Molecular Approaches to The Design of New Thrombolytic Agents

  • Bruce A. Keyt
  • Ted W. Love
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 193)


Tissue plasminogen activator (t-PA) is a glycoprotein that converts plasminogen to plasmin, which cleaves the gel form of fibrin to soluble fibrin degradation products. Recombinant t-PA (Activase® t-PA) is currently used as a thrombolytic agent in the treatment of acute myocardial infarction. Using recombinant DNA technology, the protein sequence can be altered, possibly improving the function of t-PA. Numerous investigators have taken different approaches to the design and evaluation of t-PA variants. Several comprehensive reviews of the literature describe a variety of t-PA mutants and discuss the effects of these mutations on fibrinolytic activity [1,2].


Plasminogen Activator Tissue Plasminogen Activator Clot Lysis Bovine Pancreatic Trypsin Inhibitor Plasminogen Activa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Madison EL. Probing structure-function relationships of tissue-type plasminogen activatory by site-specific mutagenesis. Fibrinolysis 8(Suppl. 1):221, 1994.Google Scholar
  2. 2.
    Keyt BA, Paoni NF, Bennett WF. Site-directed mutagenesis of tissue-type plasminogen activator. In Cleland JL, Craik CS (eds). Protein Engineering: Principles and Practice. New York: Wiley-Liss, 435, 1996.Google Scholar
  3. 3.
    Hoylaerts M, Rijken DC, Lijnen HR, Collen D. On the regulation and control of fibrinolysis. J Biol Chem 257:2912, 1982.PubMedGoogle Scholar
  4. 4.
    Wagner OF, deVries C, Hohmann C, Veerman H, Pannekoek H. Interaction between plasminogen activator inhibitor 1 (PAI-1) bound to fibrin and either tissue-type plasminogen (t-PA) or urokinase-type plasminogen activator (u-PA). J Clin Invest 84:647, 1989PubMedCrossRefGoogle Scholar
  5. 5.
    Otter M, Barrett-Bergshoeff MM, Rijken DC. Binding of tissue-type plasminogen activator by the mannose receptor. J Biol Chem 266:13931, 1991.PubMedGoogle Scholar
  6. 6.
    Bu G, Warshawsky I, Schwartz AL. Cellular receptors for the plasminogen activators. Blood 83:3427, 1994.PubMedGoogle Scholar
  7. 7.
    Garabedian HD, Gold HK, Leinbach RC, Johns JA, Yasuda T, Kanuke M, Collen D. Comparative properties of two clinical preparations of recombinant human rissue-type plasminogen activator in patients with acute myocardial infarction. J Am Coll Cardiol 9:599, 1987.PubMedGoogle Scholar
  8. 8.
    Rijken DC, Juhan-Vague I, DeCock F, Collen D. Measurement of human tissue-type plasminogen activator by a two-site immunoradiometnc assay. J Lab Clin Med 101:274, 1983.PubMedGoogle Scholar
  9. 9.
    Rabiner SF, Goldfine JD, Hart A, Summaria L, Robbins KC. Radioimmunoassay of human plasminogen and plasmin. J Lab Clin Med 74:265, 1969.PubMedGoogle Scholar
  10. 10.
    Booth, NA, Simpson AJ, Croll A, Bennett B, MacGregor IR. Plasminogen activator inhibitor (PAI-1) in plasma and platelets. Br J Haematol 70:327, 1988.PubMedGoogle Scholar
  11. 11.
    Moroi M, Aoki N. Isolation and characterization of alpha-2-plasmin inhibitor from human plasma. A novel proteinase inhibitor which inhibits activator-induced clot lysis. J Biol Chem 251:5956, 1976.PubMedGoogle Scholar
  12. 12.
    Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA, Bennett WF, Yelverton E, Seeberg PH, Heyneker HL, Goeddel DV, Collen D. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301:214, 1983.PubMedGoogle Scholar
  13. 13.
    Banyai L, Varadi A, Patthy L. Common evolutionary origin of the fibrin-binding structures of fibronectin and tissue-type plasminogen activator. FEBS Lett 163:37, 1983.PubMedGoogle Scholar
  14. 14.
    Ny T, Elgh F, Lund B. The structure of the human tissue-type plasminogen activator gene: Correlation of intron and exon structures to functional and structural domains. Proc Natl Acad Sci USA 81:5355, 1984.PubMedGoogle Scholar
  15. 15.
    Patthy L. Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules. Cell 41:657, 1985.Google Scholar
  16. 16.
    vanZonneveld AJ, Veerman H, Pannekoek HJ. Autonomous functions of structural domains on human tissue-type plasminogen activator. Proc Natl Acad Sci USA 83:4670, 1986.PubMedGoogle Scholar
  17. 17.
    Rijken DC, Groenveld E. Isolation and functional characterization of the heavy and light chains of human tissue-type plasminogen activator. J Biol Chem 261:3098, 1986.PubMedGoogle Scholar
  18. 18.
    Holvoet P, Lijnen HR, Collen D, Characterization of functional domains in human tissue-type plasminogen activator with the use of monoclonal antibodies. Eur J Biochem 158:173, 1986.PubMedGoogle Scholar
  19. 19.
    Verheijen JH, Caspers MPM, Chang GTG, deMunk GAW, Pouwels PH, EngerValk BE. Involvement of finger domain and kringle 2 domain of tissue-type plasminogen activator in fibrin binding and stimulation of activity of fibrin. EMBO J 5:3525, 1986.PubMedGoogle Scholar
  20. 20.
