Advertisement

Biological Effects of Targeted Gene Inactivation and Gene Transfer of the Coagulation and Fibrinolytic Systems in Mice

  • Peter Carmeliet
  • Désiré Collen
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 193)

Abstract

Preservation of vascular integrity following traumatic or infectious challenges is essential for the survival of multicellular organisms. A major defense mechanism involves the formation of hemostatic plugs by activation of platelets and polymerization of fibrin. Initiation of the plasma coagulation system on exposure of blood to nonvascular cells is triggered by tissue factor (TF), which is expressed by a variety of cells surrounding the vasculature as a hemostatic envelope and which functions as a cellular receptor and cofactor for activation of the serine proteinase factor VII to VIIa [1]. This complex activates factor X directly or indirectly via activation of factor IX, resulting in the generation of thrombin-mediated conversion of fibrinogen to fibrin [2,3]. Thrombin and factor Xa produce a positive feedback stimulation of coagulation by activating factors VIII and V, which serve as membrane-bound receptors/cofactors for the proteolytic enzymes factors IXa and Xa, respectively [2,3].

Keywords

Plasminogen Activator Tissue Factor Deficient Mouse Neointima Formation Dorsal Aorta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edgington TS, Mackman N, Brand K, Ruf W. The structural biology of expression and function of tissue factor. Thromb Haemost 66:67, 1991.PubMedGoogle Scholar
  2. 2.
    Furie B, Furie BC. The molecular basis of blood coagulation. Cell 53:505, 1988.PubMedGoogle Scholar
  3. 3.
    Davie E. Biochemical and molecular aspects of the coagulation cascade. Thromb Haemost 74:1, 1995.PubMedGoogle Scholar
  4. 4.
    Esmon CT. The protein C anticoagulant pathway. Arteriosclcr Thromb 12:135, 1992.Google Scholar
  5. 5.
    Dahlback B. New molecular insights into the genetics of thrombophilia. Resistance to activated protein C caused by Arg 506 to Gln mutation in factor Va a pathogenic risk factor for thrombosis. Thromb Haemost 74:139, 1995.PubMedGoogle Scholar
  6. 6.
    Bick RL, Pegram M. Syndromes of hypercoagulability and thrombosis: A review. Semin Thromb Hemost 20:109, 1994.PubMedGoogle Scholar
  7. 7.
    Broze, GJ. Tissue factor pathway inhibitor and the revised hypothesis of blood coagulation. Trends Cardiovasc Med 2:72, 1992.Google Scholar
  8. 8.
    Hoyer LW. Hemophila A. N Engl J Med 330:38, 1996.Google Scholar
  9. 9.
    Bolton-Maggs PHB, Hill FGH. The rarer inherited coagulation disorders: A review. Blood Rev 9:65, 1995.PubMedGoogle Scholar
  10. 10.
    Altieri DC. Xa receptor EPR-1. FASEB J 9:860, 1995.PubMedGoogle Scholar
  11. 11.
    Coughlin SR. Molecular mechanisms of thrombin signaling. Semin Hematol 31:270, 1994.PubMedGoogle Scholar
  12. 12.
    Astrup T. In Davidson JF, Rowan RM, Samama MM, Desnoyers PC (eds). Progress in Chemical Fibrinolysis and Thrombolysis, Vol. 3. New York: Raven Press, 1978:1.Google Scholar
  13. 13.
    Collen D, Lijnen HR. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78:3114, 1991.PubMedGoogle Scholar
  14. 14.
    Vassalli JD, Sappino JD, Belin D. The plasminogen activator/plasmin system. J Clin Invest 88:1067, 1991.PubMedGoogle Scholar
  15. 15.
    Schneiderman J, Loskutoff DJ. Plasminogen activator inhibitors. Trends Cardiovasc Med 1:99, 1991.Google Scholar
  16. 16.
    Wiman B. Plasminogen activator inhibitor 1 in plasma: Its role in thrombotic disease. Thromb Haemost 74:71, 1995.PubMedGoogle Scholar
  17. 17.
    Lawrence DA, Ginsburg D. In High KA, Roberts HR (eds). Plasminogen Activator Inhibitors. New York: Dekker, 1995:517.Google Scholar
  18. 18.
