Advertisement

Gene therapy for the vulnerable plaque

  • Douglas W. Losordo
  • Jeffrey M. Isner
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 193)

Abstract

Rupture of coronary atherosclerotic plaque and subsequent formation of an occlusive intracoronary thrombus (Figure 410-1) are the major events precipitating acute coronary syndromes [1, 2, 3, 4, 5, 6]. The vulnerable plaque is smaller in size [7], richer in lipids [1],[2], and more infiltrated with macrophages [2,3,8, 9, 10] than the stable, fibromuscular lesion. Therefore, lowering the lipid and/or macrophage pools stored in the plaque may “stabilize” the plaque and reduce the incidence of plaque rupture [2,4, 5, 6]. Indeed, cholesterol-lowering trials have yielded a significant reduction in acute cardiac events [11, 12, 13, 14, 15, 16, 17, 18]. Antithrombotic therapies may further prevent acute coronary syndromes by altering the consequences of plaque rupture [4].

Keywords

Gene Therapy Gene Transfer Acute Coronary Syndrome Plaque Rupture Familial Hypercholesterolemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richardson PD, Davies MJ, Born GVR. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2:941, 1989.PubMedGoogle Scholar
  2. 2.
    Falk E. Why do plaques rupture? Circulation 86(Suppl. III):30, 1992.Google Scholar
  3. 3.
    Lendon CL, Davies MJ, Born GVR, Richardson PD. Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 87:87, 1991.PubMedGoogle Scholar
  4. 4.
    Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (Second part). N Engl J Med 326:310, 1992.PubMedCrossRefGoogle Scholar
  5. 5.
    Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 362:801, 1993.PubMedGoogle Scholar
  6. 6.
    MacIsaac AI, Thomas JD, Topol EJ. Toward the quiescent coronary plaque. J Am Coll Cardiol 22:1228, 1993.PubMedGoogle Scholar
  7. 7.
    Nobuyoshi M, Tanaka M, Nosaka H, et al. Progression of coronary atherosclerosis: Is coronary spasm related to progression? J Am Coll Cardiol 18:904, 1991.PubMedGoogle Scholar
  8. 8.
    van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimai rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89:36, 1994.PubMedGoogle Scholar
  9. 9.
    Alexander RW. Inflammation and coronary artery disease. N Engl J Med 331:468, 1994.PubMedGoogle Scholar
  10. 10.
    Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 90:775, 1994.PubMedGoogle Scholar
  11. 11.
    Kane JP, Malloy MJ, Ports TA, Phillips NR, Diehl JC, Havel RJ. Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regiment. JAMA 264:3007, 1990.PubMedGoogle Scholar
  12. 12.
    Brown G, Albers JJ, Fisher LD, et al. Regression or coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 323:1289, 1990.PubMedCrossRefGoogle Scholar
  13. 13.
    Ornish D, Brown SE, Scherwitz LW, et al. Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. Lancet 336:129, 1990.PubMedGoogle Scholar
  14. 14.
    Blankenhorn DH, Nessim SA, Johnson RL, Sanmarco M, Azen SP, Cashin-Hemphill I. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts, JAMA 257:3233, 1987.PubMedGoogle Scholar
  15. 15.
    Brensike JF, Levy RI, Kesley SF, et al. Effects of therapy with cholestyramine on progression of coronary arteriosclerosis: Results of the NHLBI Type II Coronary Intervention Study. Circulation 69:313, 1984.PubMedGoogle Scholar
  16. 16.
    Buchwald H, Varco RL, Matts JP, et al. Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia: Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). N Engl J Med 323:946, 1990.PubMedCrossRefGoogle Scholar
  17. 17.
    Cashin-Hemphill L, Mack WJ, Pagoda JM, Sanmarco ME, Azen SP, Blankenhorn DH. Beneficial effects of colestipol-niacin on coronary atherosclerosis. JAMA 264:3013, 1990.PubMedGoogle Scholar
  18. 18.
    Watts GF, Lewis B, Brunt JN, et al. Effects on coronary artery disease of lipid-lowering diet, or diet plus cholestyramine, in the St. Thomas’ Atherosclerosis Regression Study (STARS). Lancet 339:563, 1992.PubMedGoogle Scholar
  19. 19.
