogle Scholar
  120. 120.
    Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med 330:1431, 1994.PubMedCrossRefGoogle Scholar
  121. 121.
    Nobuyoshi M, Kimura T, Ohishi H, Horiuchi H, Nosaka H, Hamasaki N, et al. Restenosis after percutaneous transluminal coronary angioplasty: Pathologic observations in 20 patients. J Am Coll Cardiol 17:433, 1991.PubMedGoogle Scholar
  122. 122.
    Califf RM, Ohman EM, Frid DJ, Fortin DF, Mark DB, Hlatky MA, et al. Restenosis: The clinical issues. In Topol EJ (ed). Textbook of Interventional Cardiology. Philadelphia: WB Saunders, 1990:363.Google Scholar
  123. 123.
    Austin GE. Lipids and vascular restenosis. Circulation 85:1613, 1992.PubMedGoogle Scholar
  124. 124.
    Reis GJ, Kuntz RE, Silverman DI, Pasternak RC. Effects of serum lipid levels on restenosis after coronary angioplasty. Am J Cardiol 68:1431, 1991.PubMedCrossRefGoogle Scholar
  125. 125.
    Shah PK, Amin J. Low high density lipoprotein level is associated with increased restenosis rate after coronary angioplasty. Circ 85:1279, 1992.Google Scholar
  126. 126.
    Herrman JR, Hermans WRM, Vos J, Serruys PW. Pharmacological approaches to the prevention of restenosis following angioplasty. The search for the Holy Grail? (Part II). Drugs 46:249, 1993.PubMedCrossRefGoogle Scholar
  127. 127.
    Morishita R, Gibbons GH, Ellison KE, Nakajima M, Zhang L, Kaneda Y, et al. Single intraluminal delivery of antisense cdc2 kinase and proliferating-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Narl Acad Sci USA 90:8474, 1993.CrossRefGoogle Scholar
  128. 128.
    Simons M, Edelman ER, DeKeyser J, Langer R, Rosenberg RD. Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature 359:67, 1992.PubMedCrossRefGoogle Scholar
  129. 129.
    Epstein SE, Speir E, Finkel T. Do antisense approaches to the problem of restenosis make sense? Circulation 88:1351, 1993.PubMedGoogle Scholar
  130. 130.
    Ohno T, Gordon D, San H, Pompili VJ, Imperiale MJ, Nabel GJ, et al. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science 265:781, 1994.PubMedCrossRefGoogle Scholar
  131. 131.
    Conte JV, Foegh ML, Calcagno D, Wallace RB, Ramwell PW. Peptide inhibition of proliferation following angioplasty in rabbits. Transplant Proc 21:3686, 1989.PubMedGoogle Scholar
  132. 132.
    Lundergan C, Foegh ML, Vargas R, Eufemio M, Bormes GW, Kot PA, et al. Inhibition of myointimal proliferation of the rat carotid artery by the peptides angiopeptin and BIM 23034. Atherosclerosis 80:49, 1989.PubMedCrossRefGoogle Scholar
  133. 133.
    Hong MK, Bhatti T, Matthews BJ, Stark KS, Cathaperman S, Foegh ML, et al. The effect of porous infusion balloon-delivered angiopeptin on myointimal hyperplasia after balloon injury in the rabbit. Circulation 88:638, 1993.PubMedGoogle Scholar
  134. 134.
    Gelfand JA, Donelan M, Burke JF. Preferential activation and depletion of the alternative complement pathway by burn injury. Ann Surg 198:58, 1982.Google Scholar
  135. 135.
    Mulligan MS, Warren JS, Smith CW, Anderson DC, Yeh CG, Rudolph AR, et al. Lung injury after deposition of IgA immune complexes. Requirements for CD18 and L-arginine. J Immunol 148:3086, 1992.Google Scholar
  136. 136.
    Mulligan MS, Yeh CG, Rudolph AR, Ward PA. Protective effects of soluble CR1 in complement-and neutrophil-mediated tissue injury. J Immunol 148:1479, 1992.PubMedGoogle Scholar
  137. 137.