    Bachmann F. The engima of PAI-2. Gene expression, evolutionary and functional aspects. Thromb Haemost 74:172, 1995.PubMedGoogle Scholar
  19. 19.
    Martin TJ, Allan EH, Fukumoto S. The plasminogen activator and inhibitor system in bone remodeling. Growth Regul 3:209, 1993.PubMedGoogle Scholar
  20. 20.
    Hajjar KA. Cellular receptors in the regulation of plasmin generation. Thromb Haemost 74:294, 1995.PubMedGoogle Scholar
  21. 21.
    Plow EF, Herren T, Redlitz A, Miles LA, Hoover-Plow JL. The cell biology of the plasminogen system. FASEB J 9:939, 1995.PubMedGoogle Scholar
  22. 22.
    Vassalli JD. The urokinase receptor. Fibrinolysis 8(Suppl 1):172, 1994.Google Scholar
  23. 23.
    Blasi F, Conese M, Moller LB, Pedersen N, Cavallaro U, Cubellis MV, Fazioli F, Hernandez-Marrero L, Limongi P, Munoz-Canoves P, Resnati M, Rüttininen L, Sidenius N, Soravia E, Soria MR, Sroppelli MP, Talarico D, Teesalu T, Valcamonica S. The urokinase receptor: Structure, regulation and inhibitor-mediated internalization. Fibrinolysis 8(SuppI 1):182, 1994.Google Scholar
  24. 24.
    Dano K, Behrendt N, Brunner N, Ellis V, Ploug M, Pyke C. The urokinase-receptor. Protein structure and role in plasminogen activation and cancer invasion. Fibrinolysis 8(Suppl 1): 189, 1994.Google Scholar
  25. 25.
    Wei Y, Waltz DA, Rao N, Drummond RJ, Rosenberg S, Chapman HA. Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem 269:32380, 1994.PubMedGoogle Scholar
  26. 26.
    Saksela O, Rifkin D. Cell-associated plasminogen activation: Regulation and physiological functions. A Rev Cell Biol 4:93, 1988.Google Scholar
  27. 27.
    Andreasen PA, Sottrup-Jensen LL, et al. Receptormediated endocytosis of plasminogen activators and activator/inhibitor complexes. FEBS Lett 338:239, 1994.PubMedGoogle Scholar
  28. 28.
    Capecchi MR. Targeted gene replacement. Sci Amer 1994:34.Google Scholar
  29. 29.
    Nagy A. Engineering the mouse genome. Methods Enzymol, in press.Google Scholar
  30. 30.
    Nagy A, Rossant J. Targeted mutagenesis: Analysis of phenotype without germline transmission. J Clin Invest 6:1360, 1996.Google Scholar
  31. 31.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435, 1996.PubMedGoogle Scholar
  32. 32.
    Mulligan RCM. The basic science of gene therapy. Science 260:926, 1993.PubMedGoogle Scholar
  33. 33.
    Schneider MD, French BA. The advent of adenovirus: Gene therapy for cardiovascular disease. Circulation 88:1937, 1995.Google Scholar
  34. 34.
    Carmeliet P, Stassen JM, Collen D, Meidell R, Gerard R. Adenovirus-mediated gene transfer of rr-PA restores thrombolysis in t-PA deficient mice. Submitted.Google Scholar
  35. 35.
    Sorter SJ, Peters KG, O’Keefe J, Coughlin SR. Disparate temporal expression of the prothrombin and thrombin receptor genes during mouse development. Am J Pathol 144:60, 1994.Google Scholar
  36. 36.
    Luther T, Flössel C, Mackman N, Bierhaus A, Kasper M, Albrecht S, Sage HA, Iruela-Arispe L, Grossman H, Strbhlein A, Zhang Y, Nawroth PP, Carmelier P, Loskutoff DJ, Müller M. Tissue factor expression during human and mouse development. Am J Pathol 1996, in press.Google Scholar
  37. 37.