    Badimon JJ, Fuster V, Chesebro JH, Badimon L. Coronary atherosclerosis. A multifactorial disease. Circulation 87(Suppl. II):3, 1993.Google Scholar
  20. 20.
    Brown MS, Goldstein JL. A receptor-mediated path-way for cholesterol homeostasis. Science 232:34, 1986.PubMedGoogle Scholar
  21. 21.
    Bilheimer DW, Goldstein JL, Grundy SM, Starzl TE, Brown MS, Liver transplantation to provide low-density-lipoprotein receptors and lower plasma cholesterol in a child with homozygous familial hypercholesterolemia. N Engl J Med 311:1658, 1984.PubMedCrossRefGoogle Scholar
  22. 22.
    Goldstein JL, Kita T, Brown MS. Defective lipoprotein receptors and atherosclerosis. Lessons from an animal counterpart of familial hypercholesterolemia. N Engl J Med 309:288, 1983.PubMedCrossRefGoogle Scholar
  23. 23.
    Schneider MD, French BA. The advent of adenovirus. Gene therapy for cardiovascular disease. Circulation 88:1937, 1993.PubMedGoogle Scholar
  24. 24.
    Wilson JM, Chowdhury NR, Grossman M, et al. Temporary amelioration of hyperlipidemia in low density lipoprotein receptor-deficient rabbits transplanted with genetically modified hepatocytes. Proc Natl Acad Sci USA 87:8437, 1990.PubMedGoogle Scholar
  25. 25.
    Chowdhury JR, Grossman M, Gupta S, Chowdhury NR, Baker JR, Wilson JM. Longterm improvement of hypercholesterolemia after ex vivo gene therapy in LDLR-deficient rabbits. Science 254:1802, 1991.PubMedGoogle Scholar
  26. 26.
    Wilson JM. Clinical protocol: Ex vivo gene therapy of familial hypercholesterolemia.Hum Gene Ther 3:179, 1992.PubMedGoogle Scholar
  27. 27.
    Grossman M, Raper SE, Kozarsky K, et al. Successful ex vivo gene therapy direcred to liver in a patient with familial hypercholesterolaemia. Nature Genet 6:335, 1994.PubMedGoogle Scholar
  28. 28.
    Brown MS, Goldstein JL, Havel RJ, Steinberg D. Gene therapy for cholesterol. Nature Genet 7:349, 1994.PubMedGoogle Scholar
  29. 29.
    Dichek DA, Bratthauer GL, Beg ZH, et al. Retroviral vector-mediated in vivo expression of low-density-lipoprotein receptors in the Watanabe heritable hyperlipidemic rabbit. Somat Cell Mol Genet 17:287, 1991.PubMedGoogle Scholar
  30. 30.
    Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10:4239, 1990.PubMedGoogle Scholar
  31. 31.
    Herz J, Gerard RD. Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc Narl Acad Sci USA 90:2812, 1993.Google Scholar
  32. 32.
    Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invesr 92:883, 1993.Google Scholar
  33. 33.
    Kozarsky KF, McKinley DR, Austin LL, Raper SE, Stratford-Perricaudet LD, Wilson JM. In vivo correction of lowdensity lipoprotein receptor deficiency in the Watanabe heritable hyperlipidemic rabbit with recombinant adenoviruses. J Biol Chem 269:13695, 1994.PubMedGoogle Scholar
  34. 34.
    Yang Y, Nunes FA, Berencsi K, Furth EE, Gönczöl E, Wilson JM. Cellular immunity to viral antigens limits Eldeleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 91:4407, 1994.PubMedGoogle Scholar
  35. 35.
    Yang Y, Nunes FA, Berencsi K, Gönczöl E, Engelhardt JF, Wilson JM. Inactivation of E2A in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nature Genet 7:362, 1994.PubMedGoogle Scholar
  36. 36.
    Engelhardt JF, Ye X, Doranz B, Wilson JM. Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl Acad Sci USA 91:1994.Google Scholar
  37. 37.