    Larsen GR, Hensen K, Blue Y. Variants of human tissue-type plasminogen activator. J Biol Chem 263:1023, 1988.PubMedGoogle Scholar
  21. 21.
    deVries C, Veerman H, Pannekoek H. Identification of the domains of tissue-type plasminogen activator involved in the augmented binding to fibrin after limited digestion with plasmin. J Biol Chem 264:12604, 1989.PubMedGoogle Scholar
  22. 22.
    Bennett WF, Paoni NF, Keyt BA, Botstein D, Jones AJS, Presta L, Wurm FM, Zoller MJ. High resolution analysis of functional determinants on human tissue-type plasminogen activator. J Biol Chem 266:5191, 1991.PubMedGoogle Scholar
  23. 23.
    Keyt B, Berleau LT, Nguyen H, Bennett WF. Radioiodination of the active site of tissue plasminogen activator: A method for radiolabeling serine proteases with tyrosylprolylarginyl chloromethyl ketone. Anal Biochem 206:73, 1992.PubMedGoogle Scholar
  24. 24.
    vanZonneveld AJ, Veerman H, Pannekoek H. On the interaction of the finger and the kringle-2 domain of tissue-type plasminogen activator with fibrin. J Biol Chem 261:14214, 1986.PubMedGoogle Scholar
  25. 25.
    Rijken DC, Hoylaerts M, Collen D. Fibrinolytic properties of one-chain and two-chain human extrinsic (tissue-type) plasminogen accivator. J Biol Chem 257:2920, 1982.PubMedGoogle Scholar
  26. 26.
    Rånby M. Studies on the kinetics of plasminogen activation by tissue plasminogen activator. Biochim Biophys Acta 704:461, 1982.PubMedGoogle Scholar
  27. 27.
    Schneiderman J, Loskutoff DJ. Plasminogen activator inhibitors. Trends Cardiovasc Med 1:99, 1991.Google Scholar
  28. 28.
    Hekman C, Loskutoff DJ. Kinetic analysis of the interactions between plasminogen activator inhibitor 1 and both urokinase and tissue plasminogen activator. Arch Biochem Biophys 262:199, 1988.PubMedGoogle Scholar
  29. 29.
    Chmielewska J, Ranby M, Wiman B. Kinetics of the inhibition of plasminogen activators by the plasminogen-activator inhibitor. Biochem J 251:327, 1988.PubMedGoogle Scholar
  30. 30.
    DeClerck PJ, Alessi M-C, Verstreken M, Kruithof EKO, Juhan-Vague I, Collen D. Measurement of plasminogen activator inhibitor 1 in biologic fluids with a murine monoclonal antibody-based enzyme-linked immunosorbant assay. Blood 71:220, 1988.Google Scholar
  31. 31.
    Booth NA, Robbie LA, Croll AM, Bennett B. Lysis of platelet-rich thrombi: The role of PAI-1. Ann N Y Acad Sci 667:70, 1992.PubMedGoogle Scholar
  32. 32.
    Potter van Loon BJ, Rijken DC, Brommer EJP, van der Maas APC. The amount of plasminogen, t-PA and PAI-1 in human thrombi and the relation to ex-vivo lysibility. Thromb Haemost 67:101, 1992.Google Scholar
  33. 33.
    Levi M, Biemond BJ, van Zonneveld A-J, ten Cate JW, Pannekoek H. Inhibition of plasminogen activator inhibiror-1 activity results in promotion of endogenous thrombolysis and inhibition of thrombus extension in models of experimental thrombosis. Circulation 85:305, 1992.PubMedGoogle Scholar
  34. 34.
    Krishnamurti C, Keyt B, Maglasang P, Alving BM. PAI-1 resistant t-PA: Low doses prevent fibrin deposition in rabbits with increased PAI-1 activity. Blood 87:14, 1996.PubMedGoogle Scholar
  35. 35.
    Krause J. Catabolism of tissue-type plasminogen activator (r-PA), its variants, mutants and hybrids. Fibrinolysis 2:133, 1988.Google Scholar
  36. 36.
    Korninger C, Stassen JM, Collen D. Turnover of human extrinsic (tissue-type) plasminogen activator in rabbits. Thromb Haemost 46:658, 1981.PubMedGoogle Scholar
  37. 37.
    Beebe DP, Aronson DL. Turnover of tissue-type plasminogen activator (t-PA) in rabbits. Thromb Res 43:663, 1986.PubMedGoogle Scholar
  38. 38.
    Einarsson M, Smedrød B, Pertoft H. Uptake and degradation of tissue-type plasminogen activator in rat liver. Thromb Haemost 59:474, 1988.PubMedGoogle Scholar
  39. 39.
    Berleau LT, Refino CJ, Modi N, Bennett WF, keyt BA. Interspecies scaling of wildtype t-PA and TNK-tPA: Prediction of TNK-tPA clearance in humans. Fibrinolysis 8(Suppl 1):26, 1994.Google Scholar
  40. 40.
    Pohl G, Kenne L, Nilsson B, Einarsson M. Isolation and characterization of three different carbohydrate chains from melanoma tissue plasminogen activator. Eur J Biochem 170:69, 1987.PubMedGoogle Scholar
  41. 41.
    Spellman MW, Basa LJ, Leonard CK, Chakel JA, O’Connor JV, Wilson S, van Halbeek H. Carbohydrate structures of human tissue plasminogen activator expressed in Chinese hamster ovary cells. J Biol Chem 264:1410, 1989.Google Scholar
  42. 42.