    Imada S, Yamaguchi H, Nagumo N, Katyanagi S, Iwasaki H, Imada M. Identification of fetomodulin, a surface marker protein of fetal development as thrombomodulin by gene gene cloning and functional assays. Dev Biol 140:113, 1990.PubMedGoogle Scholar
  38. 38.
    Healy A, Rayburn H, Rosenberg R, Weiler H. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc Natl Acad Sci USA 92:850, 1995.PubMedGoogle Scholar
  39. 39.
    Carmeliet P, Mackman N, Moons L, Wyns S, Van Vlaenderen I, Luther T, Breier G, Lissens A, Rosen E. Müller M, Risau W, Edgington T, Collen D. Role of the cellular recoptor tissue factor in embyonic vessel development. Submitted.Google Scholar
  40. 40.
    Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability and angiogenesis. Am J Pathol 146:1029, 1995.PubMedGoogle Scholar
  41. 41.
    Zhang Y, Deng Y, Luther T, Mailer M, Ziegler R, Waldherr R, Stern DM, Nawrorh PP. Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice. J Clin Invest 94:1320, 1994.PubMedGoogle Scholar
  42. 42.
    Contrino J, Hair G, Kreutzer DL, Rickles FR. In situ detection of tissue factor in vascular endothelial cells: Correlation with the malignant phenotype of human breast disease. Nature Med 2:209, 1996.PubMedGoogle Scholar
  43. 43.
    Suh TT, Holmbäck K, Jensen NJ, Daugherty CC, Small K, Simon DI, Potter SS, Degen JL. Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen deficient mice. Genes Dev 9:2020, 1995.PubMedGoogle Scholar
  44. 44.
    Erickson LA, Fici GJ, Lund JE, Boyle TP, Polites HG, Marotti KR. Development of venous occlusions in mice transgenic for the plasminogen activator inhibitor-1 gene. Nature 346:74, 1990.PubMedGoogle Scholar
  45. 45.
    Eitzman DT, McCoy RD, Zheng X, Fay WP, Shen T, Ginsburg D. Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J Clin Invest 97:232, 1996.PubMedCrossRefGoogle Scholar
  46. 46.
    Heckel JL, Sandgren EP, Degen JL, Palmiter RD, Brinster RL. Neonatal bleeding in transgenic mice expressing urokinase-type plasminogen activator. Cell 62:447, 1990.PubMedGoogle Scholar
  47. 47.
    Sidenius N. Expression of the aminoterminal fragment of urokinase-type plasminogen activator in transgenic mice. PhD thesis, University of Copenhagen, Denmark, 1993.Google Scholar
  48. 48.
    Carmeliet P, Schoonjans L, Kieckens L, Ream B, Degen J, Branson R, De Vos R, van den Oord JJ, Collen D, Mulligan R. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 368:419, 1994.PubMedGoogle Scholar
  49. 49.
    Carmeliet P, De Clercq C, Janssen S, Pollefeyt S, Bouché A, Wijns S, Mulligan RC, Collen D. Biological effects of disruption of the tissue-type plasminogen activator, urokinase-type plasminogen activator and plasminogen activator inhibitor-1 genes in mice. Ann N Y Acad 748P:367, 1995Google Scholar
  50. 50.
    Bugge TH, Flick MJ, Danton MJ, Daugherry CC, Romer J, Dano K, Carmeliet P, Collen D, Degen JL. Urokinase-type plasminogen activator is effective in fibrin clearance in the absence of its receptor or tissue-type plasminogen activator. Proc Natl Acad Sci USA, in press.Google Scholar
  51. 51.
    Carmeliet P, Kieckens L, Schoonjans L, Ream B, Van Nuffelen A, Prendergast G, Cole M, Bronson R, Collen D, Mulligan RC. Plasminogen activator inhibitor-1 gene deficient mice. I. Generation by homologous recombination and characterization. J Clin Invest 92:2746, 1993.PubMedCrossRefGoogle Scholar
  52. 52.
    Carmeliet P, Stassen JM, Schoonjans L, Ream B, van den Oord JJ, De Mol M, Mulligan RC, Collen D. Plasminogen activator inhibitor-1 gene deficient mice. II. Effects on hemostasis, thrombosis and thrombolysis. J Clin Invest 92:2756, 1993.PubMedCrossRefGoogle Scholar
  53. 53.