    Wilson JM, Grossman M, Wu CH, Chowdhury NR, Wu GY, Chowdhury JR. Hepatocyte-directed gene transfer in vivo leads to transient improvement of hypercholesterolemia in lowdensity lipoprotein receptor-deficient rabbits. J Biol Chem 267:963, 1992.PubMedGoogle Scholar
  38. 38.
    Cristiano R, Smith L, Kay M, Brinkley B, Woo S. Hepatic gene therapy: Efficienr gene delivery and expression in primary hepatocytes utilizing a conjugated adenovirus-DNA complex. Proc Natl Acad Sci USA 90:11548, 1993.PubMedGoogle Scholar
  39. 39.
    Castelli WP, Doyle JT, Gordon T, et al. HDL cholesterol and other lipids in coronary heart disease: The cooperative lipoprotein phenotyping study. Circulation 55:767, 1977.PubMedGoogle Scholar
  40. 40.
    Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease: The Framingham study. Am J Med 62:707, 1977.PubMedGoogle Scholar
  41. 41.
    Heiss G, Johnson NJ, Reiland S, Davis CE, Tyroler HA. The Lipid Research Clinics Program Prevalence Study: Summary. Circulation 62(Suppl. IV):116, 1980.Google Scholar
  42. 42.
    Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study primary prevention trial with gemfibrozil in middleaged men with dyslipidemia: Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 317:1237, 1987.PubMedCrossRefGoogle Scholar
  43. 43.
    Badimon JJ, Badimon L, Galvez A, Dische R, Fuster V. High density lipoprotein plasma fraction inhibit aortic fatty streaks in cholesterol-fed rabbits. Lab Invest 60:455, 1989.PubMedGoogle Scholar
  44. 44.
    Badimon JJ, Badimon L, Fuster V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest 85:1234, 1990.PubMedGoogle Scholar
  45. 45.
    Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein A1. Nature 353:265, 1991.PubMedGoogle Scholar
  46. 46.
    Pászty C, Maeda N, Verstuyft J, Rubin EM. Apolipoprotein A1 transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest 94:899, 1994.PubMedCrossRefGoogle Scholar
  47. 47.
    Reichl D, Miller NE. Pathophysiology of reverse cholesterol transport: Insights from inherited disorders of lipoprotein metabolism. Arteriosclerosis 9:785, 1989.PubMedGoogle Scholar
  48. 48.
    Ameli S, Hultgardh-Nilsson A, Cercek B, et al. Recombinant apolipoprotein A-1 Milano reduces intimai thickening after balloon injury in hypercholesterolemic rabbits. Circulation 90:1935, 1994.PubMedGoogle Scholar
  49. 49.
    Soma MR, Donetti E, Parolini C, Sirtori CR, Fumagalli R, Franceschini G. Recombinant apolipoprotein A-1 Milano dimer inhibits carotid intimai thickening induced by perivascular manipulation in rabbits. Circ Res 76:405, 1995.PubMedGoogle Scholar
  50. 50.
    Kopfler WP, Willard M, Betz T, Willard JE, Gerard RD, Meidell RS. Adenovirus-mediated transfer of a gene encoding human apolipoprotein A-1 into normal mice increases circulating highdensity lipoprotein cholesterol. Circulation 90:1319, 1994.PubMedGoogle Scholar
  51. 51.
    Welgus HG, Campbell EJ, Cury JD, er al. Neutral metalloproteinases produced by human mononuclear phagocytes. J Clin Invest 86:1496, 1990.PubMedGoogle Scholar
  52. 52.
    Brown DI, Hibbs MS, Kearney M, Topol EJ, Loushin C, Isner JM. Expresssion and cellular location of 92 kDa gelatinase in coronary lesions of patients with nustable angina. Circulation, in press.Google Scholar
  53. 53.
    Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (First part). N Engl J Med 326:242, 1992.PubMedCrossRefGoogle Scholar
  54. 54.
    Shah PK, Falk E, Badimon JJ, et al. Human mono-cyte-derived macrophages express collagenase and induce collagen breakdown in atherosclerotic fibrous caps: Implications for plaque rupture (abstr). Circulation 88(Suppl. I):1254, 1993.Google Scholar
  55. 55.