    Bennett WF. Two forms of tissue-type plasminogen activator (t-PA) differ at a single glycosylation site. Thromb Haemost 50:106, 1983.Google Scholar
  43. 43.
    Rånby M, Bergsdorf N, Pohl G, Wallen P. Isolation of two variants of native one-chain tissue plasminogen activator. FEBS Lett 146:289, 1984.Google Scholar
  44. 44.
    Harris RJ, Leonard CK, Guzzetta AW, Spellman MW. Tissue plasminogen activator has 0-linked Fucose attached to Threonine-6l in the epidermal growth factor domain. Biochemistry 30:2311, 1991.PubMedGoogle Scholar
  45. 45.
    Kentzer EJ, Buko A, Menon G, Sarin VK. Carbohydrate composition and presence of a fucose-protein linkage in recombinant human pro-urokinase. Biochem Biophys Res Commun 171:410, 1990.Google Scholar
  46. 46.
    Bjoern S, Foster DC, Thim L, Wiberg FC, Christensen M, Komihyama Y, Pedersen AH, Kisiel W. Human plasma and recombinant factor. VII. Characterization of O-glycosylations at serine residues 52 and 60 and effects of site-directed mutagenesis of serine 52 to alanine. J Biol Chem 266:11051, 1991.PubMedGoogle Scholar
  47. 47.
    Harris RJ, Ling VT, Spellman MW. O-linked fucose is present in the first epidermal growth factor domain of Factor XII but not protein C. J Biol Chem 267:5102, 1992.PubMedGoogle Scholar
  48. 48.
    Kuiper J, Otter M, Rijken DC, van Berkel TJC. Characterization of the interaction in vivo of tissue-type plasminogen activator with liver cells. J Biol Chem 263:18220, 1988.PubMedGoogle Scholar
  49. 49.
    Cole ES, Nichols EH, Poisson L, Harnois ML, Livingston DJ. In vivo clearance of tissue plasminogen activator: The complex role of sites of glycosylation and level ot sialylation. Fibrinolysis 7:15, 1993.Google Scholar
  50. 50.
    Ashwell G, Harford J. Carbohydrate specific receptors of the liver. Ann Rev Biochem 51:531, 1982.PubMedGoogle Scholar
  51. 51.
    Hajjar KA, Reynolds CM. Alpha-fucose-mediated binding and degradation of tissue-type plasminogen activator by HepG2 cells. J Clin Invest 93:703, 1994.PubMedGoogle Scholar
  52. 52.
    Morton PA, Owensby D, Sobel BE, Schwartz AL. Catabolism of tissue-type plasminogen activator by the human hepatoma cell line HepG2. J Biol Chem 264:7228, 1989.PubMedGoogle Scholar
  53. 53.
    Herz J. Surface location and high affinity for calcium of a 500 kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as a lipoprotein receptor. EMBO J 7:4119, 1988.PubMedGoogle Scholar
  54. 54.
    Orth K, Madison EL, Gething M-J, Sambrook JF, Herz J. Complexes of tissue-type plasminogen activatot and its serpin inhibitor plasminogen activator inhibitor type I are internalized by means of the low density lipoprotein receptor-related protein/(α2,-macroglobulin receptor. Proc Natl Acad Sci USA 89:7422, 1992.PubMedGoogle Scholar
  55. 55.
    Bu G, Williams S, Strickland DK, Schwartz AL. Low density lipoprotein receptor/(α2-macroglobulin receptor is an hepatic receptor for tissue-type plasminogen activator. Proc Natl Acad Sci USA 89:7427, 1992.PubMedGoogle Scholar
  56. 56.
    Gliemann J, Davidsen O. Characterization of receptors for α2-macroglobulin-trypsin complex in rat hepatocytes. Biochim Biophys Acta 885:49, 1986.PubMedGoogle Scholar
  57. 57.
    Strickland DK, Ashcom JD, Williams S, Burgess WH, Migliorini M, Argraves WS. Sequence identity between the α2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multi-functional receptor. J Biol Chem 265:17401, 1990.PubMedGoogle Scholar
  58. 58.
    Kristensen T, Moestrup SK, Gliemann J, Bendtsen L, Sand O, Sottrup-Jensen L. Evidence that the newly cloned low density lipoptotein receptor-related protein (LRP) is the α2,-macroglobulin receptor. FEBS Lett 276:151, 1990.PubMedGoogle Scholar
  59. 59.
    Bu G, Maksymovitch EA, Schwartz AL. Receptor-mediated endocytosis of tissue-type plasminogen activator by low density lipoprotein receptor-related protein on human hepatoma HEP G2 cells. J Biol Chem 268:13002, 1993.PubMedGoogle Scholar
  60. 60.
    Warshawsky I, Bu G, Schwartz AL. 39 kD protein inhibits tissue-type plasminogen activator clearance in vivo. J Clin Invest 92:937, 1993.PubMedGoogle Scholar
  61. 61.
    Nykaer A, NyKjaer A, Petersen CM, Moller B, Jensen PH, Moestrup SK, Holtet TL, Etzerodt M, Thogersen HC, Munch M, Andreasen P, Gliemann J. Purified α2-macroglobulin receptor/LDL receptor-related protein binds urokinase: plasminogen activator inhibitor type-1 complex. J Biol Chem 267:14542, 1992.Google Scholar
  62. 62.
    Beiseigel U, Webet W, Ihrke G, Herz J, Stanley KK. The LDL receptor-related protein, LRP, is an apolipoprotein E-binding protein. Nature 341:162, 1989.Google Scholar
  63. 63.