    Dewerchin M, Van Nuffelen, Wallays G, Bouché A, Moons L, Carmeliet P, Mulligan RCM, Collen D. Generation and characterization of urokinase receptor deficient mice. J Clin Invest 97:870, 1996.PubMedGoogle Scholar
  54. 54.
    Bugge TH, Suh TT, Flick MJ, Daugherty CC, Romer J, Solberg H, Ellis V, Dano K, Degen JL. The receptor for urokinase-type plasminogen activator is not essential for mouse development or ferrililty. J Biol Chem 270:16886, 1995.PubMedGoogle Scholar
  55. 55.
    Ploplis V, Carmeliet P, Vazirzadeh S, Van Vlaenderen I, Moons L, Plow E, Collen D. Effects of disruption of the plasminogen gene on thrombosis, growth and health in mice. Circulation 92:2585, 1995.PubMedGoogle Scholar
  56. 56.
    Bugge TH, Flick MJ, Daugherty CC, Degen JL. Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes Dev 9:794, 1995.PubMedGoogle Scholar
  57. 57.
    Dougherty K, Yang A, Harris J, Saunders T, Camper S, Ginsburg D. Targeted deletion of the murine plasminogen activator inhibitor-2 gene by homologous recombination. Blood 86(Suppl I):455, 1995.Google Scholar
  58. 58.
    Zheng X, Saunders TL, Camper SA, Samuelson LC, Ginsburg D. Vitronectin is not essential for normal mammalian develoment and fertility. Proc Natl Acad Sci, USA 92:12426, 1995.PubMedGoogle Scholar
  59. 59.
    Umans L, Serneels L, Overbergh L, Lorent K, Van Leuven F, Van den Berghe H. Targeted inactivation of the mouse alpha2-macroglobulin gene. J Biol Chem 270:19778, 1995.PubMedGoogle Scholar
  60. 60.
    Herz J, Clouthier DE, Hammer RE. LDL receptor-related protein internalizes and degrades uPA:PAI-l complexes and is essential for embryo implantation. Cell 71:411, 1992.PubMedGoogle Scholar
  61. 61.
    Richards WG, Carroll PM, Kinloch RA, Wassarman PM, Strickland S. Creating matarnal effect mutations in transgenic mice: Antisense inhibition of an oocyte gene product. Dev Biol 160:543, 1993.PubMedGoogle Scholar
  62. 62.
    Leonardsson G, Peng XR, Liu K, Nordström L, Carmeliet P, Mulligan R, Collen D, Ny T. Ovulation efficiency is reduced in mice that lack plasminogen activaor gene function: Functional redundancy among physiological plasminogen activators. Proc Natl Acad Sci USA 92:12446, 1995.PubMedGoogle Scholar
  63. 63.
    Cui J, Saunders TL, Ginsburg D. Analysis of factor V function by gene targeting in embryonic stem cells. Blood 86(Suppl I):449a, 1995.Google Scholar
  64. 64.
    Bi L, Lawler AM, Antonarakis SE, High KA, Gearhart JD, Kazazaian HH Jr. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nature Genet 10:119, 1995.PubMedGoogle Scholar
  65. 65.
    Montgomery RR, Scott JP. Hemostasis: Diseases of the fluid phases. In Nathan GD, Oski FA (eds). Haematology of Infancy and Childhood. Piladelphia: WB Saunders, 1993:1605.Google Scholar
  66. 66.
    Al-Mondhiry H, Ehmann WC. Congenital afibrinogenemia. Am J Hematol 46:343, 1994.PubMedGoogle Scholar
  67. 67.
    White GC. Coagulation factors V and VIII: Normal function and clinical disorders. In Handin RI, Lux SE, Stossel TP (eds). Blood. Principles & Practice of Hematology. Philadelphia: JB Lippincott, 1995: 1151.Google Scholar
  68. 68.
    Fay WP, Shapiro AD, Shih JL, Schleef RR, Ginsburg D. Complete deficiency of plasminogen-activator inhibitor type 1 due to a frameshift mutation. N Engl J Med 327:1729, 1992.PubMedCrossRefGoogle Scholar
  69. 69.