    Chen S-J, Wilson JM, Muller DWM. Adenovirus-mediated gene transfer of soluble vascular cell adhesion molecule to porcine interposition vein grafts. Circulation 89:1922, 1994.PubMedGoogle Scholar
  56. 56.
    Zeiher AM, Schray-Utz B, Busse R. Nitric oxide modulates monocyte chemoattractant protein 1 in human endothelial cells: Implications for the pathogenesis of atherosclerosis (abstr). Circulation 88(Suppl. I):1367, 1993.Google Scholar
  57. 57.
    Moneada S, Higgs A. The Larginine-nitric oxide pathway. N Engl J Med 329:2002, 1993.Google Scholar
  58. 58.
    Sessa WC, Harrison JK, Barber CM, et al. Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem 267:15274, 1992.PubMedGoogle Scholar
  59. 59.
    von der Leyen H, Gibbons GH, Morishita R, et al. Gene therapy inhibiting neointimal vascular lesion: In vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA 92:1137, 1995.PubMedGoogle Scholar
  60. 60.
    DeWood MA, Stifter WF, Simpson CS, et al. Coronary arteriographic findings soon after non-Q-wave myocardial infarction. N Engl J Med 315:417, 1986.CrossRefGoogle Scholar
  61. 61.
    DeWood MA, Spores J, Notske R, et al. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction, N Engl J Med 303:897, 1980.CrossRefGoogle Scholar
  62. 62.
    Falk E. Unstable angina with fatal outcome: Dynamic coronary thrombosis leading to infarction and/or sudden death: Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminacing in total vascular occlusion. Circulation 71:699, 1985.PubMedGoogle Scholar
  63. 63.
    Steering Committee of the Physicians’ Health Study Research Group. Final report on the aspirin component of the ongoing Physicians’ Health Study. N Engl J Med 321:129, 1989.CrossRefGoogle Scholar
  64. 64.
    Juul-Möller S, Edvardsson N, Jahnmatz B, et al. Double-blind trial of aspirin in primary prevention of myocardial infarction in patients with stable chronic angina pectoris. Lancet. 340:1421, 1992.PubMedGoogle Scholar
  65. 65.
    March KL, Wilensky RL, Hathaway OR. Novel drug and device combinations for targeted prevention of restenosis. Cardiol Intervention 2:11, 1992.Google Scholar
  66. 66.
    Riessen R, Isner JM. Prospects for site-specific delivery of pharmacologie and molecular therapies. J Am Coll Cardiol 23:1234, 1994.PubMedCrossRefGoogle Scholar
  67. 67.
    Gimbrone MA. Vascular endothelium: Nature’s blood container. In Gimbrone MA (ed). Vascular Endothelium in Hemostasis and Thrombosis. NewYork: Churchill Livingstone, 1986:1Google Scholar
  68. 68.
    Quax PHA, van den Hoogen CM, Verheijen JH, et al. Endotoxin induction of plasminogen activator and plasminogen activator inhibitor type 1 mRNA in rat tissues in vivo, J Biol Chem 265:15560, 1990.PubMedGoogle Scholar
  69. 69.
    Loscalzo J, Braunwald E. Tissue plasminogen activator. N Engl J Med 19:925, 1988.Google Scholar
  70. 70.
    Dichek DA. Interventional approaches to the introduction of genetic material into the vasculature. In Topol EJ (ed). Textbook of Interventional Cardiology. Philadelphia: WB Saunders, 1993:989.Google Scholar
  71. 71.
    Nabel EJ, Plautz G, Boyce DM, Stanley JC, Nabel GJ. Recombinant gene expression in vivo within endothelial cells of the arterial wall. Science 244:1342, 1989.PubMedGoogle Scholar
  72. 72.
    Sutton JM, Ellis SG, Roubin GS, et al. Major clinical events after coronary stenting. The Multicenter Registry of Acute and Elective Gianturco-Roubin Stent Placement. Circulation 89:1126, 1994.PubMedGoogle Scholar
  73. 73.
    Wilson JM, Birinyi LK, Salomon RN, Libby P, Callow AD, Mulligan RC. Implantation of vascular grafts lined with genetically modified endothelial cells. Science 244:1344, 1989.PubMedGoogle Scholar
  74. 74.