    Pruitt SK, Baldwin WMI, Marsh HC, Jr, Lin SS, Yeh CG, Bollinger RR. The effect of soluble complement receptor type 1 on hyperacute xenograft rejection. Transplantation 52:868, 1992.CrossRefGoogle Scholar
  138. 138.
    Pruitt SK, Kirk AD, Bollinger RR, Marsh HC,Jr, Collins BH, Levin JL, et al. The effect of soluble complement receptor type 1 on hyperacute rejection of porcine xenografts. Transplantation 57:363, 1994.PubMedCrossRefGoogle Scholar
  139. 139.
    Rubin BB, Smith A, Liauw S, Isenman D, Romaschin AD, Walker PM. Complement activation and white cell sequestration in postischemic skeletal muscle. Am J Physiol 259:H525, 1990.PubMedGoogle Scholar
  140. 140.
    Weisman HF, Bartow T, Leppo MK, Marsh HC Jr, Carson GR, Concino MF, et al. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science 249:146, 1990.PubMedCrossRefGoogle Scholar
  141. 141.
    Rossen RD, Michael LH, Kagiyama A, Savage HE, Hanson G, Reisberg MA, et al. Mechanism of complement activation after coronary artery occlusion: Evidence that myocardial ischemia in dogs causes release of constitutents of myocardial subcellular origin that complex with human Clq in vivo. Circ Res 62:572, 1988.PubMedGoogle Scholar
  142. 142.
    Rossen RD, Michael LH, Hawkins HK, Youker K, Dreyer WJ, Baughn RE, et al. Cardiolipin-protein complexes and initiation of complement activation after coronary artery occlusion. Circ Res 75:546, 1994.PubMedGoogle Scholar
  143. 143.
    Kagiyama A, Savage HE, Michael LH, Hanson G, Entman ML, Rossen RD. Molecular basis of complement activation in ischemic myocardium: Identification of specific molecules of mitochondrial origin that bind human Clq and fix complement. Circ Res 64:607, 1989.PubMedGoogle Scholar
  144. 144.
    Smith EF III, Griswold DE, Egan JW, Hillegass LM, Smith RAG, Hibbs MJ, et al. Reduction of myocardial reperfusion injury with soluble complement receptor 1 (BRL 55730). Eur J Pharmacol 236:477, 1993.PubMedCrossRefGoogle Scholar
  145. 145.
    Jaeschke II, Farhood A, Bautista AP, Spolarics Z, Spitzer JJ. Complement activates Kupffer cells and neutrophils during reperfusion after hepatic ischemia. Am J Physiol 264:G801, 1993.PubMedGoogle Scholar
  146. 146.
    Kovacsovics T, Tschopp J, Kress A, Isliker H. Antibody-independent activation of C1, the first component of complement, by cardiolipin. J Immunol 135:2695, 1985.PubMedGoogle Scholar
  147. 147.
    Seifert PS, Hugo F, Tranum-Jensen J, Zahringer U, Muhly M, Bhakdi S. Isolation and characterization of a complement-activating lipid extracted from human atherosclerotic lesions. J Exp Med 172:547, 1990.PubMedCrossRefGoogle Scholar
  148. 148.
    Ratnoff OD, Naff GB.The conversion of C’ls the C’l esterase by plasma and trypsin. J Exp Med 125:337, 1967.PubMedCrossRefGoogle Scholar
  149. 149.
    Ward P. A plasmin-split fragment of C3 as a new chemotactic factor. J Exp Med 126:189, 1967.PubMedCrossRefGoogle Scholar
  150. 150.
    Frangi D, Gardinali M, Cafaro C, Pozzoni L, Agostoni A. Abrupt complement activation and transient neutropenia in patients with acute myocardial infarction treated with streptokinase. Circulation 89:76, 1994.PubMedGoogle Scholar
  151. 151.