    Aoki N. Hemostasis associated with abnormalities of fibrinolysis. Blood Rev 3:11, 1989.PubMedGoogle Scholar
  70. 70.
    Elliott MJ, Faulkner-Jones BE, Stanton H, Hamilton JA, Mercalf D. Plasminogen activator in granulocyte-macrophage-CSF transgenic mice. J Immunol 149: 3687, 1992.Google Scholar
  71. 71.
    Kluft C, Dooijewaard G, Emeis JJ. Role of rhe contact system in fibrinolysis. Semin Thromb Hemost 13:50, 1987.PubMedGoogle Scholar
  72. 72.
    Plow EF, Edgington TS. An alternative pathway tor fibrinolysis. I. The cleavage of fibrinogen by leukocyte proteases at physiologic pH. J Clin Invest 56:30, 1975.PubMedGoogle Scholar
  73. 73.
    Hamsten A, de Faire U, Walldius G, et al. Plasminogen activator inhibitor in plasma: Risk factor for recurrent myocardial infarction. Lancet 2:3, 1987.PubMedGoogle Scholar
  74. 74.
    Robbins KC. Dysplasminogenemias. Enzyme 40:70, 1988.PubMedGoogle Scholar
  75. 75.
    Liu AC, Lawn RM. Lipoprotein(a) and atherogenesis. Trends Cardiovasc Medi 4:40, 1994.Google Scholar
  76. 76.
    Palabrica TM, Liu AC, Aronowitz MJ, Furie B, Lawn RM, Furie BC. Antifibrinolytic activity of apolipoprotein (a) in vivo: Human apolipoprotein (a) transgenic mice are resistant to tissue plasminogen activator-mediated thrombolysis. Nature Med 1:256, 1995.PubMedGoogle Scholar
  77. 77.
    Forrester JS, Fishbein M, Helfant R, Fagin J. A paradigm for restenosis based on cell biology: Clues for the development of new preventive therapies. J Am Coll Cardiol 17:758, 1991.PubMedGoogle Scholar
  78. 78.
    Libby P, Schwartz D, Brogi E, Tanaka H, Clinton SK. A cascade model for restenosis. A special case of atherosclerotic progression. Circulation 86(Suppl III):III47, 1992.PubMedGoogle Scholar
  79. 79.
    Clowes AW, Reidy MA. Prevention of stenosis after vascular reconstruction. Pharmacologk control of intima hyperplasia — A review. J Vase Surg 13:885, 1991.Google Scholar
  80. 80.
    Simpson AJ, Booth NA, Moore NR, Bennett B. Distribution of plasminogen activator inhibitor (PAI-1) in tissues. J Clin Pathol 44:139, 1991.PubMedGoogle Scholar
  81. 81.
    Clowes AW, Clowes MM, An YPT, Reidy MA, Belin D. Smooth muscle cells express urokinase during mitogenesis and tissue-type plasminogen activator during migration in injured rat carotid artery. Circ Res 67:61, 1990.PubMedGoogle Scholar
  82. 82.
    Jackson CL, Reidy MA. The role of plasminogen activation in smooth muscle cell migration after arterial injury. Ann N Y Acad Sci 667:141, 1992.PubMedGoogle Scholar
  83. 83.
    Jackson CL, Raines EW, Ross R, Reidy MA. Role of endogenous platelet-derived growth factor in arterial smooth muscle cell migration after balloon catheter injury. Arterioscl Thromb 13:1218, 1993.PubMedGoogle Scholar
  84. 84.
    Sawa H, Fujii S, Sobel BE. Augmented arterial wall expression of type-1 plasminogen activator inhibitor induced by thrombosis. Arterioscler Thromb 12: 1507, 1992.PubMedGoogle Scholar
  85. 85.
    Carmeliet P, Collen D. Physiological consequences of over-or under-expression of fibrinolytic system components in transgenic mice. In Vadas M, Harlan J (eds). Vascular Control of Hemostasis; Advances of Vascular Biology, in press.Google Scholar
  86. 86.