    Willnow TE, Goldstein JL, Orth K, Brown MS, Herz J. Low density receptor-related protein/α2-macroglobulin receptor and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem 267:26172, 1992.PubMedGoogle Scholar
  64. 64.
    Kowal RC, Herz J, Goldstein JL, Esser V, Brown MS. Low density lipoprotein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins. Proc Natl Acad Sci USA 86:5810, 1989.PubMedGoogle Scholar
  65. 65.
    Doolittle RF. The evolution of vertebrate blood coagulation: A case of yin and yang. Thromb Haemost 70:24, 1993.PubMedGoogle Scholar
  66. 66.
    Astrup T. Fibrinolysis: An overview. In Davidson JF, Rowan RM, Samama MM, Desnoyers PC (eds). Progress in Chemical Fibrinolysis and Thrombolysis, Vol. 3. Nw York: Raven Press, 1978:1.Google Scholar
  67. 67.
    Collen D, Lijnen HR. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78:3114, 1991.PubMedGoogle Scholar
  68. 68.
    Vassalli JD, Sappino AP, Belin D. The plasminogen activator/plasmin system. J Clin Invest 88:1067, 1991.PubMedCrossRefGoogle Scholar
  69. 69.
    Carmeliet P, Schoonjans L, Kieckens L, Ream B, Degen J, Bronson R, De Vos R. van den Oord JJ, Collen D, Mulligan RC. Physiological consequences of loss of plasminogen activator gene function in mince. Nature 368:419, 1994.PubMedGoogle Scholar
  70. 70.
    Higgins DH, Bennett WF. Tissue plasminogen activator: The biochemistry and pharmacology of variants produced by mutagenesis. Annu Rev Pharmacol Toxicol 30:91, 1990.PubMedGoogle Scholar
  71. 71.
    Lijnen HR, Collen D. Strategies tor the improvement of thrombolytic agents. Thromb Haemost 66:88, 1991.PubMedGoogle Scholar
  72. 72.
    Lijnen HR, Nelles L, Van Hoef B, De Cock F, Collen D. Biochemical and functional characterization of human tissue-type plasminogen activator variants obtained by deletion and/or duplication of structural/ functional domains. J Biol Chem 265:5677, 1990.PubMedGoogle Scholar
  73. 73.
    Kalyan NK, Wilhelm J, Lee SG, Dheer SK, Cheng S, Hjorth R, Pierzchala WA, Wiener F, Hung PP. Construction, expression and biochemical characterization of a novel tris-kringle plasminogen activator gene. Fibrinolysis 4:79, 1990.Google Scholar
  74. 74.
    Ikenaka Y, Yajima K, Yahara H, Maruyama H, Matsumoco K, Okada K, Ueshima S, Matsuo O. Characterization of human tissue-type plasminogen activator variants with amino acid mutations in the kringle-1 domain. Blood Coagul Fibrinoiysis 3:381, 1992.Google Scholar
  75. 75.
    Higgins DH, Vehar GA. Interaction of one-chain and two-chain tissue plasminogen activator with intact and degraded fibrin. Biochemistry 26:7786, 1987.PubMedGoogle Scholar
  76. 76.
    Tate KM, Higgins DL, Holmes WE, Winkler ME, Heyneker HL, Vehar GA. Functional role of proteolytic cleavage at arginine-275 of human tissue plasminogen activator as assessed by site-directed mutagenesis. Biochemistry 26:338, 1987.PubMedGoogle Scholar
  77. 77.
    Haigwood NL, Mullenbach GT, Moore GK, DesJardin LE, Tabrizi A, Brown-Shimer SL, Stauss H, Stohr HA, Paques E-P. Variants of human tissue-type plasminogen activator substituted at the protease cleavage site and glycosylation sites, and truncated at the N-and C-cermini. Protein Eng 2:611, 1989.PubMedGoogle Scholar
  78. 78.
    Wittwer AJ, Howard SC, Carr LS, Harakas NK, Feder J, Parekh RB, Rudd PM, Dwek RA, Rademacher TW. Effects of N-glycosylation on in vitro activity of Bowes melanoma and human colon fibroblast derived tissue plasminogen activator. Biochemistry 28:7662, 1989.PubMedGoogle Scholar
  79. 79.
    Haber E, Quertermous T, Matsueda GR, Runge MS Innovative approaches to plasminogen activator therapy. Science 243:51, 1989.PubMedGoogle Scholar
  80. 80.
    Hui KY, Haber E, Matsueda GR. Monoclonal antibodies to a synthetic fibrin-like peptide bind to human fibrin but not fibrinogen. Science 222:1129, 1983.PubMedGoogle Scholar
  81. 81.
    Bode C, Matsueda GR, Hui KY, Haber E. Antibody-directed urokinase: A specific fibrinolytic agent. Science 229:765, 1985.PubMedGoogle Scholar
  82. 82.
    Runge MS, Bode C, Matsueda GR, Haber E. Conjugation to an anti-fibrin monoclonal antibody enhances the fibrinolytic potency of tissue plasminogen activator in vitro. Biochemistry 27:1153, 1988.PubMedGoogle Scholar
  83. 83.
    Runge MS, Bode C, Matsueda GR, Haber E. Antibody-enhanced thrombolysis: Targeting of tissue plasminogen activator in vivo. Proc Natl Acad Sci USA 84:7659, 1987.PubMedGoogle Scholar
  84. 84.