    Ewald GA, Eisenberg PR. Plasmin-mediated activation of contact system in response to pharmacological thrombolysis. Circulation 91:28, 1995.PubMedGoogle Scholar
  152. 152.
    Halperin JA, Taratuska A, Nicholson-Weller A. Terminal complement complex C5b-9 stimulates mitogenesis in 3T3 cells. J Clin Invest 91:1974, 1993.PubMedGoogle Scholar
  153. 153.
    Benzaquen LR, Nicholson-Weller A, Halperin JA. Terminal complement proteins C5b-9 release basic fibroblast growth factor and platelet-derived growth factor from endothelial cells. J Exp Med 179:985, 1994.PubMedCrossRefGoogle Scholar
  154. 154.
    Hattori R, Hamilton KK, McEver RP, Sims PJ. Complement proteins C5b-9 induce secretion of high molecular weight multimers of endothelial von Willebrand factor and translocation of granule membrane protein GMP-140 to the cell surface. J Biol Chem 264:9053, 1989.PubMedGoogle Scholar
  155. 155.
    Hamilton KK, Hattori R, Esmon CT, Sims PJ. Complement proteins C5b-9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for assembly of the prothrombinase enzyme complex. J Biol Chem 265:3809, 1990.PubMedGoogle Scholar
  156. 156.
    Niculescu F, Rus HG, Vlaicu R. Immunohisto-chemical localization of C5b-9, S-protein, C3d and apolipoprotein B in human arterial tissues with atherosclerosis. Atherosclerosis 65:1, 1987.PubMedCrossRefGoogle Scholar
  157. 157.
    Seifert PS, Hansson GK. Decay-accelerating factor is expressed on vascular smooth muscle cells in human atherosclerotic lesions. J Clin Invest 84:597, 1989.PubMedGoogle Scholar
  158. 158.
    Seifert PS, Hansson GK, Complement receptors and regulatory proteins in human atherosclerotic lesions. Arteriosclerosis 9:802, 1989.PubMedGoogle Scholar
  159. 159.
    Seifert PS, Roth I, Schmiedt W, Oelert H, Okada N, Okada H, et al. CD59 (homologous restriction factor 20), a plasma membrane protein that protects against complement C5b-9 attack, in human atherosclerotic lesions. Atherosclerosis 96:135, 1992.PubMedCrossRefGoogle Scholar
  160. 160.
    Shafter H, Mathey D, Hugo F, Bhakdi S. Deposition of the terminal C5b-9 complement complex in infarcted areas of human myocardium. J Immunol 137:1945, 1986.Google Scholar
  161. 161.
    Hugo F, Hamdoch T, Mathey D, Schafer H, Bhakdi S. Quantiative measurement of SC5b-9 and C5b-9(m) in infarcted areas of human myocardium. Clin Exp Immunol 81:132, 1990.PubMedCrossRefGoogle Scholar
  162. 162.
    Zimmermann A, Gerber H, Nussenzweig V, Isliker H. Decay-accelerating factor in the cardiomyocytes of normal individuals and patients with myocardial infarction. Virchows Arch A Pathol Anat 417:299, 1990.CrossRefGoogle Scholar
  163. 163.
    Vakeva A, Laurila P, Meri S. Loss of expression of protection (CD59) is associated with complement membrane attack complex deposition in myocardial infarction. Lab Invest 67:608, 1992.PubMedGoogle Scholar
  164. 164.
    Pemberton M, Anderson G, Vetvicka V, Justus DE, Ross GD. Microvascular effects of complement blockade with soluble recombinant CRI on ischemia/ reperfusion injury in skeletal muscle. J Immunol 150:5104, 1993.PubMedGoogle Scholar
  165. 165.
    Rabinovici R, Yeh CG, Hillegass LM, Griswold DC, DiMartino MJ, Vernick J, et al. Role of complement in endotoxin/platelet-activating factor-induced lung injury. J Immunol 149:1744, 1992.sPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Una S. Ryan

There are no affiliations available

Personalised recommendations