    Herbert JM, Lamarche I, Prabonnaud V, Dol F, Gauthier T. Tissue-type plasminogen activator is a potent mitogen for human aortic smooth muscle cells. J Biol Chem 269:3076, 1994.PubMedGoogle Scholar
  87. 87.
    Carmeliet P, Stassen JM, Declercq C, Kockx M, Moons L, Collen D. A model for arterial neointima formation using perivascular electric injury in mice. Submitted.Google Scholar
  88. 88.
    Carmeliet P, Moons L, Dewerchin M, Stassen JM, Declercq C, Gerard R, Collen D. Receptor-independnet role of urokinase-type plasminogen activator in arterial neointima formation in mice. Submitted.Google Scholar
  89. 89.
    Carmeliet P, Moons L, Van Vlaenderen I, Ploplis V, Plow EF, Collen D. Role of plasmin proteolysis in arterial neointima formation in mice. Submitted.Google Scholar
  90. 90.
    Yu HR, Schultz RM. Relationship between secreted urokinase plasminogen activator activity and metastatic potential in murine B16 cells transfected with human urokinase sense and antisense genes. Cancer Res 50:7623, 1990.PubMedGoogle Scholar
  91. 91.
    Wilhelm O, Weidle U, Hohl S, Rettenberger P, Schmitt M, Graeff H. Recombinant soluble urokinase receptor as a scavenger for urokinase-type plasminogen activator. Inhibition of proliferation and invasion of human ovarian cancer cells. FEBS Lett 337:131, 1994.PubMedGoogle Scholar
  92. 92.
    Lee SW, Kahn ML, Dichek DA.Expression of an anchored urokinase in the apical endothelial cell membrane. J Biol Chem 267:13020, 1992.PubMedGoogle Scholar
  93. 93.
    Stephens RW, Bokman AM, Myöhänen HT, Reisberg T, Tapiovaara H, Pedersen N, Grondahl-Hansen J, Llinas M, Vaheri A. Hepann binding ro the urokinase kringle domain. Biochemistry 31:7572, 1992.PubMedGoogle Scholar
  94. 94.
    Hamsten A, Eriksson P. Fibrinolysis and atherosclerosis: An update. Fibrinolysis 8(Suppl 1):253, 1994.Google Scholar
  95. 95.
    Juhan-Vague I, Collen D. On the role of coagulation and fibrinolysis in arherosderosis. Ann Epidemiol 2:427, 1992.PubMedCrossRefGoogle Scholar
  96. 96.
    Schneiderman J, Sawdey MS, Keeton MR, Bordin GM, Bernstein EF, Dilley RB, Loskutoff DJ. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries. Proc Natl Acad Sci USA 89:6998, 1992.PubMedGoogle Scholar
  97. 97.
    Schneiderman J, Bordin GM, Engelberg I, Adar R, Seiffert D, Thinnes T, Bernstein EF, Dilley RB, Loskutoff, DJ. Expression of fibrinolytic genes in atherosclerotic abdominal aortic aneurysm wall. A possible mechanism for aneurysm expansion. J Clin Invest 96:639, 1995.PubMedGoogle Scholar
  98. 98.
    Lupu F, Heim DA, Bachmann F, Hurni M, Kakkar VV, Kruithof EKO. Plasminogen activator expression in human atherosclerotic lesions. Arterioscler Thromb Vase Biol 15:1444, 1995.Google Scholar
  99. 99.
    Grainger DJ, Kemp PR, Liu AC, Lawn RM, Metcalfe JM. Activation of transforming growth factor-β is inhibited in transgenic apolipoprotein (a) mice. Nature 370:460, 1994.PubMedGoogle Scholar
  100. 100.
    Bertozzi P, Astedt B, Zenzius L, Lynch K, LeMaire F, Zapoli W, Chapman HA. Depressed bronchioalveolar urokinase activity in patients with adult respiratory distress syndrome. N Engl J Med 322:890, 1990.PubMedCrossRefGoogle Scholar
  101. 101.
    Tomooka S, Border WA, Marshall BC. Noble NA. Glomerular matrix accumulation in liked to inhibition of the plasmin protease system. Kidney Int 42:1462, 1992.PubMedGoogle Scholar
  102. 102.