    Kadletz M, Magometschnigg H, Minar E, et al. Implantation of in vitro endothelialized polytetra-fluoroethylene grafts in human beings. A preliminary report. J Thorac Cardiovasc Surg 104:736, 1992.PubMedGoogle Scholar
  75. 75.
    Leon MB, Wong SC. Intracoronary stents. A break-through technology or just another small step? Circulation 89:1323, 1994.PubMedGoogle Scholar
  76. 76.
    van der Giessen WJ, Serruys PW, Visser WJ, et al. Endothelialization of intravascular stents. J Intervent Cardiol 1:109, 1988.Google Scholar
  77. 77.
    Dichek DA, Neville RF, Zwiebel JA, Freeman SM, Leon MB, Anderson WF. Seeding of intravascular stents with genetically engineered endothelial cells. Circulation 80:1347, 1989.PubMedGoogle Scholar
  78. 78.
    Flugelman MY, Virmani R, Leon MB, Bowman RL, Dichek DA. Genetically engineered endothelial cells remain adherent and viable after stent deployment and exposure to flow in vitro. Circ Res 70:348, 1992.PubMedGoogle Scholar
  79. 79.
    Fitzgibbon GM, Leach AJ, Kafka HP, Keon WJ. Coronary bypass graft fate: Long-term angiographic study. J Am Coll Cardiol 17:1075, 1991.PubMedGoogle Scholar
  80. 80.
    Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy-II: Maintenance of vascular graft or arterial patency by antiplatelet therapy. Br Med J 308:159, 1994.Google Scholar
  81. 81.
    Nabel EG, Plautz G, Nabel GJ. Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science 249:1285, 1990.PubMedGoogle Scholar
  82. 82.
    Leclerc G, Isner JM. Percutaneous gene therapy for cardiovascular disease. In Topol EJ (ed). Textbook of Interventional Cardiology. Philadelphia: WB Saunders, 1993:1019.Google Scholar
  83. 83.
    Lim CS, Chapman GD, Gammon JB, et al. Direct in vivo gene transfer into the coronary and peripheral vasculatures of the intact dog. Circulation 83:578, 1991.Google Scholar
  84. 84.
    Barbee RW, Stapleton DD, Perry BD, et al. Prior arterial injury enhances luciferase expression following in vivo gene transfer. Biochem Biophys Res Commun 190:70, 1993.PubMedGoogle Scholar
  85. 85.
    Lemarchand P, Jones M, Vamada I, Crystal RG. In vivo gene transfer and expression in normal uninjured blood vessels using replication-deficient recombinant adenovirus vectors. Circ Res 72:1132, 1993.PubMedGoogle Scholar
  86. 86.
    Guzman R, Lemarchand P, Crystal RG, Epstein SE, Finkel T. Efficient and selective adenovirus-mediated gene transfer into vascular neointima. Circulation 88:2838, 1993.PubMedGoogle Scholar
  87. 87.
    Lee SW, Trapnell BC, Rade JJ, Virmani R, Dichek DA. In vivo adenoviral vector4mediated gene transfer into balloon-injured rat carotid arteries. Circ Res 73:797, 1993.PubMedGoogle Scholar
  88. 88.
    Willard JE, Landau C, Glamann DB, et al. Geneticmodification of the vessel wall. Comparison of surgical and catheter-based techniques for delivery of recombinant adenovirus. Circulation 89:2190, 1994.PubMedGoogle Scholar
  89. 89.
    Rome JJ, Shayani V, Flugelman MY, et al. Anatomic barriers influence the distribution of in vivo gene transfer into the arterial wall. Modeling with microscopic tracer particles and verification with a recombinant adenoviral vector. Arterioscler Thromb 14:148, 1994.PubMedGoogle Scholar
  90. 90.
    Steg PG, Feldman LJ, Scoazec J-Y, et al. Arterial gene transfer to rabbit endothelial and smooth muscle cells using percutaneous delivery of an adenoviral vector. Circulation 90:1648, 1994.PubMedGoogle Scholar
  91. 91.