    Bovill EG, Terrin ML, Stump DC, Berke AD, Frederick M, Collen D, Feit F, Gore JM, Hillis LD, Lambrew CT, Leiboff R, Mann KG, Markis JE, Pratt CM, Sharkey SW, Sopko G, Tracy RP, Chesebro JH. Hemorrhagic events during therapy with recombinant tissue-type plasminogen activator, heparin, and aspirin for acute myocardial infarction. Results of the thrombolysis in myocardial infarction (TIMI), phase II trial. Annu Int Med 115:256, 1991.Google Scholar
  85. 85.
    Cartwright, T. The plasminogen activator of vampire bat saliva. Blood 43:317, 1974.PubMedGoogle Scholar
  86. 86.
    Gardell SJ, Duong LT, Diehl RE, York JD, Hare TR, Register RB, Jacobs JW, Dixon RAF, Friedman PA. Isolation, characterization, and cDNA cloning of a vampire bat salivary plasminogen activator. J Biol Chem 264:17947, 1989.PubMedGoogle Scholar
  87. 87.
    Kratzschmar J, Haendler B, Langer G, Boidol W, Bringmann P, Alagon A, Donner P, Schleuning W-D. The plasminogen activator family from the salivary gland of the vampire bat Desmodus rotundus: Cloning and expression. Gene 105:229, 1991.PubMedGoogle Scholar
  88. 88.
    Gardell SJ, Ramjit DR, Stabilito H, Fujita T, Lynch JJ, Cuca GC, Jain D, Wang S, Tung J, Mark GE, Shebuski RJ. Effective thrombolysis without marked plasminemia after bolus intravenous administration of vampire bat salivary plasminogen activator in rabbits. Circulation 84:244, 1991.PubMedGoogle Scholar
  89. 89.
    Witt W, Baldus B, Bringmann P, Cashion L, Donner P, Schleuning W-D. Thrombolytic properties of Desmodus rotundus (vampire bat) salivary plasminogen activator in experimental pulmonary embolism in rats. Blood 79:1213, 1992.PubMedGoogle Scholar
  90. 90.
    Califf RM, Topol EJ, George BS, Boswick JM, Abbotsmith C, Sigmon KN, Candel R, Masek R, Kereiakes D, O’Neill WW, Stack RS, Stump D, and the TAMI Study Group. Hemorrhagic complications associated with the use of intravenous tissue plasminogen activator in treatment or acute myocardial infarction. Am J Med 85:353, 1988.PubMedGoogle Scholar
  91. 91.
    Rao AK, Pratt C, Berke, A, Jaffe A, Ockene I. Schreiber TL, Bell WR, Knatterud G, Robertson TL, Terrin ML. For the TIMI Investigators Thrombolysis in myocardial infarction (TIMI) trial-phase I: Hemorrhagic manifestations and changes in plasma fibrinogen and the fibrinolytic system in patients treared with recombinant tissue plasminogen activator and streptokinase. J Am Coll Cardiol 11:1, 1988.PubMedGoogle Scholar
  92. 92.
    Stump DC, Califf RM, Topol EJ, Sigmon K, Thornton D, Masek R, Anderson L, Collen D, and the TAMI Study Group. Pharmacodynamics of thrombolysis with recombinant tissue-type plasminogen patients with acute myocardial infarction. Circulation 80:1222, 1989.PubMedGoogle Scholar
  93. 93.
    Cunningham BC, Wells JA. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244:1801, 1989.Google Scholar
  94. 94.
    Eastman D, Wurm FM, van Reis R, Higgins DL. A region of tissue plasminogen activator that affects plasminogen activation differentially with various fibrin(ogen)-related stimulators. Biochemistry 31:419, 1992.PubMedGoogle Scholar
  95. 95.
    Paoni NF, Refino CJ, Brady K, Pena LC, Nguyen HV, Kerr EM, Johnson AC, Wurm FM, van Reis R, Botstein D, Bennett WF. Involvement of residues 296–299 in the enzymatic activity of tissue-type plasminogen activator. Protein Eng 5:259, 1992.PubMedGoogle Scholar
  96. 96.
    Paoni NF, Chow AM, Pena LC, Keyt BA, Zoller MJ, Bennett WF. Making tissue-type plasminogen activator more fibrin specific. Protein Eng 6:529, 1993.PubMedGoogle Scholar
  97. 97.
    Strandberg L, Madison E. Variants of tissue-type plasminogen activator with substantially enhanced response and selectivity toward fibrin co-factors. J Biol Chem 270:23444, 1995.PubMedGoogle Scholar
  98. 98.
    Paoni NF, Keyt BA, Refino CJ, Chow AM, Nguyen H, Berleau LT, Badillo JM, Peña LC, Brady K, Wurm FM, Ogez J, Bennett WF. A slow clearing, fibrin-specific, PA1-1 resistant variant of t-PA (T103N, KHRR296-299AAAA). Thromb Haemost 70:307, 1993.PubMedGoogle Scholar
  99. 99.
    Refino CJ, Paoni NF, Keyt BA, Pater CS, Badillo JM, Wurm FM, Ogez J, Bennett WF. A variant of t-PA (T103N, KHRR 296-299 AAAA) that, by bolus, has increased potency and decreased systemic activation of plasminogen. Thromb Haemost 70:313, 1993.PubMedGoogle Scholar
  100. 100.
    Riccio A, Grimaldi G, Verde P, Sebastio G, Boast S, Blasi F. The human urokinase-plasminogen activator gene and its promoter. Nucleic Acids Res 13:2759, 1985.PubMedGoogle Scholar
  101. 101.