    Kitching R, Carmeliet P, Ploplis V, Collen D, Plow E, Holdsworth ER, Tipping P. Glomerulonephritis in mice with genetic deficiencies of the plasminogen system. XIIIth International Congress on Fibrinolysis and Thrombolysis, Barcelona, June 24–28, 1996. Fibrinolysis Suppl.Google Scholar
  103. 103.
    Barazzone C, Belin D, Huarte J, Vassalli JD, Sappino AP. Deleterious role of plasminogen activator inhibitor-1 in response to hyperoxia in mouse. Presented at 1996 International Conference, New Orleans, Louisiana.Google Scholar
  104. 104.
    Romer J, Bugge TH, Pyke C, Lund LR, Flick MJ, Degen JL, Dano K. Impaired wound healing in mice with a disrupted plasminogen gent. Nature Med 2:287, 1996.PubMedGoogle Scholar
  105. 105.
    Leloup G, Lemoine P, Carmeliet P, Vaes G. Bone resorption and response to parathyroid hormone or 1,25 dihyroxyvitamin D3 in fetal metatarsals and calvariae from transgenic mice devoid of tissue or urokinase type plasminogen activator or of their inhibitot, PAI-1. Twenty-Fourth European Symposium on Calcified Tissues, May 1995, Aarhus, Denmark. Calcified Tissue International (abstract).Google Scholar
  106. 106.
    Bouillon R, Van Herck E, Verhaeghe J, Carmeliet P. Bone metabolism in transgenic mice, deficient in tissue type plasminogen activator (abstr). Xth International Congress on Calcium regulatory hormones, February 1995, Melbourne, Australia. Bone Miner.Google Scholar
  107. 107.
    Sitrin RG, Shollenberger SB, Strieter RM, Gyetko MR. Endogenously produced urokinase activity amplifies tumor necrosis factor-alpha secretion by THP-1 mononuclear phagocytes. J Leukoc Biol, 1996, in press.Google Scholar
  108. 108.
    Matsushima K, Taguchi M, Kovacs EJ, Young HA, Oppenheim JJ. Intracellular localization of human monocytic interleukin-1 (IL-1) activity and release of biologically IL-1 from monocytes by trypsin and plasmin. J Immunol 136:2883, 1986.PubMedGoogle Scholar
  109. 109.
    Auberger P, Sonthonnax S, Peyton JF, Mari B, Fehlmann M. A chymotryptic-type serine proteinase is required for IL-2 production by Jurkat T cells. Immunology 70:547, 1993.Google Scholar
  110. 110.
    Gyetko MR, Chen GH, McDonald RA, Goodman R, Huffnagle GB, Wilkinson CC, Fuller JA, Toews GB. Urokinase is required for the pulmonary inflammatory response to Crytococcus neoformans. In press.Google Scholar
  111. 111.
    Tacchini-Corrier F, Vesin C, Philippeaux MM, Belin D, Vassalli P, Piguet PE. Tumor necrosis factor induces platelet activation and consumption in vivo, a process involving urokinase-type plasminogen activator and plasminogen. Abstracts of the Sixth International TNF Congress, May 8–12, 1996, Rhodes, Hellas.Google Scholar
  112. 112.
    Menoud PA, Debrot S, Schowing J. Roux’s Arch Dev Biol 198:219, 1989.Google Scholar
  113. 113.
    Qian Z, Gilbert ME, Colicos MA, Kandel ER, Kuhl D. Tissue-type plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 361:453, 1993.PubMedGoogle Scholar
  114. 114.
    Sappino AP, Madani R, Huarte J, Belin D, Kiss JZ, Wohlwend A, Vassalli JD. Extracellular proteolysis in the adult murine brain. J Clin Invest 92:679, 1993.PubMedGoogle Scholar
  115. 115.
    Krystosek A, Seeds NW Plasminogen activator release at the neuronal growth cone. Science 213:1532, 1981.PubMedGoogle Scholar
  116. 116.
    Carroll PM, Tsirka S, Richards WG, Fronhman MA, Strickland S. Promoter sequences of the tissue-type plasminogen activator gene are able to confer tissue-specific expression of LacZ during mouse development. In press.Google Scholar
  117. 117.