    Feldman LJ, Steg PG, Zheng LP, et al. Lowefficiency of percutaneous adenovirus-mediated arterial gene transfer in the atherosclerotic rabbit. J Clin Invest, in press.Google Scholar
  92. 92.
    Leclerc G, Gal D, Takeshita S, Nikol S, Weir L, Isner JM. Percutaneous arterial gene transfer in a rabbit model. Efficiency in normal and balloon-dilated atherosclerotic arteries. J Clin Invest 90:936, 1992.PubMedGoogle Scholar
  93. 93.
    Takeshita S, Gal D, Leclerc G, et al. Increased gene expression after liposome-mediated arterial gene transfer associated with intimai smooth muscle cell proliferation. In vitro and in vivo findings in a rabbit model of vascular injury. J Clin Invest 93:652, 1994.PubMedGoogle Scholar
  94. 94.
    Flugelman MY, Jaklitsch MT, Newman KD, Casscells W, Brathauer GL, Dichek DA. Low level in vivo gene transfer into the arterial wall through a perforated balloon catheter. Circulation 85:1110, 1992.PubMedGoogle Scholar
  95. 95.
    Riessen R, Rahimizadeh H, Takeshita S, Gal D, Barry JJ, Isner JM. Successful vascular gene transfer using a hydrogel coated balloon angioplasty catheter. Hum Gene Ther 4:749, 1993.PubMedGoogle Scholar
  96. 96.
    Lee SW, Kahn ML, Dichek DA. Control of clot lysis by gene transfer. Trends Cardiovasc Med 3:61, 1993.Google Scholar
  97. 97.
    March KL, Gradus-Pizlo I, Wilensky RL, Yei S, Trapnell BC. Cardiovascular gene therapy using adenoviral vectors: Distant transduction following local delivery using a porous balloon catheter (abstr). J Am Coll Cardiol 23:177, 1994.Google Scholar
  98. 98.
    Ohno T, Gordon D, San H, et al. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science 265:781, 1994.PubMedGoogle Scholar
  99. 99.
    French BA, Mazur W, Ali NM, et al. Percutaneous transluminal in vivo gene transfer by recombinant adenovirus in normal porcine coronary arteries, atherosclerotic arteries, and two models of coronary restenosis. Circulation 90:2402, 1994.PubMedGoogle Scholar
  100. 100.
    Barr E, Carroll J, Kalynych AM, Tripathy SK, Kozarsky K, Wilson JM. Efficient catheter-mediated gene transfer into the heart using replication-defective adenovirus. Gene Ther 1:51, 1994.PubMedGoogle Scholar
  101. 101.
    Muller DWM, Gordon D, San H, et al. Catheter-mediated pulmonary vascular gene transfer and expression. Circ Res 75:1039, 1994.PubMedGoogle Scholar
  102. 102.
    Guzman RJ, Hirschowitz EA, Brody SL, Crystal RG, Epstein Se, Finkel T. In vivo suppression of injury-induced vascular smooth muscle cell accumulation using adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci USA 91:10732, 1994.PubMedGoogle Scholar
  103. 103.
    Chang MW, Barr E, Seltzer J, et at. Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 267:518, 1995.PubMedGoogle Scholar
  104. 104.
    Dichek DA, Nussbaum O, Degen SJF, Anderson WF. Enhancement of the fibrinolytic activity of sheep endothelial cells by retroviral vector-mediated gene transfer. Blood 77:533, 1991.PubMedGoogle Scholar
  105. 105.
    Lee SW, Kahn ML, Dichek DA. Expression of an anchored urokinase in the apical endothelial cell membrane. J Biol Chem 267:13020, 1992.PubMedGoogle Scholar
  106. 106.
    Asahara T, Bauters C, Pastore C, et al. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimai hyperplasia in balloon-injured rat carotid artery. Circulation, in press.Google Scholar
  107. 107.
    Takeshita S, Zheng LP, Asahara T, et al. In vivo evidence of enhanced angiogenesis following direct arterial gene transfer of the plasmid encoding vascular endothelial growth factor. Proc Natl Acad Sci USA, in press.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Douglas W. Losordo
  • Jeffrey M. Isner

There are no affiliations available

Personalised recommendations