    Lamba D, Bauer M, Huber R, Fischer S, Rudolph R, Kohnert U, Bode W. The 2.3 Å crystal structure of the catalytic domain of recombinant two-chain human tissue-type plasminogen activator. J Mol Biol 258:117, 1996.PubMedGoogle Scholar
  102. 102.
    Lucore CL, Sobel B, Interactions of tissue-type plasminogen activator with plasma inhibitors and their pharmacologic implications. Circulation 77:660, 1988.PubMedGoogle Scholar
  103. 103.
    Shohet RV, Spitzer S, Madison EL, Bassel-Duby R, Gething M-J, Sambrook JF. Inhibitor-resistant tissue-type plasminogen activator: An improved thrombolytic agent in vitro. Thromb Haemost 71:124, 1994.PubMedGoogle Scholar
  104. 104.
    Madison FL, Goldsmith EJ, Gerard RD, Gething M-JH, Sambrook JF. Serpin-resistant mutants of human tissue-type plasminogen activacor. Nature 339:721, 1989.PubMedGoogle Scholar
  105. 105.
    Huber R, Kukla D, Bode W, Schwager P, Bartels K, Deiscnhofer J, Steigeman W. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1.9 Å resolution. J Mol Biol 89:73, 1974.PubMedGoogle Scholar
  106. 106.
    Madison FL, Goldsmith EJ, Gerard RD, Gething M-JH, Sambrook JF, Bassel-Duby RS. Amino acid residues that affect interaction of tissue-type plasminogen activacor with plasminogen activator inhibitor 1. Proc Natl Acad Sci USA 87:3530, 1990.PubMedGoogle Scholar
  107. 107.
    Madison EL, Goldsmith EJ, Gething M-JH, Sambrook JF, Gerard RD, Restoration of serine protease-inhibitor interaction by protein engineering. J Biol Chem 265:21423, 1990.PubMedGoogle Scholar
  108. 108.
    Braaten JV, Handt S, Jerome WG, Kirkpatrick J, Lewis JC, Hantgan RR. Regulation of fibrinolysis by platelet-released plasminogen activator inhibitor 1: Light scattering and ultrastructural examination of lysis of a model platelet-fibrin thrombus. Blood 81:1290, 1993.PubMedGoogle Scholar
  109. 109.
    Gething M-J, Adler B, Boose J-A, Gerard RD, Madison EL, McGookey D, Meidell RS, Roman LM, Sambrook J. Variants of human tissue-type plasminogen activator that lack specific structural domains of the heavy chain. EMBO J 7:2731, 1988.PubMedGoogle Scholar
  110. 110.
    Larsen GR, Metzger M, Hensen K, Blue Y, Horgan P. Pharmacokinetic and distribution analysis of variant forms of tissue-type plasminogen activator with prolonged clearance in rat. Blood 73:1842, 1989.PubMedGoogle Scholar
  111. 111.
    Browne MJ, Carey JE, Chapman CG, Tyrrell WR, Entwisle C, Mark G, Lawrence P, Reavy B, Dodd I, Esmail A, Robinson JH. A tissue-type plasminogen activator mutant with prolonged clearance in vivo. J Biol Chem 263:1599, 1988.PubMedGoogle Scholar
  112. 112.
    Johannessen M, Diness V, Pingel K, Petersen LC, Rao D, Lioubin P, O’Hara P, Mulvihill E. Fibrin affinity and clearance of t-PA deletion and substitution analogues. Thromb Haemost 6:54, 1990.Google Scholar
  113. 113.
    Collen D, Stassen JM, Larsen G. Pharmaco-kineticsand thrombolytic properties of deletion mutants of human tissue-type plasminogen activator in rabbits. Blood 71:216, 1988.PubMedGoogle Scholar
  114. 114.
    Collen D, Lijnen HR, Vanlinthout I, Kieckens L, Nelles L, Stassen JM. Thrombolytic and pharmacokinetic properties of human tissue-type plasminogen activator variants, obtained by deletion and/or duplication of structural/functional domains, in a hamster pulmonary embolism model. Thromb Haemost 65:174, 1991.PubMedGoogle Scholar
  115. 115.
    Kalyan NK, Lee SG, Wilhelm J, Fu KP, Hum W-T. Rappaport R, Hartzell R, Urbano C, Hung PP. Structure-function analysis with tissue-type plasminogen activator. J Biol Chem 263:3971, 1988.PubMedGoogle Scholar
  116. 116.
    Fu KP, Lee S, Hum WT, Kalyan N, Rappaport R, Hetzel N, Hung PP. Disposition of a novel recombinant tissue plasminogen activacor, des 2-89 t-PA, in mice. Thromb Res 50:33, 1988.PubMedGoogle Scholar
  117. 117.
    Browne MJ, Chapman CG, Dodd I, Reavy B, Esmail AF, Robinson JH. The role of tissue-type plasminogen activacor A-chain domains in plasma clearance. Fibnnolysis 3:207, 1989.Google Scholar
  118. 118.
    Kohnert U, Rudolph R, Verheijen JH, et al. Biochemical properties of the kringle 2 and protease domains are maintained in the refolded t-PA deletion variant BM 06.022. Protein Eng 5:93, 1992.PubMedGoogle Scholar
  119. 119.
    Martin U, Fischer S, Kohnert U, Opitz U, Rudolph R, Sponer G, Stern A, Strein K. Thrombolysis with an Escherichia coli-produced recombinant plasminogen activator (BM 06.022) in the rabbit model of jugular vein thrombosis. Thromb Haemost 65:560, 1991.PubMedGoogle Scholar
  120. 120.