    Theuring F, Aguzzi A, Turner JD, Kropp C, Wohn KD, Hoffmann S, Schleuning WD. Analysis of human tissue-type plasminogen activator gene promotoer activity during embyrogenesis of transgenic mice and rats and its induction in the adult mouse brain Submitted.Google Scholar
  118. 118.
    Meiri N, Masos T, Rosenblum K, Miskin R, Dudai Y. Overexpression of urokinase-type plasminogen activator in transgenic mice is correlated with impaired learing. Proc Natl Acad Sci USA 91:3196, 1994.PubMedGoogle Scholar
  119. 119.
    Huang YY, Bach ME, Wolfer DP, Zhuo M, Lipp HP, Hawkins RD, Schoonjans L, Godfraiend JM, Kandel ER, Mulligan RC, Collen D, Carmeliet P. Selective interference with a late stage of both Schaffer collateral and mossy fiber long term potentiation in mice lacking the gene encoding tissue-type plasminogen activator. Submitted.Google Scholar
  120. 120.
    Frey U, Müller M, Kühl D. A different form of long-lasting potentiation revealed in tissue plasminogen activator mutatn mice. J Neurosci 16:2057, 1996.PubMedGoogle Scholar
  121. 121.
    Tsirka SE, Gualandris A, Amaral DG, Strickland S. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue piasminogen activator. Nature 377:340, 1995.PubMedGoogle Scholar
  122. 122.
    Seeds NW, Haffke S, Christensen K, Schoonmaker J. Cerebellar granule cell migration involves proteolysis. In Lander JM (ed). Molecular Aspects of Development and Aging of the Nervous System. New York: Plenum, 1990:169.Google Scholar
  123. 123.
    Nakajima K, Reddington M, Kohsaka S, Kreurzberg GW. Induction of urokinase-type plasminogen activator in rat facial nucleus by axotomy of the facial nerve. J Neurochem 66, in press.Google Scholar
  124. 124.
    Reddington M, Haas C, Kreutzberg GW. The plasminogen activator system in neurons and glia during mororneuron regeneration. Neuropathol Appl Neurobiol 20:188, 1994.PubMedGoogle Scholar
  125. 125.
    Verral S, Seeds NW. Characterization of 125I-tissue type plasminogen activator binding to cerebellar granule neurons. J Cell Biol 109:265, 1989.Google Scholar
  126. 126.
    Janicke F, Schmitt M, Graeff H. Clinical relevance of the urokinase-type and tissue-type plasminogen activators and of their type 1 inhibitor in breast cancer. Semin Thromb Hemos 17:303, 1991.Google Scholar
  127. 127.
    Poggi A, Bellelli E, Carmela R, Castelli MP, Salvatore L, Marinacci R, Erickson LA, Benedetta Donati M, Bini A. Reduced pulmonary metastases of Lewis Lung Carcinoma in mice transgenic for the plasminogen activator inhibitor-1 gene. Submitted.Google Scholar
  128. 128.
    Ploplis V, French E, Carmeliet P, Collen D, Plow E. The plasminogen system and cell migration during an inflammatory response. XIIIth International Congress on Fibrinolysis and Thrombolysis, Barcelona, June 24–28, 1996. Fibrinolysis Suppl.Google Scholar
  129. 129.
    Wagner EF. On transferring genes into stem cells and mice. EMBO J 9:3024, 1990.PubMedGoogle Scholar
  130. 130.
    Botteri FM, Van der Putten H, Rajput B, Ballmer-Hofer K, Nagamine Y. Induction of the urokinase-type plasminogen activator gene by cytoskelecon-disrupting agents. In Festoff BW (ed). Serine Proteases and their Serpin Inhibitots in the Nervous System. New York: Plenum Press, 1990:105.Google Scholar
  131. 131.
    Declercq P, Carmeliet P, Versrreken M, Decock F, Collen D. Monoclonal antibodies raised against the targeted proteins in gene-inactivated mice. J Biol Chem 270:8397, 1995.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Peter Carmeliet
  • Désiré Collen

There are no affiliations available

Personalised recommendations