    Martin U, novel Köhler J, Sponer G, Strein K. Pharmacokinetics of the recombinant plasminogen activator (BM 06.022) in rats, dogs, and non-human primates. Fibrinolysis 6:39, 1992.Google Scholar
  121. 121.
    Martin U, van Möllendorf E, Akpan W, Kientsch Engel R, Kaufmann B, Neugebauer G. Dose-ranging study of the novel recombinant plasminogen activator BM 06.022 in healthy volunteers. Clin Pharmacol Ther 50:429, 1991.PubMedCrossRefGoogle Scholar
  122. 122.
    Neuhaus K-L, von Essen R, Vogt A, Tebbe U, Rustige J, Wagner H-J, Appel K-L, Stienen U, König R, Meyer-Sabellek W. Dose-finding with a novel recombinant plasminogen activator (BM 06.022) in patients with acute myocardial infarction: Results of the German recombinant plasminogen activator study. J Am Coll Cardiol 24:55, 1994.PubMedGoogle Scholar
  123. 123.
    Bode C, Smalling RW, Berg G, Burnett C, Lorch G, Kalbfleisch JM, Chernoff R, Christie LG, Feldman RL, Seals AA, Weaver WD. Randomized Comparison of coronary thrombolysis achieved with double-bolus Reteplase and front-loaded, accelerated Alteplase in patients with acute myocardial infarction. Circulation 94:891, 1996.PubMedGoogle Scholar
  124. 124.
    Internation Joint Efficacy Comparison of Thrombolytics. Randomized, double-blind comparison of reteplase double-bolus administration with streptokinase in acute myocardial infarction: Trial to investigate equivalence. Lancet 346:329, 1995.Google Scholar
  125. 125.
    Hotchkiss A, Refino CJ, Leonard CK, O’Connor JV, Crowley C, McCabe J, Tate K, Nakamura G, Powers D, Levinson A, Mohler M, Spellman MW. The influence of carbohydrate structures on the clearance of recombinant tissue-type plasminogen activator. Thromb Haemost 60:255, 1990.Google Scholar
  126. 126.
    Sobel BE, Sarnoff SJ, Nachowiak BA. Augmented and sustained plasma concentrations after intramuscular injections of molecular variants and deglycosylated forms of tissue-type plasminogen activator. Circulation 81:1362, 1990.PubMedGoogle Scholar
  127. 127.
    Pâques E-P, Just M, Reiner G, Romisch J. Pharmcological and pharmacokinetic properties of a deglycosylated mutant of the tissue-type plasminogen activator expressed in CHO cells. Fibrinolysis 6:125, 1992.Google Scholar
  128. 128.
    Anderson S, Keyt BA. Variants of Plasminogen Activators and Processes for their Production. International Patent Application WO89/11531, filed May 20, dy1988 and published November 30, 1989, U.S. Patent 5,270,198, 1988.Google Scholar
  129. 129.
    Marshall RD. The nature and metabolism of the carbohydrate-peptide linkages of glycoproteins. Biochem Soc Symp 40:17, 1974.PubMedGoogle Scholar
  130. 130.
    Aubert JP, Helbecque N, Loucheux-Lefebvre MH. Circular dichroism studies of synthetic Asn-X-Ser/Thr-containing peptides: Structure-glycosylation relationship. Arch Biochem Biophys 208:20, 1981.PubMedGoogle Scholar
  131. 131.
    Bassell-Duby R, Jiang NY, Bittick T, Madison E, McGookey D, Orth K, Shohet R, Sambrook J, Gething M-J. Tyrosine 67 in the epidermal growth factor-like domain of tissue-type plasminogen activator is important for clearance by a specific hepatic receptor. J Biol Chem 267:9668, 1992.Google Scholar
  132. 132.
    Guzzetta AW, Basa LJ, Hancock WS, Keyt BA, Bennett WF. Identification of carbohydrate structures in glycoprotein peptide maps by the use of LC/ MS with selected ion extraction with special reference to tissue plasminogen activator and a glycosylation variant produced by site directed mutagenesis. Anal Chem 65:2953, 1993.PubMedGoogle Scholar
  133. 133.
    Keyt BA, Paoni NF, Refino CJ, Berleau L, Nguyen H, Chow A, Lai J, Peña L, Pater C, Ogez J, Etcheverry T, Botstein D, Bennett WF. A faster-acting and more potent form of tissue plasminogen activator. Proc Natl Acad Sci USA 91:3670, 1954.Google Scholar
  134. 134.
    Clauss A. Gerinnungsphysiologische schnellmethode zur bestimmung des fibrinogens. Acta Haematol (Basel) 17:237, 1957.Google Scholar
  135. 135.
    Refino CJ, Keyt BA, Paoni NF, Badillo JM, Pater CS, van Peborgh J, Pena L, Berleau LT, Nguyen HV, Bennett WF. A variant of tissue plasminogen activator (T103N, N117Q, KHRR 296-299AAAA) with a decreased plasma clearance rate, is substantially more potent than Activase t-PA in a rabbit thrombolysis model. Thromb Haemost 69:841, 1993.Google Scholar
  136. 136.
    Thomas GR, Thibodeaux H, Bennett WF, Refino CJ, Badillo JM, Errett CJ, Zivin JA. Optimized thrombolysis of cerebral clots with tissue-type plasminogen activator in a rabbit model of embolic stroke. J Pharmacol Exp Ther 264:67, 1993.PubMedGoogle Scholar
  137. 137.
    Thomas GR, Thibodeaux H, Errett CJ, Badillo JM, Keyt BA, Refino CJ, Zivin JA, Bennett WF. A long half-life and fibrin-specific form of tissue plasminogen activator in rabbit models of embolic stroke and peripheral bleeding. Stroke 25:2073, 1994.Google Scholar
  138. 138.
    Benedict CR, Mathew B, Rex KA, Cartwright J Jr, Sordahl LA. Correlation of plasma serotonin changes with platelet aggregation in an in vivo dog model of spontaneous occlusive coronary thrombus formation. Circ Res 7:58, 1986.Google Scholar
  139. 139.
    Benedict CR, Ryan J, Wolitzky B, Gerlach M, Stern D. Active site-blocked factor IXa prevents intravascular thrombus formation in the coronary vasculature without inhibiting extravascular coagulation in a canine thrombosis model. J Clin Invest 88:1760, 1991PubMedGoogle Scholar
  140. 140.
    Benedict CR, Ryan J, Todd J, Kuwabara K, Tijburg P, Cartwright J Jr, Stern D. Active site-blocked factor Xa prevenrs intravascular thrombus formation in the coronary vasculature in parallel with inhibition of extravascular coagulation in a canine thrombosis model. Blood 81:2059, 1993.PubMedGoogle Scholar
  141. 141.
    Benedict CR, Refino CJ, Keyt BA, Pakala R, Paoni NF, Thomas GR, Bennett WF. New variant of human tissue plasminogen activator (tPA) with enhanced efficacy and lower incidence of bleeding compared with recombinant human tPA. Circulation 92:3032, 1995.PubMedGoogle Scholar
  142. 142.
    Nicolini FA, Nichols WW, Saldeen TGP, Mehta JL. Cardiovasc Res 25:283, 1991.PubMedGoogle Scholar
  143. 143.
    Nicolini FA, Mehta JL, Nichols WW, Saldeen TGP, Grant M. Prostacyclin analogue Iloprost decreases thrombolytic potential of tissue-type plasminogen activator in canine coronary thrombosis. Circulation 81:1115, 1990.PubMedGoogle Scholar
  144. 144.
    Nicolini FA, Nichols WW, Mehta JL, Schofield R, Ross M, Player D, Pohl G, Mattsson C. J Am Coll Cardiol 20:228, 1992.CrossRefGoogle Scholar
  145. 145.
    Romson JL, Haack DW, Lucchesi BR. Thromb Res 17:841, 1980.PubMedGoogle Scholar
  146. 146.
    Nicolini FA, Lee P, Rios G, Kottke-Marchant K, Topol EJ. Combination of platelet fibrinogen receptor antagonist and direct thrombin inhibitor at low doses markedly improves thrombolysis. Circulation 89:1802, 1994.PubMedGoogle Scholar
  147. 147.
    Cannon CP, McCabe CH, Gibson CM, Ghali M, Sequeira RF, McKendall GR, Breed J, Modi NB, Fox NL, Tracy RP, Love TW, Braunwald E, and the TIMI 10A Investigators. TNK-Tissue Plasminogen Activator in Acute Myocardial Infarction: Results of the Thrombolysis in Myocardial Infarction (TIMI) 10A Dose-Ranging Trial. Circulation 95:351, 1997.PubMedGoogle Scholar
  148. 148.
    The GUSTO Angiographic Investigators. The effect of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction. N Engl J Med 329:1615, 1993.Google Scholar
  149. 149.
    Dihanich M, Monard D. cDNA sequence of rat pro-thrombin. Nucleic Acids Res 18:4251, 1990.PubMedGoogle Scholar
  150. 150.
    Sottrup-Jensen L, Claeys H, Zajdel M, Petersen TE, Magnusson S. The primary structure of human plasminogen: Isolation of two lysine-binding fragments and one ‘mini-’ plasminogen (MW 38,000) by elastase-catalyzed-limited proteolysis. In Davidson JF, Rowan RM, Samama MM, Desnoyers PC (eds). Progress in Chemical Fibrinolysis and Thrombolysis, Vol. 3. New York: Raven Press, 1978:191.Google Scholar
  151. 151.
    Hagen FS, Gray CL, O’Hara PJ, Grant FJ, Saari GG, Woodbury RG, Hart CE, Insley MY, Kisiel W, Kurachi K, Davie EW. Characterization of a cDNA coding for human factor VII. Proc Natl Acad Sci USA 83:2412, 1986.PubMedGoogle Scholar
  152. 152.
    Jaye M, De La Salle H, Schamber F, Balland A, Kohli V, Findeli A, Tolstoshev P, Lecocq JP. Isolation of a human anti-haemophilic factor IX cDNA clone using a unique 52-base synthetic oligonucleotide probe deduced from the amino acid sequence of bovine factor IX. Nucleic Acids Res 11:2325, 1983.PubMedGoogle Scholar
  153. 153.
    Fung MR, Hay CW, McGillivray RTA. Characterization of an almost full-length cDNA coding for human blood coagulation factor X. Proc Natl Acad Sci USA 82:3591, 1985.PubMedGoogle Scholar
  154. 154.
    Emi M, Nakamura Y, Ogawa M, Yamamoto T, Nishide T, Mori T, Matsubara K. Cloning, characterization and nucleotide sequences of two cDNAs encoding human pancreatic trypsinogens. Gene 41:305, 1986.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Bruce A. Keyt
  • Ted W. Love

There are no affiliations available

Personalised recommendations